## Group products

is an exact operation, if

- $G=\bigcirc_{i \in I} G_{i}$,
- $G=\left\langle G_{i} \mid i \in I\right\rangle$,
- $G_{i} \simeq H_{i}, \forall i \Longrightarrow \bigcirc_{i} G_{i} \simeq \bigcirc_{i} H_{i}$.

We want these properties:
Mal'tsev: $H_{i} \leq G_{i} \Longrightarrow \bigcirc_{i} H_{i} \leq \bigcirc_{i} G_{i}$,
Associativity: $I=\bigcup I_{j} \Longrightarrow \bigcirc_{i \in I} G_{i} \simeq \bigcirc_{j}\left(\bigcirc_{i \in I_{j}} G_{i}\right)$,
Functoriality: $G_{i} \rightarrow H_{i} \Longrightarrow \bigcirc_{i} G_{i} \rightarrow \bigcirc_{i} H_{i}$,
Regularity: $G_{i} \cap\left\langle G_{j} \mid j \neq i\right\rangle^{G}=1$.
Mal'tsev's problem: are there any associative Mal'tsev operations besides direct and free products?

Adian constructed such an operation for groups without involutions, but there's a simpler way, suggested by S.V. Ivanov.

Odd $n>10^{10}$.
Free product: $F=*_{i} G_{i}$. Let $C \unlhd F$ such that $F / C \simeq X_{i} G_{i}$.
$N=\left\langle X^{n} \mid X^{n} \in C\right\rangle$.
Define $\bigcirc_{i}^{n} G_{i}=F / N$.

Theorem
$\bigcirc^{n}$ is exact, associative, functorial and regular.
Proof
Easy (no cancellation theory)

Theorem
$\bigcirc^{n}$ is Mal'tsev in the class of groups without involutions.
Proof
A graded presentation for $\bigcirc_{i}^{n} G_{i}$ :
$G(0)=F=*_{i} G_{i}$,
$\mathfrak{X}_{i}$ are periods of rank $i$,
$\mathfrak{R}_{i}=\mathfrak{R}_{i-1} \cup\left\{A^{\operatorname{lcm}(n,|A|)} \mid A \in \mathfrak{X}_{i}\right\}$
$\bigcirc_{i}^{n} G_{i}=G(\infty)=\left\langle F \mid \bigcup_{i} \mathfrak{R}_{i}\right\rangle$
Use $\S 18$ and $\S 19$.

## Properties of $\bigcirc^{n}$

$G_{i}$ have no involutions, $G=\bigcirc_{i}^{n} G_{i}$

- at least two $G_{i} \neq 1 \Longrightarrow|G|=\infty$,
- $G_{i}$ are periodic $\Longrightarrow G$ is periodic,
- inside $\mathfrak{B}_{n}$ it is a free product,
- $G_{i} \cap G_{i}^{x}=1, x \notin G_{i}$,
- $A \leq G$ and $A$ is abelian or finite $\Longrightarrow A$ is cyclic or conj. to a subgr. of $G_{i}$,
- $x \in G_{i}, x \neq 1 \Longrightarrow C_{G}(x) \leq G_{i}$,
- $x \in G_{i}$ not conj. to $G_{j}, j \neq i \Longrightarrow C_{G}(x)$ is cyclic,
- ... and other things following from condition R.


## Periodic product

$n$ is large, can be even. Periodic product: $G=\prod_{i}^{n} G_{i}$
$G(0)=F=*_{i} G_{i}$
$\mathfrak{X}_{i}$ are periods, not products of two involutions in rank $i-1$
$\mathfrak{R}_{i}=\mathfrak{R}_{i-1} \cup\left\{A^{n} \mid A \in \mathfrak{X}_{i}\right\}$
$\prod_{i}^{n} G_{i}=G(\infty)=\left\langle F \mid \bigcup_{i} \Re_{i}\right\rangle$

Theorem
$\prod^{n}$ is an exact associative Mal'tsev operation on all groups.
This gives the solution to Mal'tsev's problem.

## General properties

$G=\prod_{i}^{n} G_{i}$, any big $n, G_{i}$ may have involutions.

