
Group products

© is an exact operation, if

I G =©i∈IGi ,

I G = 〈Gi | i ∈ I 〉,
I Gi ' Hi , ∀i =⇒ ©iGi ' ©iHi .

We want these properties:

Mal’tsev: Hi ≤ Gi =⇒ ©iHi ≤ ©iGi ,

Associativity: I =
⋃
Ij =⇒ ©i∈IGi ' ©j(©i∈IjGi ),

Functoriality: Gi → Hi =⇒ ©iGi →©iHi ,

Regularity: Gi ∩ 〈Gj | j 6= i〉G = 1.

Mal’tsev’s problem: are there any associative Mal’tsev operations
besides direct and free products?



Adian constructed such an operation for groups without
involutions, but there’s a simpler way, suggested by S.V. Ivanov.

Odd n > 1010.

Free product: F = ∗iGi . Let C E F such that F/C '×i Gi .

N = 〈X n | X n ∈ C 〉.

Define ©n
i Gi = F/N.

Theorem
©n is exact, associative, functorial and regular.

Proof
Easy (no cancellation theory)



Theorem
©n is Mal’tsev in the class of groups without involutions.

Proof
A graded presentation for ©n

i Gi :

G (0) = F = ∗iGi ,

Xi are periods of rank i ,

Ri = Ri−1 ∪ {Alcm(n,|A|) | A ∈ Xi}

©n
i Gi = G (∞) = 〈F |

⋃
i Ri 〉

Use §18 and §19.



Properties of ©n

Gi have no involutions, G =©n
i Gi

I at least two Gi 6= 1 =⇒ |G | =∞,

I Gi are periodic =⇒ G is periodic,

I inside Bn it is a free product,

I Gi ∩ G x
i = 1, x 6∈ Gi ,

I A ≤ G and A is abelian or finite =⇒ A is cyclic or conj. to a
subgr. of Gi ,

I x ∈ Gi , x 6= 1 =⇒ CG (x) ≤ Gi ,

I x ∈ Gi not conj. to Gj , j 6= i =⇒ CG (x) is cyclic,

I . . . and other things following from condition R.



Periodic product

n is large, can be even. Periodic product: G =
∏n

i Gi

G (0) = F = ∗iGi

Xi are periods, not products of two involutions in rank i − 1

Ri = Ri−1 ∪ {An | A ∈ Xi}∏n
i Gi = G (∞) = 〈F |

⋃
i Ri 〉

Theorem∏n is an exact associative Mal’tsev operation on all groups.

This gives the solution to Mal’tsev’s problem.



General properties

G =
∏n

i Gi , any big n, Gi may have involutions.

I at least two Gi 6= 1 =⇒ |G | =∞,

I every period has order n,

I x ∈ G is either conj. to Gi , or conj. to a period (so xn = 1),
or |x | =∞ and x = st, s2 = t2 = 1,

I Some props. about finite/abelian subgroups and centralizers?

If n is odd and Gi have no involutions, then
∏n coincides with

Adian’s periodic product.



Odd n, no involutions

In addition to the previous slide:

I x ∈ G , either xn = 1 or x is conj. in some Gi .

I if Gi are periodic, then G is periodic,

I
∏n coincides with ©n inside Bn, and hence is a free product,

I A ≤ G abelian =⇒ A is cyclic of conj. to a subgr. of Gi ,

I x ∈ Gi , x 6= 1 =⇒ CG (x) ≤ Gi ,

I x ∈ G not conj. to Gi ∀i =⇒ CG (x) is cyclic.

Constructed by Adian in 1976.



Simplicity

Theorem (Adian, 1978)

Suppose that n ≥ 665 is odd and Gi have no involutions.
Periodic product

∏n
i Gi is simple ⇐⇒ Gi = Gn

i ∀i .

Corollary

Odd n ≥ 665, odd k > 1, gcd(n, k) = 1.
In Bnk there are infinitely many f.g. nonabelian simple groups.

