Grigorchuk's group

Fig. 1. Grigorchuk's group $G = \langle a, b, c, d \rangle$ acts by automorphisms on the rooted binary tree T. The generators of G satisfy the following recurrent conditions:

 $b = (a, c), \ , c = (a, d), \ d = (1, b).$

Note that $a^2 = b^2 = c^2 = d^2 = 1$ and that $\langle b, c, d \rangle$ is the Klein group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Below we expose a proof of the following theorem.

Theorem (Grigorchuk). The group G has a subexponential growth.

1 Definitions and notations

Let St(n) be the subgroup of G consisting of all automorphisms which fix each vertex of the level n. It is easy to check that $St(1) = \langle b, c, d, aba, aca, ada \rangle$.

Let S^* be the free monoid generated by the set $S = \{a, b, c, d\}$. There is a natural surjective homomorphism $S^* \to G$.

Let S_{even}^* be the submonoid of S consisting of all words with even number of occurrences of a. Then there is a natural surjective homomorphism $S_{even}^* \to \text{St}(1)$.

We define a homomorphism $\varphi = (\varphi_0, \varphi_1) : S^*_{even} \to S^* \times S^*$ by the formulas

$$\begin{aligned} \varphi(b) &= (a, c), \qquad \varphi(aba) = (c, a) \\ \varphi(c) &= (a, d), \qquad \varphi(aca) = (d, a) \\ \varphi(d) &= (1, b), \qquad \varphi(ada) = (b, 1). \end{aligned}$$

Any word $w \in S^*$ can be reduced by applying a finite number of the following elementary reductions:

Type 1: $bc \rightsquigarrow d, cb \rightsquigarrow d, bd \rightsquigarrow c, db \rightsquigarrow c, cd \rightsquigarrow b, dc \rightsquigarrow b$. Type 2: $a^2 \rightsquigarrow 1, b^2 \rightsquigarrow 1, c^2 \rightsquigarrow 1, d^2 \rightsquigarrow 1$.

Example. $abcdad \rightsquigarrow addad \rightsquigarrow aad \rightsquigarrow d$.

Reduced words have one of the following forms, where $u_i \in \{b, c, d\}$ for all *i*:

$$w = \begin{cases} au_1 au_2 \cdot au_3 au_4 \cdot \ldots \cdot au_{2m-1} au_{2m}, \\ au_1 au_2 \cdot au_3 au_4 \cdot \ldots \cdot au_{2m-1} a, \\ u_0 au_1 au_2 \cdot au_3 au_4 \cdot \ldots \cdot au_{2m-1} a, \\ u_0 au_1 au_2 \cdot au_3 au_4 \cdot \ldots \cdot au_{2m-1} au_{2m}. \end{cases}$$
(*ii*)

The length of w is denoted by |w|. The number of occurrences of a in w is denoted by $|w|_{a}$. Analogously, the number of occurrences of b and c in w is denoted by $|w|_{b,c}$, and so on.

Claim 1. For any reduced word $w \in S^*$ holds

$$\frac{|w| - 1}{2} \leqslant |w|_{b,c,d} \leqslant \frac{|w| + 1}{2}.$$
 (iii)

Let w^{\bullet} be the reduced form of w. For i = 1, 2, let $r_i(w)$ be the numbers of elementary reductions of type i in the process of reduction $w \rightsquigarrow w^{\bullet}$. One can prove that the word w^{\bullet} and the numbers $r_1(w)$ and $r_2(w)$ do not depend on a choice of reduction process. The following number is called the number of *weighted reductions* for w.

$$\rho(w) = \tau_1(w) + 2\tau_2(w)$$

We also denote

$$\rho_1(w) = \rho(\varphi_0(w)) + \rho(\varphi_1(w)).$$

Claim 2. For any word $w \in S^*$, we have

$$|w^{\bullet}|_{d} \ge |w|_{d} - \rho(w), \qquad (iv)$$

$$|w^{\bullet}|_{c,d} \ge |w|_{c,d} - 2\rho(w). \tag{v}$$

Proof. The factor 2 in (v) is because the reduction $cd \rightsquigarrow b$ decreases the number of c and d in w by 2.

For i = 0, 1, we denote $\varphi_i^{\bullet}(w) = (\varphi_i(w))^{\bullet}$.

Claim 3. For any reduced word $w \in S^*$, we have

$$|\varphi_0(w)|_d + |\varphi_1(w)|_d = |w|_c.$$
 (vi)

$$|\varphi_0^{\bullet}(w)|_d + |\varphi_1^{\bullet}(w)|_d \ge |w|_c - 2\rho_1(w).$$
 (vii)

Proof. (vi) follows from (i); (vii) follows from (iv) and (vi).

2 The main lemma

Lemma 1. Let w be a reduced word from S^* which corresponds to an automorphism $g \in St(3)$. Then

$$\sum_{i,j,k\in\{0,1\}} |\varphi_i^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))| \leqslant \frac{3}{4} |w| + 8.$$
 (*)

Proof. First we prove Claims 1-5 below.

