Flache kristallographische Gruppen

1. Isometrien der Ebene

Sei \mathbb{E} die Ebene mit der euklidischen Metrik d.

Definition 1.1. Eine Abbildung $f: \mathbb{E} \to \mathbb{E}$ heißt *Isometrie*, falls

$$d(f(x), f(y)) = d(x, y)$$

für alle $x, y \in \mathbb{E}$ ist.

Alle Isometrien der Ebene $\mathbb E$ bilden eine Gruppe bezüglich Komposition. Diese Gruppe wird mit $\mathbf{Isom}(\mathbb E)$ bezeichnet.

Satz 1.2. Jede Isometrie von \mathbb{E} ist eindeutig bestimmt durch ihre Wirkung auf beliebige drei Punkte von \mathbb{E} , die nicht auf einer Geraden liegen.

Bezeichnung 1.3. Sei O ein Punkt in \mathbb{E} . Wir betrachten folgende Untergruppen von $\mathbf{Isom}(\mathbb{E})$:

 $\mathbf{Isom}^+(\mathbb{E}) = \{ \varphi \in \mathbf{Isom}(\mathbb{E}) \, | \, \varphi \text{ ist orientierungserhaltend} \},$

$$\mathbf{O}(\mathbb{E}) = \{ \varphi \in \mathbf{Isom}(\mathbb{E}) \, | \, \varphi(O) = O \},$$

 $\mathbf{T}(\mathbb{E}) = \{ \varphi \in \mathbf{Isom}(\mathbb{E}) \, | \, \varphi \text{ ist eine Translation} \}.$

Satz 1.4. Es gilt:

- 1) $|\operatorname{Isom}(\mathbb{E}) : \operatorname{Isom}^+(\mathbb{E})| = 2,$
- 2) $\mathbf{Isom}(\mathbb{E}) = \mathbf{T}(\mathbb{E}) \times \mathbf{O}(\mathbb{E}).$

Definition 1.5. Eine *Gleitspiegelung* ist eine Spiegelung an einer Geraden von \mathbb{E} verknüpft mit einer nichttrivialen Translation parallel zu dieser Geraden.

Lemma 1.6. Sei s eine Spiegelung und sei t eine Translation. Dann ist st eine Spiegelung oder eine Gleitspiegelung.

Satz 1.7. Sei $\varphi \in \mathbf{Isom}(\mathbb{E})$.

- Besitzt φ einen Fixpunkt, so ist φ eine Rotation oder eine Spiegelung.
- \bullet Besitzt φ keinen Fixpunkt, so ist φ eine Translation oder eine Gleitspiegelung.

Insbesondere gibt es nur 4 Sorten von Isometrien der Ebene: Rotationen, Translationen, Spiegelungen, Gleitspiegelungen:

$$\mathbf{Isom}(\mathbb{E}) = R \cup T \cup SP \cup GSP.$$

Dabei ist $R \cap T = \{id\}.$

Lemma 1.8. Es gilt:

- 1) Seien s_1 und s_2 zwei Spiegelungen mit den Achsen l_1 und l_2 . Ist $l_1 \parallel l_2$, dann ist s_1s_2 eine Translation. Ist $l_1 \not\parallel l_2$, dann ist s_1s_2 eine Rotation.
- 2) Seien r_1 und r_2 zwei Rotationen mit dem Rotationswinkel¹ α_1 und α_2 . Sei α die Summe von α_1 und α_2 modulo 2π .

Ist $\alpha = 0$, dann ist $r_1 r_2$ eine Translation.

Ist $\alpha \neq 0$, dann ist r_1r_2 eine Rotation mit dem Rotationswinkel α .

2. Diskrete Untergruppen von Isom (\mathbb{E})

Definition 2.1. Sei G eine Untergruppe von **Isom** (\mathbb{E}). Für jeden Punkt $x \in \mathbb{E}$ heißt die Menge

$$G(x) := \{g(x) \mid g \in G\}$$

G-Bahn von x.

Für $x \in \mathbb{E}$ und r > 0 sei $B_x(r)$ die Scheibe in \mathbb{E} mit Zentrum x und Radius r.

Definition 2.2. Eine Untergruppe G von **Isom** (\mathbb{E}) heißt diskret, wenn eine der folgenden äquivalenten Aussagen erfüllt ist:

- 1) Für jeden Punkt $x \in \mathbb{E}$ existiert ein r > 0 mit $G(x) \cap B_x(r) = \{x\}$.
- 2) Für jeden Punkt $x \in \mathbb{E}$ besitzt G(x) keinen Akkumulationspunkt.

Beispiel.

- a) Sei R_{α} eine Rotation um einen Punkt um α Grad. Dann ist die Gruppe $\langle R_{\alpha} \rangle$ diskret genau dann, wenn α eine rationale Zahl ist.
- b) Sei T_{α} eine Translation um die Länge α in der horizontalen Richtung. