Grigorchuk's group

Fig. 1. Grigorchuk's group $G=\langle a, b, c, d\rangle$ acts by automorphisms on the rooted binary tree T. The generators of G satisfy the following recurrent conditions:

$$
b=(a, c),, c=(a, d), \quad d=(1, b) .
$$

Note that $a^{2}=b^{2}=c^{2}=d^{2}=1$ and that $\langle b, c, d\rangle$ is the Klein group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Below we expose a proof of the following theorem.
Theorem (Grigorchuk). The group G has a subexponential growth.

1 Definitions and notations

Let $\operatorname{St}(n)$ be the subgroup of G consisting of all automorphisms which fix each vertex of the level n. It is easy to check that $\operatorname{St}(1)=\langle b, c, d, a b a, a c a, a d a\rangle$.

Let S^{*} be the free monoid generated by the set $S=\{a, b, c, d\}$. There is a natural surjective homomorphism $S^{*} \rightarrow G$.

Let $S_{\text {even }}^{*}$ be the submonoid of S consisting of all words with even number of occurrences of a. Then there is a natural surjective homomorphism $S_{\text {even }}^{*} \rightarrow \operatorname{St}(1)$.

We define a homomorphism $\varphi=\left(\varphi_{0}, \varphi_{1}\right): S_{\text {even }}^{*} \rightarrow S^{*} \times S^{*}$ by the formulas

$$
\begin{array}{ll}
\varphi(b)=(a, c), & \varphi(a b a)=(c, a) \\
\varphi(c)=(a, d), & \varphi(a c a)=(d, a) \tag{i}\\
\varphi(d)=(1, b), & \varphi(a d a)=(b, 1) .
\end{array}
$$

Any word $w \in S^{*}$ can be reduced by applying a finite number of the following elementary reductions:

Type 1: $b c \rightsquigarrow d, c b \rightsquigarrow d, b d \rightsquigarrow c, d b \rightsquigarrow c, c d \rightsquigarrow b, d c \rightsquigarrow b$.
Type 2: $a^{2} \rightsquigarrow 1, b^{2} \rightsquigarrow 1, c^{2} \rightsquigarrow 1, d^{2} \rightsquigarrow 1$.
Example. abcdad \rightsquigarrow addad $\rightsquigarrow a a d \rightsquigarrow d$.
Reduced words have one of the following forms, where $u_{i} \in\{b, c, d\}$ for all i :

$$
w=\left\{\begin{array}{c}
a u_{1} a u_{2} \cdot a u_{3} a u_{4} \cdot \ldots \cdot a u_{2 m-1} a u_{2 m} \tag{ii}\\
a u_{1} a u_{2} \cdot a u_{3} a u_{4} \cdot \ldots \cdot a u_{2 m-1} a \\
u_{0} a u_{1} a u_{2} \cdot a u_{3} a u_{4} \cdot \ldots \cdot a u_{2 m-1} a \\
u_{0} a u_{1} a u_{2} \cdot a u_{3} a u_{4} \cdot \ldots \cdot a u_{2 m-1} a u_{2 m}
\end{array}\right.
$$

The length of w is denoted by $|w|$. The number of occurrences of a in w is denoted by $|w|_{a}$. Analogously, the number of occurrences of b and c in w is denoted by $|w|_{b, c}$, and so on.

Claim 1. For any reduced word $w \in S^{*}$ holds

$$
\begin{equation*}
\frac{|w|-1}{2} \leqslant|w|_{b, c, d} \leqslant \frac{|w|+1}{2} \tag{iii}
\end{equation*}
$$

Let w^{\bullet} be the reduced form of w. For $i=1,2$, let $r_{i}(w)$ be the numbers of elementary reductions of type i in the process of reduction $w \rightsquigarrow w^{\bullet}$. One can prove that the word w^{\bullet} and the numbers $r_{1}(w)$ and $r_{2}(w)$ do not depend on a choice of reduction process. The following number is called the number of weighted reductions for w.

$$
\rho(w)=\tau_{1}(w)+2 \tau_{2}(w)
$$

We also denote

$$
\rho_{1}(w)=\rho\left(\varphi_{0}(w)\right)+\rho\left(\varphi_{1}(w)\right)
$$

Claim 2. For any word $w \in S^{*}$, we have

$$
\begin{gather*}
\left|w^{\bullet}\right|_{d} \geqslant|w|_{d}-\rho(w), \tag{iv}\\
\left|w^{\bullet}\right|_{c, d} \geqslant|w|_{c, d}-2 \rho(w) . \tag{v}
\end{gather*}
$$

Proof. The factor 2 in (v) is because the reduction $c d \rightsquigarrow b$ decreases the number of c and d in w by 2 .

