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(the proof is extracted from Ol’shanskii’s book «Geometry of Defining Relations in Groups»
and is simplified in order to understand why S3 cannot be a subgroup of a quasi-finite group)

Lemma 1. Suppose that a group H is generated by involutions i and j. Then
1) if a =1j has order n then H ~ D(n);

2) if n is even then a™? is an involution in Z(H);

3) if n is odd then all involutions of H are conjugated by powers of a.

Definition 2. If x and y are elements of a group then ¥ := y~'xy.
Theorem 3. Let x and y be distinct involutions of a quasi-finite group G. Then the order of
TY 1S even.

Proof. The proof is split into several steps. First, observe that G is not cyclic, so elements of G
have finite orders.

Step 0. (general fact) If N is a proper normal subgroup of G then N C Z(G). Indeed,
we have Ng(N) = G. On the other hand, it is well-known that Ng(N)/Cq(N) is isomorphic
to a subgroup of Aut(N). Since N is finite, its automorphism group is finite. Therefore, |G :
Ca(N)| = |Ng(N) : Ca(N)| < oo and hence |Cg(N)| = oo. This implies that Cg(N) = G and
N C Z(G).

Suppose now that x and y are involutions of G and |zy| is odd.

Step 1. We may assume that Z(G) = 1. Indeed, consider G = G/Z(G). Since zy # yx, we
have |Z(G)| < oo and hence |G| = oo. Clearly, all proper subgroups of G are finite and images
of x and y are involutions of G whose product has an odd order. By Step 0, G is simple, so

Z(G) =1.

Step 2. Denote M = z-2% = {z-29 | g € G}. Then |M| = oo and for every m € M it is true
that m® = m~!. Indeed, we have |M| = |2¢| = |G : Cq(x)| = co and m = x29 = xg~'ag for
some g € G. Now, we see that m* = zxg~'zgz = g~ 'zgxr and so m-m® = zg tzg- g 'axgr = 1.

Step 3. Denote N = {zy™ | m € M and ord(zy™) is odd}. Then |N| = co. Indeed, as
above we see that the set {zy™ | m € M} is infinite. Suppose that |[N| < oco. Then there
exist infinitely many distinct elements xy™: of even orders 2k;, respectively. By Lemma 1, each
a; = (zy™)¥ # 1 commutes with x. Since |Ce(x)| < oo, we can find infinitely many elements a;
equal to a fixed element g € G. However, if a; = g then zy™i € C(g) and hence |Gg(g)| = oo;
a contradiction with Z(G) = 1.

Step 4. If g € N then by the same argument as above we see that ¢* = ¢g—'. By assumption
ord(xzy) is odd, so by Lemma 1 there exists a € (x,y) such that = y*. Consider arbitrary
¢ € N and let ¢ = ay™, where m € M. Since ord(c) is odd, Lemma 1 implies that there
exists s € (¢) such that z = (y™)® = y™°. Therefore, we find that yms"_1 = gy and hence
msa~! € Cg(y) or, equivalently, ms € Cg(y)a. Since |Cq(y)al = |Ca(y)| < oo, we have some
fixed g € Cg(y)a equals to m;s; for infinitely many i. Observe that g # 1, since otherwise
a € Cg(y) and x = y* = y. Then g = mys1 = m;s; and hence (mys1)” = (m;s;)*. Since
sy is a power of ¢; and ¢} = ¢!, we have s¥ = s;'. Similarly, we find that s? = s; . So
ml_lsl_1 = (m181)% = (m;s;)* = mi_lsi_l. Taking inverses of both sides, we find sym; = s;m;.
We claim that m;m; ' € Cg(g). Note that

e mlm;1 = ml(slml)mi_l = ml(simi)mi_l = m18;;

-1 -1
mim; - g =mim; (m;s;) = ms;.

Since mym; ! are distinct elements, we get a contradiction with |Cg(g)| < oc. O



