Abgabe: 26.11. bis 12:30 Uhr

14P.

12P.

Geometrische Gruppentheorie

Übungsblatt 7

Aufgabe 1.

- (a) Sei r eine Rotation um α Grad und s eine Spiegelung. Beweisen Sie, dass $s^{-1}rs$ eine Rotation um $-\alpha$ Grad ist.
- (b) Sei r eine Rotation um α Grad und g eine orientierungserhaltende Isometrie der Ebene. Beweisen Sie, dass $g^{-1}rg$ eine Rotation um α Grad ist.

Aufgabe 2. Sei n eine natürliche Zahl und sei G eine Gruppe mit der Präsentation

$$\langle a, b \, | \, a^n = 1, a^{-1}ba = b \rangle.$$

(a) Beweisen Sie, dass G unendlich ist.

- (b) Beweisen Sie die stärkere Aussage: $G \cong \mathbb{Z}_n \times \mathbb{Z}$.
- Hinweis zu (a). Sei $N = \langle \langle a^n, a^{-1}bab^{-1} \rangle \rangle_{F(a,b)}$. Beweisen Sie, dass die Ordnung der Nebenklasse bN in der Faktorgruppe F(a,b)/N unendlich ist.
- Hinweis zu (b). Beweisen Sie, dass der Kern des Epimorphismus $\varphi : F(a, b) \to \mathbb{Z}_n \times \mathbb{Z}$, gegeben durch $a \mapsto (1, 0), b \mapsto (0, 1)$, gleich N ist.

Aufgabe 3. Sei n eine natürliche Zahl und sei D_n eine Gruppe mit der Präsentation

$$\langle a, b | a^2 = 1, b^n = 1, a^{-1}ba = b^{-1} \rangle.$$

Beweisen Sie, dass $|D_n| = 2n$ ist.