For $i=0,1$, we denote $\varphi_{i}^{\bullet}(w)=\left(\varphi_{i}(w)\right)^{\bullet}$.
Claim 3. For any reduced word $w \in S^{*}$, we have

$$
\begin{gather*}
\left|\varphi_{0}(w)\right|_{d}+\left|\varphi_{1}(w)\right|_{d}=|w|_{c} . \tag{vi}\\
\left|\varphi_{0}^{\bullet}(w)\right|_{d}+\left|\varphi_{1}^{\bullet}(w)\right|_{d} \geqslant|w|_{c}-2 \rho_{1}(w) . \tag{vii}
\end{gather*}
$$

Proof. (vi) follows from (i); (vii) follows from (iv) and (vi).

2 The main lemma

Lemma 1. Let w be a reduced word from S^{*} which corresponds to an automorphism $g \in \operatorname{St}(3)$. Then

$$
\sum_{i, j, k \in\{0,1\}}\left|\varphi_{i}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right| \leqslant \frac{3}{4}|w|+8
$$

Proof. First we prove Claims 1-5 below.

Step 1.

Claim 1.

$$
\begin{align*}
& \left|\varphi_{0}(w)\right|+\left|\varphi_{1}(w)\right| \leqslant|w|+1-|w|_{d} \tag{1}\\
& \left|\varphi_{0}^{\bullet}(w)\right|+\left|\varphi_{1}^{\bullet}(w)\right| \leqslant|w|+1-|w|_{d}-\rho_{1},
\end{align*}
$$

Proof. The inequality (1) without the term 1 on the right side holds for all reduced words of length 4 which begin with a :

$$
\begin{aligned}
\varphi(a b a b) & =(c a, a c) \\
\varphi(a b a c) & =(c a, a d) \\
\varphi(a b a d) & =(c 1, a b) \\
\varphi(a c a b) & =(d a, a c) \\
\varphi(a c a c) & =(d a, a d) \\
\varphi(a c a d) & =(d 1, a b) \\
\varphi(a d a b) & =(b a, 1 c) \\
\varphi(a d a c) & =(b a, 1 d) \\
\varphi(a d a d) & =(b 1,1 b)
\end{aligned}
$$

In the general case, (1) can be verified with the help of (ii).

Claim 2.

$$
\begin{align*}
\left|\varphi_{0}(w)\right|_{c, d}+\left|\varphi_{1}(w)\right|_{c, d} & =|w|_{b, c} . \tag{2}\\
\left|\varphi_{0}^{:}(w)\right|_{c, d}+\left|\varphi_{1}^{\bullet}(w)\right|_{c, d} & \geqslant|w|_{b, c}-2 \rho_{1} \\
& \geqslant \frac{|w|-1}{2}-|w|_{d}-2 \rho_{1}
\end{align*}
$$

Proof. (2) follows from (i); (2•) follows from (2) and (v) and (iii).

