Survey of some results deduced with the help of Ol'shanskii's technique. Part I.

O. Bogopolski

November 4, 2020

1 A countable non-topoligizable group

Any set X with $|X| \ge 2$ can be endowed by at least two topologies. In the *maximal* topology all subsets of X, including one-point subsets, are open. Such topology is called *discrete*. In the *minimal* topology the only open subsets are \emptyset and X. The discrete topology is Hausdorff, and the minimal one is not. We will work only with Hausdorff topologies.

Exercise 1.1. Each one-point subset of a Hausdorff space X is closed. Hence any finite subset of a Hausdorff space is closed.

Definition 1.2. Recall that a topology on a group G is called a *group topology* if the group multiplication and inversion are continuous with respect to this topology.

• A group G is called *topologizable* if it admits a non-discrete Hausdorff group topology.

• A group G is called *non-topologizable* if it does not admits a non-discrete Hausdorff group topology.

Examples. All finite groups are non-topologizable. The following infinite groups are topologizable:

1) All infinite residually finite groups (easy).

2) Infinite countable locally finite groups [1].

3) Groups containing infinite normal solvable subgroups [5].

4) Every acylindrically hyperbolic group is topologizable (see [6, Lemma 5.1]).

Problem (Markov, 1944): Does there exist an infinite non-topologizable group?

In 1980, Shelah [12] constructed an uncountable non-topologizable group. In 1980, Ol'shanskii [10] constructed an infinite 2-generated non-topologizable group. **Theorem 1.3.** (Ol'shanskii [10], see [9, Theorem 31.5]) There exists an infinite finitely generated non-topologizable group.

Sketch of the proof. Ol'shanskii constructs a special extension

$$1 \to Z_n \to G \to G/Z_n = B(m, n),$$

where the cyclic group Z_n lies in the center of G and B(m, n) is the free Burnside group with $m \ge 2$ generators and of exponent n, where n is a sufficiently large odd number.

Clearly, if $g \in G$ then $g^n \in Z_n$. Ol'shanskii proves (not easy) that the following property is satisfied.

Property:

$$g \in G \setminus Z_n \implies g^n \in Z_n \setminus \{1\}.$$

This can be written in terms of solutions of equations: **Equations:**

$$G \setminus \{1\} = \bigcup_{a \in \mathbb{Z}_n \setminus \{1\}} \mathbf{Sol}(x^n = a) \quad \bigcup (\mathbb{Z}_n \setminus \{1\}).$$
(1.1)

Now, let T be a Hausdorff group topology on G. We shall show that T discrete. It suffices to show that $\{1\}$ is open (then $\{g\}$ will be open for each $g \in G$). Thus, it suffices to show that the set $G \setminus \{1\}$ is closed. This can be easily deduced from equation (1.1) and the following two claims.

Claim 1. The set $Z_n \setminus \{1\}$ is closed.

Claim 2. For any $a \in \mathbb{Z}_n \setminus \{1\}$ the set $\mathbf{Sol}(x^n = a)$ is closed.

Proofs. Claim 1 follows from the finiteness of $Z_n \setminus \{1\}$ and Exercise 1.1. To prove Claim 2, we shall prove that the set $S_a = \{g \in G \mid g^n \neq a\}$ is open. Consider an arbitrary $g \in S_a$. By Hausdorff propery, there exists an open neighborhood $U(g^n)$ such that $a \notin U(g^n)$. Obviously, there exists an open neighborhood V(g) such that $(V(g))^n \subseteq U(g^n)$. Then $a \notin (V(g))^n$ and hence $V(g) \subseteq S_a$, i.e. S_a is open. \Box

Definition 1.4. A subset S of a group G is called *elementary algebraic* if there exist elements $a_1, \ldots, a_n \in G$ and numbers $\varepsilon_1, \ldots, \varepsilon_n \in \mathbb{Z}$ such that

$$S = \mathbf{Sol}(a_1 x^{\varepsilon_1} a_2 x^{\varepsilon_2} \dots a_n x^{\varepsilon_n} = 1).$$

Exercise 1.5. Prove that if $G \setminus \{1\}$ is a finite union of elementary algebraic sets, then G is non-topologizable.

Theorem 1.6. (Markov, 1946; see [7,8]) A countable group is non-topologizable if and only if $G \setminus \{1\}$ is a finite union of elementary algebraic sets.

A simple proof of Markov's theorem was given in [13].

Remark. We can rewrite equation (1.1) in the style of Markov's theorem:

$$G \setminus \{1\} = \bigcup_{a \in \mathbb{Z}_n \setminus \{1\}} \mathbf{Sol}(x^n = a) \quad \bigcup_{b \in \mathbb{Z}_n \setminus \{1\}} \mathbf{Sol}(x = b).$$

2 Tarski Monsters and (non-)topologizability

A group G has exponent n if $g^n = 1$ for any $g \in G$. The following definition is more general than that given in Wikipedia.

