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1 A countable non-topoligizable group

Any set X with |X| > 2 can be endowed by at least two topologies. In the
mazximal topology all subsets of X, including one-point subsets, are open. Such
topology is called discrete. In the minimal topology the only open subsets are ()
and X. The discrete topology is Hausdorff, and the minimal one is not. We will
work only with Hausdorff topologies.

Exercise 1.1. Each one-point subset of a Hausdorff space X is closed. Hence any
finite subset of a Hausdorff space is closed.

Definition 1.2. Recall that a topology on a group G is called a group topology if
the group multiplication and inversion are continuous with respect to this topology.
e A group G is called topologizable if it admits a non-discrete Hausdorff group
topology.
e A group G is called non-topologizable if it does not admits a non-discrete
Hausdorff group topology.

Examples. All finite groups are non-topologizable. The following infinite groups
are topologizable:

1) All infinite residually finite groups (easy).

2) Infinite countable locally finite groups [1].

3) Groups containing infinite normal solvable subgroups [5].

4) Every acylindrically hyperbolic group is topologizable (see [6, Lemma 5.1]).

Problem (Markov, 1944): Does there exist an infinite non-topologizable group?

In 1980, Shelah [12] constructed an uncountable non-topologizable group.

In 1980, Ol’shanskii [10] constructed an infinite 2-generated non-topologizable group.



Theorem 1.3. (Ol'shanskii [10], see [9, Theorem 31.5]) There exists an infinite
finitely generated non-topologizable group.

Sketch of the proof. Ol'shanskii constructs a special extension
1—Z,—G— G/Z, = B(m,n),

where the cyclic group Z, lies in the center of G and B(m,n) is the free Burnside
group with m > 2 generators and of exponent n, where n is a sufficiently large odd
number.

Clearly, if g € G then g" € Z,. Ol'shanskii proves (not easy) that the following
property is satisfied.

Property:
geG\Z, = g¢"e€Z,\{1}

This can be written in terms of solutions of equations:
Equations:

G\{1}= [J Solz"=a) [J(Z.\{1}). (1.1)
a€Z,\{1}
Now, let T be a Hausdorff group topology on GG. We shall show that T' discrete.
It suffices to show that {1} is open (then {g} will be open for each g € G). Thus,
it suffices to show that the set G \ {1} is closed. This can be easily deduced from
equation (1.1) and the following two claims.

Claim 1. The set Z, \ {1} is closed.
Claim 2. For any a € Z,, \ {1} the set Sol(z" = a) is closed.

Proofs. Claim 1 follows from the finiteness of Z,,\ {1} and Exercise 1.1. To prove
Claim 2, we shall prove that the set S, = {g € G|g"™ # a} is open. Consider an
arbitrary g € S,. By Hausdorff propery, there exists an open neighborhood U (g")
such that a ¢ U(g™). Obviously, there exists an open neighborhood V' (g) such that
(V(g)" CU(g"). Then a ¢ (V(g))™ and hence V(g) C S,, i.e. Sq is open. 0

Definition 1.4. A subset S of a group G is called elementary algebraic if there

exist elements a1, ...,a, € G and numbers ¢, ...,&, € Z such that

S = Sol(a1xtasx®™ ... ax™ = 1).

Exercise 1.5. Prove that if G\ {1} is a finite union of elementary algebraic sets,
then G is non-topologizable.

Theorem 1.6. (Markov, 1946; see [7,8]) A countable group is non-topologizable if
and only if G\ {1} is a finite union of elementary algebraic sets.



A simple proof of Markov’s theorem was given in [13].
Remark. We can rewrite equation (1.1) in the style of Markov’s theorem:

G\{1}= [J Solz"=a) |J (J Solz=0).

acZn\{1} beZp,\{1}

2 Tarski Monsters and (non-)topologizability

A group G has exponent n if g" = 1 for any g € G. The following definition is
more general than that given in Wikipedia.

Definition 2.1. (see [6, Introduction]) A group G is called Tarski Monster if it is
infinite, simple and all proper subgroups of G are finite cyclic.

Note that any Tarski Monster is necessarily finitely generated and non-amenable.
The existence of Tarski Monsters was first proved by Ol'shanskii in 1980, see [11].
Moreover, Ol’shanskii constructed there continuum non-isomorphic Tarski Monsters
of exponent p for each prime p > 107°.

Theorem 2.2. (see [6, Theorem 1.2 and comments after it])
There exists a non-topologizable Tarski Monster of a bounded exponent.

Theorem 2.3. (see [6, Theorem 1.4]) For every sufficiently large odd n € N there
exists a topologizable Tarski Monster of exponent n.

3 Zariski and Markov topologies

Definition 3.1. Let G be a group.

1) Zariski topology Zc on G is defined so that the set of elementary algebraic
subsets in GG forms a subbasis of the set of closed subsets for Zg.
In other words, all closed sets in this topology are exactly arbitrary intersec-

tions of finite unions of elementary algebraic subsets, see Definition 1.4.

2) Markov topology M on G is defined as the infimum of all Hausdorff group
topologies on G:

Mg =inf{T|T is a Hausdorff group topology on G}.

This infimum is equal to the intersection of all Hausdorff group topologies
on G.



Note that the centralizer Cz(.S) of any subset S C G is closed for Z¢g. Obviously,

Za C Mqg.

Theorem 3.2. (Markov) For any countable group G we have Zg = Mg.

Theorem 3.3. (see [4]) For any abelian group G we have Z5 = Mg.

Remark 3.4. 1) Markov topology on a group G is not necessarily Hausdorff

and not necessarily a group topology. However, Markov topology is T1 (for
any two points x,y € G, there exists an open set U such that x € U and
y ¢ U) and is closed under the left and the right multiplications and the
inverse operations.

2) Zariski topology on the multiplicative group R* of the real numbers is not

Hausdorff and is not a group topology. Zariski topology on Z is a Hausdorff
group topology.

3) If a countable group G is not topologizable, then Markov topology on G is

discrete and, by Theorem 3.2, Zariski topology on G is discrete as well.

More information about topologies on groups can be found in the surveys [2,3].
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