A question about the elementary equivalence and acylindricity

O. Bogopolski

December 6, 2020

We consider the following ascending chain of groups

$$G_{1} = \langle t_{1}, t_{2} | \rangle \cong F(t_{1}, t_{2})$$

$$\land$$

$$G_{2} = \langle t_{1}, t_{2}, t_{3} | t_{3}^{-1}t_{2}t_{3} = t_{2}t_{1} \rangle \cong F_{2}(t_{2}, t_{3})$$

$$\land$$

$$G_{3} = \langle t_{2}, t_{3}, t_{4} | t_{4}^{-1}t_{3}t_{4} = t_{3}t_{2} \rangle \cong F_{2}(t_{3}, t_{4})$$

$$\land$$

$$G = \bigcup_{i=1}^{\infty} G_{i}$$

Clearly G is locally free, but not free since G = [G, G]. Moreover, G is not finitely generated, the centralizer of each element of G is cyclic, and G is not simple since $\langle\langle G_i \rangle\rangle \neq G$. It seems that the following questions can be easily answered: Is $\langle\langle G_i \rangle\rangle \cong F_{\omega}$? What is the structure of $\langle\langle G_{i+1} \rangle\rangle / \langle\langle G_i \rangle\rangle$?

Conjecture. (O. Bogopolski)

- 1) F_2 and G are (existentially) elementarily equivalent.
- 2) G is acylindrically hyperbolic.

Remark 1. Theorem of Tarski-Vaught says that if G is an ascending union of G_i 's, where every G_i is elementary embedded to G_{i+1} , then G_i is elementary embedded to G. In particular, G is elementarily equivalent to G_i . However this approach does not work, since in our case the natural embedding of G_i to G_{i+1} is not elementary: $t_i \in G_i$ is a commutator in G_{i+1} , but not in G_i .

Remark 2. Sela proved that if G is finitely generated and $G \equiv H$, where H is torsion-free hyperbolic, then G is also torsion-free hyperbolic. André omitted the torsion-free condition here. More precisely, he proved that if G is finitely generated and $G \equiv H$, where H is hyperbolic, then G is also hyperbolic.

Note that this cannot be applied to our conjecture since our G is not finitely generated.

Question. (Osin) Is acylindrical hyperbolicity preserved under elementary equivalence among finitely generated groups?

Section 5 of [1] gives an easy counterexample among countable groups. In this counterexample the centralizers of all nontrivial elements of G are noncyclic. Note that for our G these centralizers are cyclic.

References

- [1] S. André, Acylindrical hyperbolicity and existential closedness, ArXiv, 2020.
- [2] S. André, Hyperbolicity and cubulability are preserved under elementary equivalence, ArXiv, 2018.
- [3] S. André, Formal solutions and the first-order theory of acylindrically hyperbolic groups, ArXiv, 2020.
- [4] D. Osin, A topological zero-one law and elementary equivalence of finitely generated groups, ArXiv, 2020; to appear in Ann. Pure App. Logic.
- [5] D. Osin, Condensed groups in product varieties, ArXiv, 2020.