Definition 2.1. (see [6, Introduction]) A group G is called *Tarski Monster* if it is infinite, simple and all proper subgroups of G are finite cyclic.

Note that any Tarski Monster is necessarily finitely generated and non-amenable. The existence of Tarski Monsters was first proved by Ol'shanskii in 1980, see [11]. Moreover, Ol'shanskii constructed there continuum non-isomorphic Tarski Monsters of exponent p for each prime $p > 10^{75}$.

Theorem 2.2. (see [6, Theorem 1.2 and comments after it]) There exists a non-topologizable Tarski Monster of a bounded exponent.

Theorem 2.3. (see [6, Theorem 1.4]) For every sufficiently large odd $n \in \mathbb{N}$ there exists a topologizable Tarski Monster of exponent n.

3 Zariski and Markov topologies

Definition 3.1. Let G be a group.

1) Zariski topology Z_G on G is defined so that the set of elementary algebraic subsets in G forms a subbasis of the set of closed subsets for Z_G .

In other words, all closed sets in this topology are exactly arbitrary intersections of finite unions of elementary algebraic subsets, see Definition 1.4.

2) Markov topology \mathcal{M}_G on G is defined as the infimum of all Hausdorff group topologies on G:

 $\mathcal{M}_G = \inf\{T \mid T \text{ is a Hausdorff group topology on } G\}.$

This infimum is equal to the intersection of all Hausdorff group topologies on G.

Note that the centralizer $C_G(S)$ of any subset $S \subseteq G$ is closed for \mathcal{Z}_G . Obviously,

$$\mathcal{Z}_G \subseteq \mathcal{M}_G.$$

Theorem 3.2. (Markov) For any countable group G we have $\mathcal{Z}_G = \mathcal{M}_G$.

Theorem 3.3. (see [4]) For any abelian group G we have $\mathcal{Z}_G = \mathcal{M}_G$.

- **Remark 3.4.** 1) Markov topology on a group G is not necessarily Hausdorff and not necessarily a group topology. However, Markov topology is T1 (for any two points $x, y \in G$, there exists an open set U such that $x \in U$ and $y \notin U$) and is closed under the left and the right multiplications and the inverse operations.
 - Zariski topology on the multiplicative group ℝ* of the real numbers is not Hausdorff and is not a group topology. Zariski topology on Z is a Hausdorff group topology.
 - 3) If a countable group G is not topologizable, then Markov topology on G is discrete and, by Theorem 3.2, Zariski topology on G is discrete as well.

More information about topologies on groups can be found in the surveys [2,3].

References

- V.V. Belyaev, Topologization of countable locally finite groups, Algebra and Logic, 34 (6) (1996), 339-342.
- [2] D. Dikranjan, The Zariski topology on groups, Slides: www.toposym.cz/slides/slides-Dikranjan-2259.pdf
- [3] D. Dikranjan, D. Toller, Zariski topology and Markov topology on groups, Topology and its applications, 241 (2018), 115-144.
- [4] D. Dikranjan, D. Shakhmatov, The Markov-Zariski topology of an abelian group, J. Algebra, 324 (2010), 1125-1158.
- [5] G. Hesse, Zur Topologisierbarkeit von Gruppen, Dissertation, Univ. Hannover, Hannover, 1979.
- [6] A.A. Klyachko, A.Yu. Ol'shanskii, D.V. Osin, On topologizable and nontopologizable groups, Topology and its Applications, 160 (2013), 2104-2120.
- [7] A.A. Markov, Absolutely closed subsets, Mat. Sb., 18 (60), no. 1 (1946), 3-28.

- [8] A.A. Markov, Three Papers on Topological Groups: I. On the existence of periodic connected topological groups. II. On free topological groups. III. On unconditionally closed sets, Am. Math. Soc. Transl., vol. 30, 1950.
- [9] A.Yu. Ol'shanskii, Geometry of defining relations in groups, Kluwer, 1991.
- [10] A.Yu. Ol'shanskii, A remark about a countable non-topologizable group, Vestnik MGU, 103 (3) (1980).
- [11] A.Yu. Ol'shanskii, An infinite group with subgroups of prime order, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 309-321.
- [12] S. Shelah, On a problem of Kurosh, Jonsson group, and applications. In: Word Problems II, pp.373-394, North-Holland, Amsterdam, 1980.
- [13] E.G. Zelenyuk, I.P. Protasov, O.M. Khromulyak, Topologies on countable groups and rings, Dokl. Akad. Nauk UkrSSr, no. 8 (1991), 8-11.