Step 1.

Claim 1.

$$|\varphi_0(w)| + |\varphi_1(w)| \le |w| + 1 - |w|_d \tag{1}$$

$$|\varphi_0^{\bullet}(w)| + |\varphi_1^{\bullet}(w)| \le |w| + 1 - |w|_d - \rho_1, \tag{1^{\bullet}}$$

Proof. The inequality (1) without the term 1 on the right side holds for all reduced words of length 4 which begin with a:

$\varphi(abab)$	= (ca, ac)
$\varphi(abac)$	= (ca, ad)
$\varphi(abad)$	= (c1, ab)
$\varphi(acab)$	= (da, ac)
$\varphi(acac)$	= (da, ad)
$\varphi(acad)$	= (d1, ab)
$\varphi(adab)$	= (ba, 1c)
$\varphi(adac)$	= (ba, 1d)
$\varphi(adad)$	= (b1, 1b)

In the general case, (1) can be verified with the help of (ii).

Claim 2.

$$|\varphi_0(w)|_{c,d} + |\varphi_1(w)|_{c,d} = |w|_{b,c}.$$
(2)

$$\begin{aligned} |\varphi_{0}^{\bullet}(w)|_{c,d} + |\varphi_{1}^{\bullet}(w)|_{c,d} & \geqslant |w|_{b,c} - 2\rho_{1}. \\ & \geqslant \frac{|w| - 1}{2} - |w|_{d} - 2\rho_{1} \end{aligned}$$
(2•)

Proof. (2) follows from (i); (2[•]) follows from (2) and (v) and (iii).

Step 2. We set

$$\rho_{2} = \rho(\varphi_{0}(\varphi_{0}^{\bullet}(w))) + \rho(\varphi_{1}(\varphi_{0}^{\bullet}(w))) + \rho(\varphi_{0}(\varphi_{1}^{\bullet}(w))) + \rho(\varphi_{1}(\varphi_{1}^{\bullet}(w))) \\ = \rho_{1}(\varphi_{0}^{\bullet}(w)) + \rho_{1}(\varphi_{1}^{\bullet}(w)).$$

Claim 3.

$$\sum_{i,j\in\{0,1\}} |\varphi_i^{\bullet}(\varphi_j^{\bullet}(w))| \leq |w| + 3 - |w|_d - \rho_1 - |\varphi_0^{\bullet}(w)|_d - |\varphi_1^{\bullet}(w)|_d - \rho_2.$$
(3)

Proof. We denote by L and R the left and the right sides of the inequality, respectively. Applying (1^{\bullet}) twice, we obtain

$$L = \sum_{j=0}^{1} |\varphi_0^{\bullet}(\varphi_j^{\bullet}(w))| + |\varphi_1^{\bullet}(\varphi_j^{\bullet}(w))|$$

$$\leqslant \sum_{j=0}^{1} \left(|\varphi_j^{\bullet}(w)| + 1 - |\varphi_j^{\bullet}(w)|_d - \rho_1(\varphi_j^{\bullet}(w)) \right) \leqslant R.$$

Claim 4.

$$\sum_{i,j\in\{0,1\}} |\varphi_i^{\bullet}(\varphi_j^{\bullet}(w))|_d \ge \frac{|w|-1}{2} - |w|_d - 2\rho_1 - |\varphi_0^{\bullet}(w)|_d - |\varphi_1^{\bullet}(w)|_d - 2\rho_2.$$
(4)

Proof. We denote by L and R the left and the right sides of the inequality, respectively. Applying (vii) and (2^{\bullet}) , we obtain

$$L = \sum_{j=0}^{1} |\varphi_{0}^{\bullet}(\varphi_{j}^{\bullet}(w))|_{d} + |\varphi_{1}^{\bullet}(\varphi_{j}^{\bullet}(w))|_{d}$$

$$\geq \sum_{j=0}^{1} (|\varphi_{j}^{\bullet}(w)|_{c} - 2\rho_{1}(\varphi_{j}^{\bullet}(w))) = |\varphi_{0}^{\bullet}(w)|_{c} + |\varphi_{1}^{\bullet}(w)|_{c} - 2\rho_{2}$$

$$= |\varphi_{0}^{\bullet}(w)|_{c,d} + |\varphi_{1}^{\bullet}(w)|_{c,d} - |\varphi_{0}^{\bullet}(w)|_{d} - |\varphi_{1}^{\bullet}(w)|_{d} - 2\rho_{2} \geq R.$$

Step 3.

