Group products

 $\bigcirc \text{ is an exact operation, if}$ $G = \bigcirc_{i \in I} G_i,$ $G = \langle G_i \mid i \in I \rangle,$ $G_i \simeq H_i, \forall i \implies \bigcirc_i G_i \simeq \bigcirc_i H_i.$

We want these properties:

Mal'tsev: $H_i \leq G_i \implies \bigcirc_i H_i \leq \bigcirc_i G_i$, Associativity: $I = \bigcup I_j \implies \bigcirc_{i \in I} G_i \simeq \bigcirc_j (\bigcirc_{i \in I_j} G_i)$, Functoriality: $G_i \rightarrow H_i \implies \bigcirc_i G_i \rightarrow \bigcirc_i H_i$, Regularity: $G_i \cap \langle G_j \mid j \neq i \rangle^G = 1$.

Mal'tsev's problem: are there any associative Mal'tsev operations besides direct and free products?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Adian constructed such an operation for groups without involutions, but there's a simpler way, suggested by S.V. Ivanov.

Odd $n > 10^{10}$. Free product: $F = *_i G_i$. Let $C \trianglelefteq F$ such that $F/C \simeq \times_i G_i$. $N = \langle X^n \mid X^n \in C \rangle$. Define $\bigcirc_i^n G_i = F/N$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

 \bigcirc ^{*n*} is exact, associative, functorial and regular.

Proof

Easy (no cancellation theory)

Theorem

 \bigcirc ⁿ is Mal'tsev in the class of groups without involutions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof

A graded presentation for $\bigcap_{i}^{n} G_{i}$:

$$G(0) = F = *_i G_i,$$

$$\mathfrak{X}_i \text{ are periods of rank } i,$$

$$\mathfrak{R}_i = \mathfrak{R}_{i-1} \cup \{A^{\operatorname{lcm}(n,|A|)} \mid A \in \mathfrak{X}_i\}$$

$$\bigcirc_i^n G_i = G(\infty) = \langle F \mid \bigcup_i \mathfrak{R}_i \rangle$$

Use $\S{18} \text{ and } \S{19}.$

Properties of \bigcirc^n

 G_i have no involutions, $G = \bigcirc_i^n G_i$

- ▶ at least two $G_i \neq 1 \implies |G| = \infty$,
- G_i are periodic \implies G is periodic,
- inside \mathfrak{B}_n it is a free product,

$$\blacktriangleright G_i \cap G_i^x = 1, x \notin G_i,$$

A ≤ G and A is abelian or finite ⇒ A is cyclic or conj. to a subgr. of G_i,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $\blacktriangleright x \in G_i, x \neq 1 \implies C_G(x) \leq G_i,$
- $x \in G_i$ not conj. to G_j , $j \neq i \implies C_G(x)$ is cyclic,
- ... and other things following from condition R.

Periodic product

n is large, can be even. Periodic product: $G = \prod_{i=1}^{n} G_i$

 $G(0) = F = *_i G_i$ $\mathfrak{X}_i \text{ are periods, not products of two involutions in rank } i - 1$ $\mathfrak{R}_i = \mathfrak{R}_{i-1} \cup \{A^n \mid A \in \mathfrak{X}_i\}$ $\prod_i^n G_i = G(\infty) = \langle F \mid \bigcup_i \mathfrak{R}_i \rangle$

Theorem

 \prod^{n} is an exact associative Mal'tsev operation on all groups.

This gives the solution to Mal'tsev's problem.

General properties

 $G = \prod_{i=1}^{n} G_i$, any big *n*, G_i may have involutions.

- ▶ at least two $G_i \neq 1 \implies |G| = \infty$,
- every period has order n,
- ▶ $x \in G$ is either conj. to G_i , or conj. to a period (so $x^n = 1$), or $|x| = \infty$ and x = st, $s^2 = t^2 = 1$,
- Some props. about finite/abelian subgroups and centralizers?

If *n* is odd and G_i have no involutions, then \prod^n coincides with Adian's periodic product.

Odd n, no involutions

In addition to the previous slide:

- $x \in G$, either $x^n = 1$ or x is conj. in some G_i .
- if G_i are periodic, then G is periodic,
- \prod^n coincides with \bigcirc^n inside \mathfrak{B}_n , and hence is a free product,

• $A \leq G$ abelian $\implies A$ is cyclic of conj. to a subgr. of G_i ,

$$\blacktriangleright \ x \in G_i, \ x \neq 1 \implies C_G(x) \leq G_i,$$

• $x \in G$ not conj. to $G_i \forall i \implies C_G(x)$ is cyclic.

Constructed by Adian in 1976.

Simplicity

Theorem (Adian, 1978)

Suppose that $n \ge 665$ is odd and G_i have no involutions. Periodic product $\prod_{i=1}^{n} G_i$ is simple $\iff G_i = G_i^n \ \forall i$.

Corollary

Odd $n \ge 665$, odd k > 1, gcd(n, k) = 1. In \mathfrak{B}_{nk} there are infinitely many f.g. nonabelian simple groups.

Proof

Groups $H_r = \prod_{i=1,...,r}^n \mathbb{Z}_k$ lie in \mathfrak{B}_{nk} and are all pairwise nonisomorphic (different number of conj. classes of \mathbb{Z}_k). Solves Hanna Heumann's problem.

Hopf property

Theorem (Adian–Atabekyan, 2014)

Odd $n \ge 665$, G_i have no involutions, $G = \prod_i^n G_i$. If $1 < N \le G$, then $G^n \le N$.