Proof
Groups Hr =

∏n
i=1,...,r Zk lie in Bnk and are all pairwise

nonisomorphic (different number of conj. classes of Zk).

Solves Hanna Heumann’s problem.



Hopf property

Theorem (Adian–Atabekyan, 2014)

Odd n ≥ 665, Gi have no involutions, G =
∏n

i Gi .
If 1 < N E G , then Gn ≤ N.

Corollary

If Gn
i 6= 1 for some i , then G is Hopfian.

Proof
If G/N ' G , N > 1, then (G/N)n = 1 =⇒ Gn

i = 1.

It’s not known whether B(r , n) is Hopfian.∏n
i=1,...,r Zm, m = nk, k , r > 1 is Hopfian, not simple and not

residually finite.



Amenability

G = 〈S〉, |S | <∞.

FolS(G ) = infA
|∂S (A)|
|A| , where ∂S(A) = {a ∈ A | ax 6∈ A, x ∈ S±1}

G is amenable ⇐⇒ FolS(G ) = 0
G is uniformly non-amenable ⇐⇒ infS FolS(G ) > ε for sm. ε > 0

Theorem (Adian–Atabekyan, 2015)

Odd n ≥ 1003, Gi have no involutions, G =
∏n

i Gi .
If H ≤ G , H is f.g. and H not conj. to Gi , then H is uniformly
non-amenable.

Generalizes an earlier theorem of Atabekyan, 2009.



G = 〈S〉, |S | <∞.

β(G ,S , k) = |{x ∈ G | |x | ≤ k}|, ω(G ,S) = limk→∞
k
√
β(G , S , k).

G has uniform exponential growth, if

inf{ω(G , S) | S is a fin. set of generators} > 1

Corollary

Odd n ≥ 1003, Gi have no involutions, G =
∏n

i Gi .
If H ≤ G , H is f.g. and H not conj. to Gi , then H has uniform
exponential growth.

Answers a question of de la Harpe.

Also possible:
Not simple + Hopfian + not residually finite + uniformly
non-amenable + period m,

Simple + uniformly non-amenable + period m.



Even n, no involutions

G =
∏n

i Gi , n ≥ 248 and divisible by 29, Gi have no involutions.

I at least two factors =⇒ |G | =∞,

I if x ∈ G , then either xn = 1 or x is conj. to Gi ,

I if A ≤ G finite, then either An = 1 or A is conj. to sbgr. of Gi ,

I G is simple ⇐⇒ Gi = Gn
i ∀i .

Proved in D. Sonkin’s thesis, 2005.

Second property: we knew that xn = 1, x is conj, to Gi or x = st,
|x | =∞, s2 = t2 = 1, so Sonkin’s theorem is stronger.

Last property generalizes Adian’s theorem on simplicity.



Recognizibility by spectrum

Spectrum ω(G ) = {|x | | x ∈ G}
G is recogn. by spectr. if ω(G ) = ω(H) implies G ' H

PSL2(2m), m ≥ 2 is recognizable by spectrum

Theorem (Mazurov–Ol’shanskii–Sozutov, 2015)

m = 210k ≥ 249, q = m + e, e = ±1, and q is a prime power.
Then PSL2(q) is not recognizable by spectrum.

Proof
G = H ∗n H, n = m/2, for some finite H.

PSL2(q) is recognizable among finite groups.



Baer–Suzuki theorem

Baer–Suzuki theorem
|G | <∞. If ∀g ∈ G 〈x , xg 〉 is a p-group, then xG is a p-group.

A. Borovik asked if it holds for periodic G and p = 2.

Theorem (Mazurov–Ol’shanskii–Sozutov, 2015)

n = 2m ≥ 248, Gi periodic without involutions. Then

I G =
∏n

i Gi is a simple periodic group,

I ∀s, t : |s| = |t| = 2 =⇒ 〈s, t〉 is a 2-group,

I G is not a 2-group.

Sozutov, 2018: boundedly engel elements don’t always form a
subgroup (similar construction).
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