Claim 5.

$$\sum_{i,j,k\in\{0,1\}} |\varphi_i^{\bullet}(\varphi_j^{\bullet}(w)))| \leqslant \frac{|w|}{2} + 8 + \rho_1 + \rho_2.$$
(5)

 $\mathit{Proof.}$ We denote by L and R the left and the right sides of the inequality, respectively. Then

$$L = \sum_{j,k \in \{0,1\}} |\varphi_0^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))| + |\varphi_1^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))|$$

$$\stackrel{(1)}{\leqslant} \sum_{j,k \in \{0,1\}} |\varphi_j^{\bullet}(\varphi_k^{\bullet}(w))| + 1 - |\varphi_j^{\bullet}(\varphi_k^{\bullet}(w))|_d$$

$$\stackrel{(3),(4)}{\leqslant} \left(|w| + (3+4) - |w|_d - \rho_1 - |\varphi_0^{\bullet}(w)|_d - |\varphi_1^{\bullet}(w)|_d - \rho_2 \right)$$

$$- \left(\frac{|w| - 1}{2} - |w|_d - 2\rho_1 - |\varphi_0^{\bullet}(w)|_d - |\varphi_1^{\bullet}(w)|_d - 2\rho_2 \right) \leqslant R.$$

Now we are ready to finish the proof of Lemma 1. If $\rho_1 + \rho_2 \leq \frac{|w|}{4}$, then (\star) follows from (5). If $\rho_1 + \rho_2 > \frac{|w|}{4}$, then we have from (3) that

$$\sum_{j,k\in\{0,1\}} |\varphi_j^{\bullet}(\varphi_k^{\bullet}(w))| \leqslant \frac{3}{4} |w| + 3.$$
(6)

Then

$$\sum_{i,j,k\in\{0,1\}} |\varphi_i^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))| = \sum_{j,k\in\{0,1\}} |\varphi_0^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))| + |\varphi_1^{\bullet}(\varphi_j^{\bullet}(\varphi_k^{\bullet}(w)))|$$

$$\stackrel{(1)}{\leqslant} \sum_{j,k\in\{0,1\}} |\varphi_j^{\bullet}(\varphi_k^{\bullet}(w))| + 1 - |\varphi_j^{\bullet}(\varphi_k^{\bullet}(w))|_d$$

$$\stackrel{(6)}{\leqslant} \frac{3}{4} |w| + 7.$$

Definition. For $g \in St(3)$ and $i, j, k \in \{0, 1\}$ let $g_{i,j,k}$ be the automorphism induced by g on the subtree of T with the root i, j, k. We can consider $g_{i,j,k}$ as an element of G. By $\ell_S(g)$ we denote the length of g with respect to $S = \{a, b, c, d\}$.

Corollary 1. For $g \in St(3)$ holds

$$\sum_{i,j,k\in\{0,1\}} \ell_S(g_{i,j,k}) \leqslant \frac{3}{4} \ell_S(g) + 8.$$

3 The group G has a subexponential growth

Lemma 2. Let G be a group generated by a finite set S. Suppose that G_0 is a subgroup of finite index m in G. We consider the growth function of G with respect to S,

$$\beta(k) = |\{g \in G \,|\, \ell_S(g) \leqslant k\}|$$

and the relative growth function of G_0 with respect to S,

$$\beta_0(k) = |\{g \in G_0 \mid \ell_S(g) \leqslant k\}|.$$

Then

$$\beta(k) \leqslant m\beta_0(k+m-1).$$

Theorem (Grigorchuk). The group G has a subexponential growth.

Proof. For $G_0 = \operatorname{St}(3)$ we have $m = |G: G_0| = 2^7$. We denote

$$\omega = \lim_{n \to \infty} \beta(n)^{1/n}.$$

It suffices to show that $\omega = 1$. Let $\epsilon > 0$. Then there exists C > 0 such that

$$\beta(n) \leqslant C \cdot (\omega + \epsilon)^n$$

for every $n \in \mathbb{N}$. Note that any $g \in St(3)$ is completely determined by the induced automorphisms $g_{i,j,k}$, where i, j, k run over $\{0, 1\}$. From Corollary 1 we deduce

$$\beta_{0}(n) \leq \sum_{\substack{n_{1}+\dots+n_{8} \leq \frac{3}{4}n+8 \\ \leq C^{8}(\omega+\epsilon)^{\frac{3}{4}n+8}P(n),}} \beta(n_{1})\beta(n_{2})\dots\beta(n_{8}) \leq C^{8}(\omega+\epsilon)^{\frac{3}{4}n+8}\sum_{\substack{n_{1}+\dots+n_{8} \leq \frac{3}{4}n+8 \\ \leq C^{8}(\omega+\epsilon)^{\frac{3}{4}n+8}P(n),} (!)$$

where P(n) is a polynomial of degree 9. By Lemma 2, we have $\beta(n) \leq 2^7 \cdot \beta_0(n+2^7-1)$. Using (!), we deduce

$$\omega = \lim_{n \to \infty} \beta(n)^{1/n} = (\omega + \epsilon)^{\frac{3}{4}}.$$

Since this holds for any $\epsilon > 0$, we have $\omega \leq \omega^{\frac{3}{4}}$, hence $\omega \leq 1$.