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(the proof is extracted from Ol′shanskii's book �Geometry of De�ning Relations in Groups�
and is simpli�ed in order to understand why S3 cannot be a subgroup of a quasi-�nite group)

Lemma 1. Suppose that a group H is generated by involutions i and j. Then
1) if a = ij has order n then H ' D(n);
2) if n is even then an/2 is an involution in Z(H);
3) if n is odd then all involutions of H are conjugated by powers of a.

De�nition 2. If x and y are elements of a group then xy := y−1xy.

Theorem 3. Let x and y be distinct involutions of a quasi-�nite group G. Then the order of
xy is even.

Proof. The proof is split into several steps. First, observe that G is not cyclic, so elements of G
have �nite orders.
Step 0. (general fact) If N is a proper normal subgroup of G then N ⊆ Z(G). Indeed,

we have NG(N) = G. On the other hand, it is well-known that NG(N)/CG(N) is isomorphic
to a subgroup of Aut(N). Since N is �nite, its automorphism group is �nite. Therefore, |G :
CG(N)| = |NG(N) : CG(N)| <∞ and hence |CG(N)| =∞. This implies that CG(N) = G and
N ⊆ Z(G).
Suppose now that x and y are involutions of G and |xy| is odd.
Step 1. We may assume that Z(G) = 1. Indeed, consider G = G/Z(G). Since xy 6= yx, we

have |Z(G)| < ∞ and hence |G| = ∞. Clearly, all proper subgroups of G are �nite and images
of x and y are involutions of G whose product has an odd order. By Step 0, G is simple, so
Z(G) = 1.
Step 2. Denote M = x ·xG = {x ·xg | g ∈ G}. Then |M | =∞ and for every m ∈M it is true

that mx = m−1. Indeed, we have |M | = |xG| = |G : CG(x)| = ∞ and m = xxg = xg−1xg for
some g ∈ G. Now, we see that mx = xxg−1xgx = g−1xgx and so m ·mx = xg−1xg ·g−1xgx = 1.
Step 3. Denote N = {xym | m ∈ M and ord(xym) is odd}. Then |N | = ∞. Indeed, as

above we see that the set {xym | m ∈ M} is in�nite. Suppose that |N | < ∞. Then there
exist in�nitely many distinct elements xymi of even orders 2ki, respectively. By Lemma 1, each
ai = (xymi)ki 6= 1 commutes with x. Since |CG(x)| <∞, we can �nd in�nitely many elements ai
equal to a �xed element g ∈ G. However, if ai = g then xymi ∈ CG(g) and hence |GG(g)| =∞;
a contradiction with Z(G) = 1.
Step 4. If g ∈ N then by the same argument as above we see that gx = g−1. By assumption

ord(xy) is odd, so by Lemma 1 there exists a ∈ 〈x, y〉 such that x = ya. Consider arbitrary
c ∈ N and let c = xym, where m ∈ M . Since ord(c) is odd, Lemma 1 implies that there

exists s ∈ 〈c〉 such that x = (ym)s = yms. Therefore, we �nd that ymsa−1

= y and hence
msa−1 ∈ CG(y) or, equivalently, ms ∈ CG(y)a. Since |CG(y)a| = |CG(y)| < ∞, we have some
�xed g ∈ CG(y)a equals to misi for in�nitely many i. Observe that g 6= 1, since otherwise
a ∈ CG(y) and x = ya = y. Then g = m1s1 = misi and hence (m1s1)

x = (misi)
x. Since

s1 is a power of c1 and cx1 = c−11 , we have sx1 = s−11 . Similarly, we �nd that sxi = s−1i . So
m−11 s−11 = (m1s1)

x = (misi)
x = m−1i s−1i . Taking inverses of both sides, we �nd s1m1 = simi.

We claim that m1m
−1
i ∈ CG(g). Note that

g ·m1m
−1
i = m1(s1m1)m

−1
i = m1(simi)m

−1
i = m1si;

m1m
−1
i · g = m1m

−1
i (misi) = m1si.

Since m1m
−1
i are distinct elements, we get a contradiction with |CG(g)| <∞.
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