- at least two $G_{i} \neq 1 \Longrightarrow|G|=\infty$,
- every period has order $n$,
- $x \in G$ is either conj. to $G_{i}$, or conj. to a period (so $x^{n}=1$ ), or $|x|=\infty$ and $x=s t, s^{2}=t^{2}=1$,
- Some props. about finite/abelian subgroups and centralizers?

If $n$ is odd and $G_{i}$ have no involutions, then $\prod^{n}$ coincides with Adian's periodic product.

## Odd $n$, no involutions

In addition to the previous slide:

- $x \in G$, either $x^{n}=1$ or $x$ is conj. in some $G_{i}$.
- if $G_{i}$ are periodic, then $G$ is periodic,
- $\prod^{n}$ coincides with $\bigcirc^{n}$ inside $\mathfrak{B}_{n}$, and hence is a free product,
- $A \leq G$ abelian $\Longrightarrow A$ is cyclic of conj. to a subgr. of $G_{i}$,
- $x \in G_{i}, x \neq 1 \Longrightarrow C_{G}(x) \leq G_{i}$,
- $x \in G$ not conj. to $G_{i} \forall i \Longrightarrow C_{G}(x)$ is cyclic.

Constructed by Adian in 1976.

## Simplicity

Theorem (Adian, 1978)
Suppose that $n \geq 665$ is odd and $G_{i}$ have no involutions.
Periodic product $\prod_{i}^{n} G_{i}$ is simple $\Longleftrightarrow G_{i}=G_{i}^{n} \forall i$.

## Corollary

Odd $n \geq 665$, odd $k>1, \operatorname{gcd}(n, k)=1$.
In $\mathfrak{B}_{n k}$ there are infinitely many f.g. nonabelian simple groups.
Proof
Groups $H_{r}=\prod_{i=1, \ldots, r}^{n} \mathbb{Z}_{k}$ lie in $\mathfrak{B}_{n k}$ and are all pairwise nonisomorphic (different number of conj. classes of $\mathbb{Z}_{k}$ ).
Solves Hanna Heumann's problem.

## Hopf property

Theorem (Adian-Atabekyan, 2014)
Odd $n \geq 665, G_{i}$ have no involutions, $G=\prod_{i}^{n} G_{i}$.
If $1<N \unlhd G$, then $G^{n} \leq N$.
Corollary
If $G_{i}^{n} \neq 1$ for some $i$, then $G$ is Hopfian.
Proof
If $G / N \simeq G, N>1$, then $(G / N)^{n}=1 \Longrightarrow G_{i}^{n}=1$.
It's not known whether $B(r, n)$ is Hopfian.
$\prod_{i=1, \ldots, r}^{n}, \mathbb{Z}_{m}, m=n k, k, r>1$ is Hopfian, not simple and not residually finite.

## Amenability

$G=\langle S\rangle,|S|<\infty$.
$\operatorname{Fol}_{S}(G)=\inf _{A} \frac{\left|\partial_{S}(A)\right|}{|A|}$, where $\partial_{S}(A)=\left\{a \in A \mid a x \notin A, x \in S^{ \pm 1}\right\}$
$G$ is amenable $\Longleftrightarrow \operatorname{Fol}_{S}(G)=0$
$G$ is uniformly non-amenable $\Longleftrightarrow \inf _{S} \operatorname{Fol}_{S}(G)>\epsilon$ for sm. $\epsilon>0$

Theorem (Adian-Atabekyan, 2015)
Odd $n \geq 1003, G_{i}$ have no involutions, $G=\prod_{i}^{n} G_{i}$.
If $H \leq G, H$ is f.g. and $H$ not conj. to $G_{i}$, then $H$ is uniformly non-amenable.

Generalizes an earlier theorem of Atabekyan, 2009.
$G=\langle S\rangle,|S|<\infty$.
$\beta(G, S, k)=|\{x \in G| | x \mid \leq k\}|, \omega(G, S)=\lim _{k \rightarrow \infty} \sqrt[k]{\beta(G, S, k)}$.
$G$ has uniform exponential growth, if

$$
\inf \{\omega(G, S) \mid S \text { is a fin. set of generators }\}>1
$$

## Corollary

Odd $n \geq 1003, G_{i}$ have no involutions, $G=\prod_{i}^{n} G_{i}$.
If $H \leq G, H$ is f.g. and $H$ not conj. to $G_{i}$, then $H$ has uniform exponential growth.