Step 2. We set

$$
\begin{aligned}
\rho_{2} & =\rho\left(\varphi_{0}\left(\varphi_{0}^{\bullet}(w)\right)\right)+\rho\left(\varphi_{1}\left(\varphi_{0}^{\bullet}(w)\right)\right)+\rho\left(\varphi_{0}\left(\varphi_{1}^{\bullet}(w)\right)\right)+\rho\left(\varphi_{1}\left(\varphi_{1}^{\bullet}(w)\right)\right) \\
& =\rho_{1}\left(\varphi_{0}^{\boldsymbol{\bullet}}(w)\right)+\rho_{1}\left(\varphi_{1}^{\bullet}(w)\right) .
\end{aligned}
$$

Claim 3.

$$
\begin{equation*}
\sum_{i, j \in\{0,1\}}\left|\varphi_{i}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right| \leqslant|w|+3-|w|_{d}-\rho_{1}-\left|\varphi_{0}^{\bullet}(w)\right|_{d}-\left|\varphi_{1}^{\bullet}(w)\right|_{d}-\rho_{2} \tag{3}
\end{equation*}
$$

Proof. We denote by L and R the left and the right sides of the inequality, respectively. Applying (1^{\bullet}) twice, we obtain

$$
\begin{aligned}
L & =\sum_{j=0}^{1}\left|\varphi_{0}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right|+\left|\varphi_{1}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right| \\
& \leqslant \sum_{j=0}^{1}\left(\left|\varphi_{j}^{\bullet}(w)\right|+1-\left|\varphi_{j}^{\bullet}(w)\right|_{d}-\rho_{1}\left(\varphi_{j}^{\bullet}(w)\right)\right) \leqslant R .
\end{aligned}
$$

Claim 4.

$$
\begin{equation*}
\sum_{i, j \in\{0,1\}}\left|\varphi_{i}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right|_{d} \geqslant \frac{|w|-1}{2}-|w|_{d}-2 \rho_{1}-\left|\varphi_{0}^{\bullet}(w)\right|_{d}-\left|\varphi_{1}^{\bullet}(w)\right|_{d}-2 \rho_{2} \tag{4}
\end{equation*}
$$

Proof. We denote by L and R the left and the right sides of the inequality, respectively. Applying (vii) and (2^{\bullet}), we obtain

$$
\begin{aligned}
L & =\sum_{j=0}^{1}\left|\varphi_{0}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right|_{d}+\left|\varphi_{1}^{\bullet}\left(\varphi_{j}^{\bullet}(w)\right)\right|_{d} \\
& \geqslant \sum_{j=0}^{1}\left(\left|\varphi_{j}^{\bullet}(w)\right|_{c}-2 \rho_{1}\left(\varphi_{j}^{\bullet}(w)\right)\right)=\left|\varphi_{0}^{\bullet}(w)\right|_{c}+\left|\varphi_{1}^{\bullet}(w)\right|_{c}-2 \rho_{2} \\
& =\left|\varphi_{0}^{\bullet}(w)\right|_{c, d}+\left|\varphi_{1}^{\bullet}(w)\right|_{c, d}-\left|\varphi_{0}^{\bullet}(w)\right|_{d}-\left|\varphi_{1}^{\bullet}(w)\right|_{d}-2 \rho_{2} \geqslant R .
\end{aligned}
$$

Step 3.

Claim 5.

$$
\begin{equation*}
\sum_{i, j, k \in\{0,1\}}\left|\varphi_{i}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right| \leqslant \frac{|w|}{2}+8+\rho_{1}+\rho_{2} . \tag{5}
\end{equation*}
$$

Proof. We denote by L and R the left and the right sides of the inequality, respectively. Then

$$
\begin{aligned}
L & =\sum_{j, k \in\{0,1\}}\left|\varphi_{0}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right|+\left|\varphi_{1}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right| \\
& \stackrel{(1)}{\leqslant} \sum_{j, k \in\{0,1\}}\left|\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right|+1-\left|\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right|_{d} \\
& \stackrel{(3),(4)}{\leqslant}\left(|w|+(3+4)-|w|_{d}-\rho_{1}-\left|\varphi_{0}^{\bullet}(w)\right|_{d}-\left|\varphi_{1}^{\bullet}(w)\right|_{d}-\rho_{2}\right) \\
& -\left(\frac{|w|-1}{2}-|w|_{d}-2 \rho_{1}-\left|\varphi_{0}^{\bullet}(w)\right|_{d}-\left|\varphi_{1}^{\bullet}(w)\right|_{d}-2 \rho_{2}\right) \leqslant R .
\end{aligned}
$$

