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1 A countable non-topoligizable group

Any set X with |X| > 2 can be endowed by at least two topologies. In the
maximal topology all subsets of X, including one-point subsets, are open. Such
topology is called discrete. In the minimal topology the only open subsets are ∅
and X. The discrete topology is Hausdorff, and the minimal one is not. We will
work only with Hausdorff topologies.

Exercise 1.1. Each one-point subset of a Hausdorff space X is closed. Hence any
finite subset of a Hausdorff space is closed.

Definition 1.2. Recall that a topology on a group G is called a group topology if
the group multiplication and inversion are continuous with respect to this topology.

• A group G is called topologizable if it admits a non-discrete Hausdorff group
topology.

• A group G is called non-topologizable if it does not admits a non-discrete
Hausdorff group topology.

Examples. All finite groups are non-topologizable. The following infinite groups
are topologizable:

1) All infinite residually finite groups (easy).
2) Infinite countable locally finite groups [1].
3) Groups containing infinite normal solvable subgroups [5].
4) Every acylindrically hyperbolic group is topologizable (see [6, Lemma 5.1]).

Problem (Markov, 1944): Does there exist an infinite non-topologizable group?

In 1980, Shelah [12] constructed an uncountable non-topologizable group.
In 1980, Ol’shanskii [10] constructed an infinite 2-generated non-topologizable group.
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Theorem 1.3. (Ol’shanskii [10], see [9, Theorem 31.5]) There exists an infinite
finitely generated non-topologizable group.

Sketch of the proof. Ol’shanskii constructs a special extension

1 → Zn → G → G/Zn = B(m,n),

where the cyclic group Zn lies in the center of G and B(m,n) is the free Burnside
group with m > 2 generators and of exponent n, where n is a sufficiently large odd
number.

Clearly, if g ∈ G then gn ∈ Zn. Ol’shanskii proves (not easy) that the following
property is satisfied.

Property:
g ∈ G \ Zn =⇒ gn ∈ Zn \ {1}.

This can be written in terms of solutions of equations:
Equations:

G \ {1} =
∪

a∈Zn\{1}

Sol(xn = a)
∪

(Zn \ {1}). (1.1)

Now, let T be a Hausdorff group topology on G. We shall show that T discrete.
It suffices to show that {1} is open (then {g} will be open for each g ∈ G). Thus,
it suffices to show that the set G \ {1} is closed. This can be easily deduced from
equation (1.1) and the following two claims.

Claim 1. The set Zn \ {1} is closed.

Claim 2. For any a ∈ Zn \ {1} the set Sol(xn = a) is closed.

Proofs. Claim 1 follows from the finiteness of Zn\{1} and Exercise 1.1. To prove
Claim 2, we shall prove that the set Sa = {g ∈ G | gn ̸= a} is open. Consider an
arbitrary g ∈ Sa. By Hausdorff propery, there exists an open neighborhood U(gn)
such that a /∈ U(gn). Obviously, there exists an open neighborhood V (g) such that
(V (g))n ⊆ U(gn). Then a /∈ (V (g))n and hence V (g) ⊆ Sa, i.e. Sa is open. 2

Definition 1.4. A subset S of a group G is called elementary algebraic if there
exist elements a1, . . . , an ∈ G and numbers ε1, . . . , εn ∈ Z such that

S = Sol(a1x
ε1a2x

ε2 . . . anx
εn = 1).

Exercise 1.5. Prove that if G \ {1} is a finite union of elementary algebraic sets,
then G is non-topologizable.

Theorem 1.6. (Markov, 1946; see [7,8]) A countable group is non-topologizable if
and only if G \ {1} is a finite union of elementary algebraic sets.
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A simple proof of Markov’s theorem was given in [13].

Remark. We can rewrite equation (1.1) in the style of Markov’s theorem:

G \ {1} =
∪

a∈Zn\{1}

Sol(xn = a)
∪ ∪

b∈Zn\{1}

Sol(x = b).

2 Tarski Monsters and (non-)topologizability

A group G has exponent n if gn = 1 for any g ∈ G. The following definition is
more general than that given in Wikipedia.

Definition 2.1. (see [6, Introduction]) A group G is called Tarski Monster if it is
infinite, simple and all proper subgroups of G are finite cyclic.

Note that any Tarski Monster is necessarily finitely generated and non-amenable.
The existence of Tarski Monsters was first proved by Ol’shanskii in 1980, see [11].
Moreover, Ol’shanskii constructed there continuum non-isomorphic Tarski Monsters
of exponent p for each prime p > 1075.

Theorem 2.2. (see [6, Theorem 1.2 and comments after it])
There exists a non-topologizable Tarski Monster of a bounded exponent.

Theorem 2.3. (see [6, Theorem 1.4]) For every sufficiently large odd n ∈ N there
exists a topologizable Tarski Monster of exponent n.

3 Zariski and Markov topologies

Definition 3.1. Let G be a group.

1) Zariski topology ZG on G is defined so that the set of elementary algebraic
subsets in G forms a subbasis of the set of closed subsets for ZG.

In other words, all closed sets in this topology are exactly arbitrary intersec-
tions of finite unions of elementary algebraic subsets, see Definition 1.4.

2) Markov topology MG on G is defined as the infimum of all Hausdorff group
topologies on G:

MG = inf{T |T is a Hausdorff group topology on G}.

This infimum is equal to the intersection of all Hausdorff group topologies
on G.
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Note that the centralizer CG(S) of any subset S ⊆ G is closed for ZG. Obviously,

ZG ⊆ MG.

Theorem 3.2. (Markov) For any countable group G we have ZG = MG.

Theorem 3.3. (see [4]) For any abelian group G we have ZG = MG.

Remark 3.4. 1) Markov topology on a group G is not necessarily Hausdorff
and not necessarily a group topology. However, Markov topology is T1 (for
any two points x, y ∈ G, there exists an open set U such that x ∈ U and
y /∈ U) and is closed under the left and the right multiplications and the
inverse operations.

2) Zariski topology on the multiplicative group R∗ of the real numbers is not
Hausdorff and is not a group topology. Zariski topology on Z is a Hausdorff
group topology.

3) If a countable group G is not topologizable, then Markov topology on G is
discrete and, by Theorem 3.2, Zariski topology on G is discrete as well.

More information about topologies on groups can be found in the surveys [2,3].
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