Corollary If $G_i^n \neq 1$ for some *i*, then *G* is Hopfian.

Proof

If $G/N \simeq G$, N > 1, then $(G/N)^n = 1 \implies G_i^n = 1$.

It's not known whether B(r, n) is Hopfian.

 $\prod_{i=1,...,r}^{n} \mathbb{Z}_{m}, m = nk, k, r > 1$ is Hopfian, not simple and not residually finite.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Amenability

 $G = \langle S \rangle, |S| < \infty.$ $\operatorname{Fol}_{S}(G) = \inf_{A} \frac{|\partial_{S}(A)|}{|A|}, \text{ where } \partial_{S}(A) = \{a \in A \mid ax \notin A, x \in S^{\pm 1}\}$ $G \text{ is amenable } \iff \operatorname{Fol}_{S}(G) = 0$ $G \text{ is uniformly non-amenable } \iff \operatorname{inf}_{S} \operatorname{Fol}_{S}(G) > \epsilon \text{ for sm. } \epsilon > 0$

Theorem (Adian-Atabekyan, 2015)

Odd $n \ge 1003$, G_i have no involutions, $G = \prod_i^n G_i$. If $H \le G$, H is f.g. and H not conj. to G_i , then H is uniformly non-amenable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Generalizes an earlier theorem of Atabekyan, 2009.

 $G = \langle S \rangle, \ |S| < \infty.$ $\beta(G, S, k) = |\{x \in G \mid |x| \le k\}|, \ \omega(G, S) = \lim_{k \to \infty} \sqrt[k]{\beta(G, S, k)}.$

G has uniform exponential growth, if

```
\inf\{\omega(G,S) \mid S \text{ is a fin. set of generators}\} > 1
```

Corollary

Odd $n \ge 1003$, G_i have no involutions, $G = \prod_i^n G_i$. If $H \le G$, H is f.g. and H not conj. to G_i , then H has uniform exponential growth.

Answers a question of de la Harpe.

Also possible: Not simple + Hopfian + not residually finite + uniformly non-amenable + period m, Simple + uniformly non-amenable + period m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Even *n*, no involutions

 $G = \prod_{i=1}^{n} G_i$, $n \ge 2^{48}$ and divisible by 2^9 , G_i have no involutions.

▶ at least two factors
$$\implies$$
 $|G| = \infty$,

• if $x \in G$, then either $x^n = 1$ or x is conj. to G_i ,

• if $A \leq G$ finite, then either $A^n = 1$ or A is conj. to sbgr. of G_i ,

• *G* is simple
$$\iff$$
 $G_i = G_i^n \forall i$.

Proved in D. Sonkin's thesis, 2005.

Second property: we knew that $x^n = 1$, x is conj, to G_i or x = st, $|x| = \infty$, $s^2 = t^2 = 1$, so Sonkin's theorem is stronger.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Last property generalizes Adian's theorem on simplicity.

Recognizibility by spectrum

Spectrum $\omega(G) = \{ |x| \mid x \in G \}$ G is recogn. by spectr. if $\omega(G) = \omega(H)$ implies $G \simeq H$ PSL₂(2^m), m > 2 is recognizable by spectrum

Theorem (Mazurov–Ol'shanskii–Sozutov, 2015) $m = 2^{10}k \ge 2^{49}$, q = m + e, $e = \pm 1$, and q is a prime power. Then PSL₂(q) is not recognizable by spectrum.

Proof $G = H *^n H$, n = m/2, for some finite H.

 $PSL_2(q)$ is recognizable among finite groups.

Baer-Suzuki theorem

Baer–Suzuki theorem $|G| < \infty$. If $\forall g \in G \langle x, x^g \rangle$ is a *p*-group, then x^G is a *p*-group.

A. Borovik asked if it holds for periodic G and p = 2.

Theorem (Mazurov–Ol'shanskii–Sozutov, 2015) $n = 2^m \ge 2^{48}$, G_i periodic without involutions. Then $G = \prod_i^n G_i$ is a simple periodic group, $\forall s, t : |s| = |t| = 2 \implies \langle s, t \rangle$ is a 2-group, G is not a 2-group.

Sozutov, 2018: boundedly engel elements don't always form a subgroup (similar construction).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

References

- 1. Paragraph 36 in Ol'shanskii's book.
- 2. S.I. Adian, Periodic products of groups, Trudy MIAN SSSR, 142, 1976.
- S.I. Adian, On the simplicity of periodic products of groups, Dokl. Akad. Nauk SSSR, 241:4, 1978.
- 4. S.I. Adian, V.S. Atabekyan, *The Hopfian property of n-periodic products of groups*, Math. Notes, **95**, 2014.
- S.I. Adian, V.S. Atabekyan, *Characteristic properties and uniform* non-amenability of n-periodic products of groups, Izvestiya: Mathematics, 79:6, 2015.
- 6. P. de la Harpe, *Uniform growth in groups of exponential growth*, Geometriae Dedicata, **95**, 2002.
- 7. D.M. Sonkin, On groups of large exponents n and n-periodic products, PhD thesis, 2005, etd.library.vanderbilt.edu/available/etd-06032005-025224/.
- 8. V.D. Mazurov, A.Yu. Ol'shanskii, A.I. Sozutov, *Infinite groups of finite period*, Algebra and Logic, **54**, 2015.
- A.I. Sozutov, Two observations on groups with engel elements, Sib. Math. J., 60, 2019.