Now we are ready to finish the proof of Lemma 1.
If $\rho_{1}+\rho_{2} \leqslant \frac{|w|}{4}$, then (\star) follows from (5).
If $\rho_{1}+\rho_{2}>\frac{|w|}{4}$, then we have from (3) that

$$
\begin{equation*}
\sum_{j, k \in\{0,1\}}\left|\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right| \leqslant \frac{3}{4}|w|+3 . \tag{6}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{i, j, k \in\{0,1\}}\left|\varphi_{i}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right| & =\sum_{j, k \in\{0,1\}}\left|\varphi_{0}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right|+\left|\varphi_{1}^{\bullet}\left(\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right)\right| \\
& \stackrel{(1)}{\leqslant} \sum_{j, k \in\{0,1\}}\left|\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right|+1-\left|\varphi_{j}^{\bullet}\left(\varphi_{k}^{\bullet}(w)\right)\right|_{d} \\
& \stackrel{(6)}{\leqslant} \frac{3}{4}|w|+7 .
\end{aligned}
$$

Definition. For $g \in \operatorname{St}(3)$ and $i, j, k \in\{0,1\}$ let $g_{i, j, k}$ be the automorphism induced by g on the subtree of T with the root i, j, k. We can consider $g_{i, j, k}$ as an element of G. By $\ell_{S}(g)$ we denote the length of g with respect to $S=\{a, b, c, d\}$.
Corollary 1. For $g \in \operatorname{St}(3)$ holds

$$
\sum_{i, j, k \in\{0,1\}} \ell_{S}\left(g_{i, j, k}\right) \leqslant \frac{3}{4} \ell_{S}(g)+8 .
$$

3 The group G has a subexponential growth

Lemma 2. Let G be a group generated by a finite set S. Suppose that G_{0} is a subgroup of finite index m in G. We consider the growth function of G with respect to S,

$$
\beta(k)=\left|\left\{g \in G \mid \ell_{S}(g) \leqslant k\right\}\right|
$$

and the relative growth function of G_{0} with respect to S,

$$
\beta_{0}(k)=\left|\left\{g \in G_{0} \mid \ell_{S}(g) \leqslant k\right\}\right| .
$$

Then

$$
\beta(k) \leqslant m \beta_{0}(k+m-1) .
$$

Theorem (Grigorchuk). The group G has a subexponential growth.
Proof. For $G_{0}=\operatorname{St}(3)$ we have $m=\left|G: G_{0}\right|=2^{7}$. We denote

$$
\omega=\lim _{n \rightarrow \infty} \beta(n)^{1 / n}
$$

It suffices to show that $\omega=1$. Let $\epsilon>0$. Then there exists $C>0$ such that

$$
\beta(n) \leqslant C \cdot(\omega+\epsilon)^{n}
$$

for every $n \in \mathbb{N}$. Note that any $g \in \operatorname{St}(3)$ is completely determined by the induced automorphisms $g_{i, j, k}$, where i, j, k run over $\{0,1\}$. From Corollary 1 we deduce

$$
\begin{align*}
\beta_{0}(n) & \leqslant \sum_{n_{1}+\cdots+n_{8} \leqslant \frac{3}{4} n+8} \beta\left(n_{1}\right) \beta\left(n_{2}\right) \ldots \beta\left(n_{8}\right) \leqslant C^{8}(\omega+\epsilon)^{\frac{3}{4} n+8} \sum_{n_{1}+\cdots+n_{8} \leqslant \frac{3}{4} n+8} 1 \tag{!}\\
& \leqslant C^{8}(\omega+\epsilon)^{\frac{3}{4} n+8} P(n),
\end{align*}
$$

where $P(n)$ is a polynomial of degree 9 . By Lemma 2 , we have $\beta(n) \leqslant 2^{7} \cdot \beta_{0}\left(n+2^{7}-1\right)$. Using (!), we deduce

$$
\omega=\lim _{n \rightarrow \infty} \beta(n)^{1 / n}=(\omega+\epsilon)^{\frac{3}{4}} .
$$

Since this holds for any $\epsilon>0$, we have $\omega \leqslant \omega^{\frac{3}{4}}$, hence $\omega \leqslant 1$.

