Dihedral subgroups of quasi-finite groups

Alexey S. and Andrey M.

(the proof is extracted from Ol'shanskii's book «Geometry of Defining Relations in Groups» and is simplified in order to understand why S_{3} cannot be a subgroup of a quasi-finite group)

Lemma 1. Suppose that a group H is generated by involutions i and j. Then

1) if $a=i j$ has order n then $H \simeq D(n)$;
2) if n is even then $a^{n / 2}$ is an involution in $Z(H)$;
3) if n is odd then all involutions of H are conjugated by powers of a.

Definition 2. If x and y are elements of a group then $x^{y}:=y^{-1} x y$.
Theorem 3. Let x and y be distinct involutions of a quasi-finite group G. Then the order of $x y$ is even.

Proof. The proof is split into several steps. First, observe that G is not cyclic, so elements of G have finite orders.

Step 0. (general fact) If N is a proper normal subgroup of G then $N \subseteq Z(G)$. Indeed, we have $N_{G}(N)=G$. On the other hand, it is well-known that $N_{G}(N) / C_{G}(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$. Since N is finite, its automorphism group is finite. Therefore, $\mid G$: $C_{G}(N)\left|=\left|N_{G}(N): C_{G}(N)\right|<\infty\right.$ and hence $| C_{G}(N) \mid=\infty$. This implies that $C_{G}(N)=G$ and $N \subseteq Z(G)$.

Suppose now that x and y are involutions of G and $|x y|$ is odd.
Step 1. We may assume that $Z(G)=1$. Indeed, consider $\bar{G}=G / Z(G)$. Since $x y \neq y x$, we have $|Z(G)|<\infty$ and hence $|\bar{G}|=\infty$. Clearly, all proper subgroups of \bar{G} are finite and images of x and y are involutions of \bar{G} whose product has an odd order. By Step $0, \bar{G}$ is simple, so $Z(\bar{G})=1$.

Step 2. Denote $M=x \cdot x^{G}=\left\{x \cdot x^{g} \mid g \in G\right\}$. Then $|M|=\infty$ and for every $m \in M$ it is true that $m^{x}=m^{-1}$. Indeed, we have $|M|=\left|x^{G}\right|=\left|G: C_{G}(x)\right|=\infty$ and $m=x x^{g}=x g^{-1} x g$ for some $g \in G$. Now, we see that $m^{x}=x x g^{-1} x g x=g^{-1} x g x$ and so $m \cdot m^{x}=x g^{-1} x g \cdot g^{-1} x g x=1$.

Step 3. Denote $N=\left\{x y^{m} \mid m \in M\right.$ and $\operatorname{ord}\left(x y^{m}\right)$ is odd $\}$. Then $|N|=\infty$. Indeed, as above we see that the set $\left\{x y^{m} \mid m \in M\right\}$ is infinite. Suppose that $|N|<\infty$. Then there exist infinitely many distinct elements $x y^{m_{i}}$ of even orders $2 k_{i}$, respectively. By Lemma 1 , each $a_{i}=\left(x y^{m_{i}}\right)^{k_{i}} \neq 1$ commutes with x. Since $\left|C_{G}(x)\right|<\infty$, we can find infinitely many elements a_{i} equal to a fixed element $g \in G$. However, if $a_{i}=g$ then $x y^{m_{i}} \in C_{G}(g)$ and hence $\left|G_{G}(g)\right|=\infty$; a contradiction with $Z(G)=1$.

Step 4. If $g \in N$ then by the same argument as above we see that $g^{x}=g^{-1}$. By assumption $\operatorname{ord}(x y)$ is odd, so by Lemma 1 there exists $a \in\langle x, y\rangle$ such that $x=y^{a}$. Consider arbitrary $c \in N$ and let $c=x y^{m}$, where $m \in M$. Since $\operatorname{ord}(c)$ is odd, Lemma 1 implies that there exists $s \in\langle c\rangle$ such that $x=\left(y^{m}\right)^{s}=y^{m s}$. Therefore, we find that $y^{m s a^{-1}}=y$ and hence $m s a^{-1} \in C_{G}(y)$ or, equivalently, $m s \in C_{G}(y) a$. Since $\left|C_{G}(y) a\right|=\left|C_{G}(y)\right|<\infty$, we have some fixed $g \in C_{G}(y) a$ equals to $m_{i} s_{i}$ for infinitely many i. Observe that $g \neq 1$, since otherwise $a \in C_{G}(y)$ and $x=y^{a}=y$. Then $g=m_{1} s_{1}=m_{i} s_{i}$ and hence $\left(m_{1} s_{1}\right)^{x}=\left(m_{i} s_{i}\right)^{x}$. Since s_{1} is a power of c_{1} and $c_{1}^{x}=c_{1}^{-1}$, we have $s_{1}^{x}=s_{1}^{-1}$. Similarly, we find that $s_{i}^{x}=s_{i}^{-1}$. So $m_{1}^{-1} s_{1}^{-1}=\left(m_{1} s_{1}\right)^{x}=\left(m_{i} s_{i}\right)^{x}=m_{i}^{-1} s_{i}^{-1}$. Taking inverses of both sides, we find $s_{1} m_{1}=s_{i} m_{i}$. We claim that $m_{1} m_{i}^{-1} \in C_{G}(g)$. Note that

$$
\begin{gathered}
g \cdot m_{1} m_{i}^{-1}=m_{1}\left(s_{1} m_{1}\right) m_{i}^{-1}=m_{1}\left(s_{i} m_{i}\right) m_{i}^{-1}=m_{1} s_{i} ; \\
m_{1} m_{i}^{-1} \cdot g=m_{1} m_{i}^{-1}\left(m_{i} s_{i}\right)=m_{1} s_{i} .
\end{gathered}
$$

Since $m_{1} m_{i}^{-1}$ are distinct elements, we get a contradiction with $\left|C_{G}(g)\right|<\infty$.