Answers a question of de la Harpe.
Also possible:
Not simple + Hopfian + not residually finite + uniformly non-amenable + period $m$,
Simple + uniformly non-amenable + period $m$.

## Even n, no involutions

$G=\prod_{i}^{n} G_{i}, n \geq 2^{48}$ and divisible by $2^{9}, G_{i}$ have no involutions.

- at least two factors $\Longrightarrow|G|=\infty$,
- if $x \in G$, then either $x^{n}=1$ or $x$ is conj. to $G_{i}$,
- if $A \leq G$ finite, then either $A^{n}=1$ or $A$ is conj. to sbgr. of $G_{i}$,
- $G$ is simple $\Longleftrightarrow G_{i}=G_{i}^{n} \forall i$.

Proved in D. Sonkin's thesis, 2005.
Second property: we knew that $x^{n}=1, x$ is conj, to $G_{i}$ or $x=s t$, $|x|=\infty, s^{2}=t^{2}=1$, so Sonkin's theorem is stronger.

Last property generalizes Adian's theorem on simplicity.

## Recognizibility by spectrum

Spectrum $\omega(G)=\{|x| \mid x \in G\}$
$G$ is recogn. by spectr. if $\omega(G)=\omega(H)$ implies $G \simeq H$
$\mathrm{PSL}_{2}\left(2^{m}\right), m \geq 2$ is recognizable by spectrum

Theorem (Mazurov-Ol'shanskii-Sozutov, 2015)
$m=2^{10} k \geq 2^{49}, q=m+e, e= \pm 1$, and $q$ is a prime power.
Then $\mathrm{PSL}_{2}(q)$ is not recognizable by spectrum.
Proof
$G=H *^{n} H, n=m / 2$, for some finite $H$.
$\mathrm{PSL}_{2}(q)$ is recognizable among finite groups.

## Baer-Suzuki theorem

Baer-Suzuki theorem
$|G|<\infty$. If $\forall g \in G\left\langle x, x^{g}\right\rangle$ is a $p$-group, then $x^{G}$ is a $p$-group.
A. Borovik asked if it holds for periodic $G$ and $p=2$.

Theorem (Mazurov-Ol'shanskii-Sozutov, 2015)
$n=2^{m} \geq 2^{48}, G_{i}$ periodic without involutions. Then

- $G=\prod_{i}^{n} G_{i}$ is a simple periodic group,
- $\forall s, t:|s|=|t|=2 \Longrightarrow\langle s, t\rangle$ is a 2-group,
- $G$ is not a 2-group.

Sozutov, 2018: boundedly engel elements don't always form a subgroup (similar construction).

## References

1. Paragraph 36 in Ol'shanskii's book.
2. S.I. Adian, Periodic products of groups, Trudy MIAN SSSR, 142, 1976.
3. S.I. Adian, On the simplicity of periodic products of groups, Dokl. Akad. Nauk SSSR, 241:4, 1978.
4. S.I. Adian, V.S. Atabekyan, The Hopfian property of n-periodic products of groups, Math. Notes, 95, 2014.
5. S.I. Adian, V.S. Atabekyan, Characteristic properties and uniform non-amenability of n-periodic products of groups, Izvestiya: Mathematics, 79:6, 2015.
6. P. de la Harpe, Uniform growth in groups of exponential growth, Geometriae Dedicata, 95, 2002.
7. D.M. Sonkin, On groups of large exponents $n$ and n-periodic products, PhD thesis, 2005, etd.library.vanderbilt.edu/available/etd-06032005-025224/.
8. V.D. Mazurov, A.Yu. Ol'shanskii, A.I. Sozutov, Infinite groups of finite period, Algebra and Logic, 54, 2015.
9. A.I. Sozutov, Two observations on groups with engel elements, Sib. Math. J., 60, 2019.
