A comment on classes of elementarily equivalent groups of infinite cardinality \varkappa : How many? How large can they be? Model theory and acylindrically hyperbolic groups

O. Bogopolski, A. Iwanow

November 16, 2020

The answer to these questions is well known: 2^{\aleph_0} and 2^{\varkappa} . Interestingly, the cardinality \aleph_0 plays a special role. Therefore we start with the following well known lemma, which easily follows from some classical results (of course, it also follows from [6]).

Lemma. There exist exactly 2^{\aleph_0} nonisomorphic countable groups.

Proof. The proof follows from the following three statements.

- (1) Each countable group can be embedded into a 2-generated group (G. Higman, B. Neumann, H. Neumann; 1949).
- (2) There exist exactly 2^{\aleph_0} nonisomorphic 2-generated groups (B. Neumann; 1937).
- (3) Any 2-generated group contains at most 2^{\aleph_0} subsets and hence subgroups.
- The paper [6] gives continuum (i.e. 2^{\aleph_0}) countable nilpotent 2-groups of exponent 4 which are all countably categorical and admit elimination of quantifiers. In particular each pair of them is not elementarily equivalent.

By Löwenheim – Skolem theorem any group is elementarily equivalent to a countable one. Therefore, in any infinite cardinality κ a maximal family of groups which are pairwise non-equivalent is of size continuum.

The paper [3] gives a construction which assigns to any graph Γ a nilpotent group G which interprets Γ . It is well known that any first order structure of a finite language is interpretable in a graph. In particular there is a nilpotent group G such that its theory is not stable. By a theorem of S. Shelah this means that for any uncountable cardinal κ there exist 2^{κ} groups of cardinality κ which are elementarily equivalent to G.

• In [5], Osin writes: "It is worth noting that finding examples of elementarily equivalent, non-isomorphic, finitely generated groups is rather non-trivial task since the standard tools for constructing models – ultrapowers, ommiting types, and the Löwenheim – Skolem theorem – are not available in this case." As a by-product he proves the following

1

Statement. (see [5, Corollaries 1.3, 1.4])

- 1) Suppose that \mathcal{U} is a non-abelian and \mathcal{V} is a non-locally-finite varieties of groups. Then the product variety \mathcal{UV} contains a subset of cardinality 2^{\varkappa_0} consisting of pairwise non-isomorphic, elementarily equivalent, finitely generated groups.
- 2) In particular, such a subset can be chosen in the variety \mathcal{B}_n of all groups of exponent $n = n_1 n_2$, where $n_1 > 2$ and n_2 is any number for which \mathcal{B}_{n_2} is not locally finite (e.g., we can take $n_2 = 1995$ as showed Adian in his book).
- There is a lot of interesting theorems and inspiring questions in the recent papers of André [1, 2] and Osin [4, 5] in the area model theory topological space of finitely generated groups (not necessarily finitely generated) acylindrically hyperbolic groups.

References

- [1] S. André, Acylindrical hyperbolicity and existential closedness, ArXiv, 2020.
- [2] S. André, Hyperbolicity and cubulability are preserved under elementary equivalence, ArXiv, 2018.
- [3] A. Mekler, Stability of nilpotent groups of class 2 and prime exponent, The Journal of Symbolic Logic, 46 (4) (1981), 781-788.
- [4] D. Osin, A topological zero-one law and elementary equivalence of finitely generated groups, ArXiv, 2020; to appear in Ann. Pure App. Logic.
- [5] D. Osin, Condensed groups in product varieties, ArXiv, 2020.
- [6] D. Saracino and C. Wood, QE nil-2 groups of exponent 4, J. Alg., 76 (1982), 337-352.