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Fig. 1. Grigorchuk’s group G = ⟨a, b, c, d⟩ acts by automorphisms on the rooted
binary tree T . The generators of G satisfy the following recurrent conditions:

b = (a, c), , c = (a, d), d = (1, b).

Note that a2 = b2 = c2 = d2 = 1 and that ⟨b, c, d⟩ is the Klein group Z2 × Z2.

Below we expose a proof of the following theorem.
Theorem (Grigorchuk). The group G has a subexponential growth.

1 Definitions and notations

Let St(n) be the subgroup of G consisting of all automorphisms which fix each vertex of
the level n. It is easy to check that St(1) = ⟨b, c, d, aba, aca, ada⟩.

Let S∗ be the free monoid generated by the set S = {a, b, c, d}. There is a natural
surjective homomorphism S∗ → G.

Let S∗
even be the submonoid of S consisting of all words with even number of occur-

rences of a. Then there is a natural surjective homomorphism S∗
even → St(1).

We define a homomorphism φ = (φ0, φ1) : S
∗
even → S∗ × S∗ by the formulas

φ(b) = (a, c), φ(aba) = (c, a)
φ(c) = (a, d), φ(aca) = (d, a)
φ(d) = (1, b), φ(ada) = (b, 1).

(i)
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Any word w ∈ S∗ can be reduced by applying a finite number of the following elemen-
tary reductions:

Type 1: bc d, cb d, bd c, db c, cd b, dc b.
Type 2: a2  1, b2  1, c2  1, d2  1.

Example. abcdad addad aad d.

Reduced words have one of the following forms, where ui ∈ {b, c, d} for all i:

w =


au1au2 · au3au4 · . . . · au2m−1au2m,

au1au2 · au3au4 · . . . · au2m−1a,

u0au1au2 · au3au4 · . . . · au2m−1a,

u0au1au2 · au3au4 · . . . · au2m−1au2m.

(ii)

The length of w is denoted by |w|. The number of occurrences of a in w is denoted by
|w|a. Analogously, the number of occurrences of b and c in w is denoted by |w|b,c, and so
on.

Claim 1. For any reduced word w ∈ S∗ holds

|w| − 1

2
6 |w|b,c,d 6

|w|+ 1

2
. (iii)

Let w• be the reduced form of w. For i = 1, 2, let ri(w) be the numbers of elementary
reductions of type i in the process of reduction w  w•. One can prove that the word w•

and the numbers r1(w) and r2(w) do not depend on a choice of reduction process. The
following number is called the number of weighted reductions for w.

ρ(w) = τ1(w) + 2τ2(w)

We also denote
ρ1(w) = ρ(φ0(w)) + ρ(φ1(w)).

Claim 2. For any word w ∈ S∗, we have

|w•|d > |w|d − ρ(w), (iv)

|w•|c,d > |w|c,d − 2ρ(w). (v)

Proof. The factor 2 in (v) is because the reduction cd b decreases the number
of c and d in w by 2. 2

For i = 0, 1, we denote φ•
i (w) = (φi(w))

•.

Claim 3. For any reduced word w ∈ S∗, we have

|φ0(w)|d + |φ1(w)|d = |w|c. (vi)

|φ•
0(w)|d + |φ•

1(w)|d > |w|c − 2ρ1(w). (vii)

Proof. (vi) follows from (i); (vii) follows from (iv) and (vi).
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2 The main lemma

Lemma 1. Let w be a reduced word from S∗ which corresponds to an automorphism
g ∈ St(3). Then ∑

i,j,k∈{0,1}

|φ•
i (φ

•
j(φ

•
k(w)))| 6

3

4
|w|+ 8. (⋆)

Proof. First we prove Claims 1-5 below.

Step 1.

Claim 1.
|φ0(w)|+ |φ1(w)| 6 |w|+ 1− |w|d (1)

|φ•
0(w)|+ |φ•

1(w)| 6 |w|+ 1− |w|d − ρ1, (1•)

Proof. The inequality (1) without the term 1 on the right side holds for all reduced
words of length 4 which begin with a:

φ(abab) = (ca, ac)
φ(abac) = (ca, ad)
φ(abad) = (c1, ab)
φ(acab) = (da, ac)
φ(acac) = (da, ad)
φ(acad) = (d1, ab)
φ(adab) = (ba, 1c)
φ(adac) = (ba, 1d)
φ(adad) = (b1, 1b)

In the general case, (1) can be verified with the help of (ii). 2

Claim 2.
|φ0(w)|c,d + |φ1(w)|c,d = |w|b,c. (2)

|φ•
0(w)|c,d + |φ•

1(w)|c,d > |w|b,c − 2ρ1.

> |w| − 1

2
− |w|d − 2ρ1

(2•)

Proof. (2) follows from (i); (2•) follows from (2) and (v) and (iii). 2

Step 2. We set

ρ2 = ρ(φ0(φ
•
0(w))) + ρ(φ1(φ

•
0(w))) + ρ(φ0(φ

•
1(w))) + ρ(φ1(φ

•
1(w)))

= ρ1(φ
•
0(w)) + ρ1(φ

•
1(w)).

