Problems for Tutorial 2

(Thursday, 25.11, at 10 a.m.)

Problem 1.

a) Prove that the action of $M\"ob_{\mathbb{R}}$ on \mathbb{H} is 1-transitive ¹ .	[3 P.]
b) Prove that the action of $M\ddot{o}b_{\mathbb{R}}$ on \mathbb{H} is not 2-transitive.	[2 P.]
c) Compute the stabilizer of i in $M\"ob_{\mathbb{R}}$:	[3 P.]
$\operatorname{St}_{\operatorname{M\"ob}_{\mathbb{R}}}(i) := \{T \in \operatorname{M\"ob}_{\mathbb{R}} T(i) = i\}.$	

d) Let r be an arbitrary positive real number. Prove that $St_{M\"ob}(i)$ acts 1-transitive on the circle $\{z \in \mathbb{H} \mid \rho(z, i) = r\}$. [8 P.]

Problem 2. For the map $\eta : \mathbb{H} \to \mathbb{H}, z \mapsto -\overline{z}$, prove the following statements.

- a) $\eta \in \text{Isom}\mathbb{H}$. [2 P.]
- b) $\eta \notin (\text{M\"ob}_{\mathbb{R}})_{|\mathbb{H}}$.

Problem 3. Prove Lemma 1.4.2 from the script:

Isometries of \mathbb{H} map geodesic lines (i.e. lines of the form \mathbf{A}_r and \mathbf{C}_{r_1,r_2}) to geodesic lines. [6 P.]

Problem 4. For two different points $u, v \in \mathbb{H}$, the set

 $Equidist(u, v) := \{z \in \mathbb{H} \mid \rho(z, u) = \rho(z, v)\}$

is called *Equidistance* of u and v.

- a) Prove that the Equidistante coincides with a geodesic line of the form \mathbf{A}_r or \mathbf{C}_{r_1,r_2} . [4 P.]
- b) Give an exact formula for Equidist(1 + i, 3 + 3i).
- c) Draw the set from b). [1 P.]

Hint. Use the formula (2) or (3) from Theorem 1.3.8 of the script.

[3 P.]

[2 P.]

¹Let G be a group acting on a set X. This action is called n-transitive if for every two tuples (x_1, \ldots, x_n) and (x'_1, \ldots, x'_n) of elements from X satisfying $x_i \neq x_j$ and $x'_i \neq x'_j$ for all $i \neq j$, there exists an element $g \in G$ such that $g(x_1) = x'_1, \ldots, g(x_n) = x'_n$.