Claim 3.∑
i,j∈{0,1}

|φ•
i (φ

•
j(w))| 6 |w|+ 3− |w|d − ρ1 − |φ•

0(w)|d − |φ•
1(w)|d − ρ2. (3)
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Proof. We denote by L and R the left and the right sides of the inequality, respectively.
Applying (1•) twice, we obtain

L =
1∑

j=0

|φ•
0(φ

•
j(w))|+ |φ•

1(φ
•
j(w))|

6
1∑

j=0

(
|φ•

j(w)|+ 1− |φ•
j(w)|d − ρ1(φ

•
j(w))

)
6 R.

2

Claim 4.∑
i,j∈{0,1}

|φ•
i (φ

•
j(w))|d >

|w| − 1

2
− |w|d − 2ρ1 − |φ•

0(w)|d − |φ•
1(w)|d − 2ρ2. (4)

Proof. We denote by L and R the left and the right sides of the inequality, respectively.
Applying (vii) and (2•), we obtain

L =
1∑

j=0

|φ•
0(φ

•
j(w))|d + |φ•

1(φ
•
j(w))|d

>
1∑

j=0

(|φ•
j(w)|c − 2ρ1(φ

•
j(w))) = |φ•

0(w)|c + |φ•
1(w)|c − 2ρ2

= |φ•
0(w)|c,d + |φ•

1(w)|c,d − |φ•
0(w)|d − |φ•

1(w)|d − 2ρ2 > R.

Step 3.

Claim 5. ∑
i,j,k∈{0,1}

|φ•
i (φ

•
j(φ

•
k(w)))| 6

|w|
2

+ 8 + ρ1 + ρ2. (5)

Proof. We denote by L and R the left and the right sides of the inequality, respectively.
Then

L =
∑

j,k∈{0,1}
|φ•

0(φ
•
j(φ

•
k(w)))|+ |φ•

1(φ
•
j(φ

•
k(w)))|

(1)

6
∑

j,k∈{0,1}
|φ•

j(φ
•
k(w))|+ 1− |φ•

j(φ
•
k(w))|d

(3),(4)

6
(
|w|+ (3 + 4)− |w|d − ρ1 − |φ•

0(w)|d − |φ•
1(w)|d − ρ2

)
−
(

|w|−1
2

− |w|d − 2ρ1 − |φ•
0(w)|d − |φ•

1(w)|d − 2ρ2

)
6 R.

2

Now we are ready to finish the proof of Lemma 1.
If ρ1 + ρ2 6 |w|

4
, then (⋆) follows from (5).

If ρ1 + ρ2 >
|w|
4
, then we have from (3) that∑

j,k∈{0,1}

|φ•
j(φ

•
k(w))| 6

3

4
|w|+ 3. (6)
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Then ∑
i,j,k∈{0,1}

|φ•
i (φ

•
j(φ

•
k(w)))| =

∑
j,k∈{0,1}

|φ•
0(φ

•
j(φ

•
k(w)))|+ |φ•

1(φ
•
j(φ

•
k(w)))|

(1)

6
∑

j,k∈{0,1}
|φ•

j(φ
•
k(w))|+ 1− |φ•

j(φ
•
k(w))|d

(6)

6 3
4
|w|+ 7.

2

Definition. For g ∈ St(3) and i, j, k ∈ {0, 1} let gi,j,k be the automorphism induced by
g on the subtree of T with the root i, j, k. We can consider gi,j,k as an element of G. By
ℓS(g) we denote the length of g with respect to S = {a, b, c, d}.
Corollary 1. For g ∈ St(3) holds∑

i,j,k∈{0,1}

ℓS(gi,j,k) 6
3

4
ℓS(g) + 8.

3 The group G has a subexponential growth

Lemma 2. Let G be a group generated by a finite set S. Suppose that G0 is a subgroup
of finite index m in G. We consider the growth function of G with respect to S,

β(k) = |{g ∈ G | ℓS(g) 6 k}|
and the relative growth function of G0 with respect to S,

β0(k) = |{g ∈ G0 | ℓS(g) 6 k}|.
Then

β(k) 6 mβ0(k +m− 1).

Theorem (Grigorchuk). The group G has a subexponential growth.

Proof. For G0 = St(3) we have m = |G : G0| = 27. We denote

ω = lim
n→∞

β(n)1/n.

It suffices to show that ω = 1. Let ϵ > 0. Then there exists C > 0 such that

β(n) 6 C · (ω + ϵ)n

for every n ∈ N. Note that any g ∈ St(3) is completely determined by the induced
automorphisms gi,j,k, where i, j, k run over {0, 1}. From Corollary 1 we deduce

β0(n) 6
∑

n1+···+n86 3
4
n+8

β(n1)β(n2) . . . β(n8) 6 C8(ω + ϵ)
3
4
n+8

∑
n1+···+n86 3

4
n+8

1

6 C8(ω + ϵ)
3
4
n+8P (n),

(!)

where P (n) is a polynomial of degree 9. By Lemma 2, we have β(n) 6 27 · β0(n+27 − 1).
Using (!), we deduce

ω = lim
n→∞

β(n)1/n = (ω + ϵ)
3
4 .

Since this holds for any ϵ > 0, we have ω 6 ω
3
4 , hence ω 6 1. 2
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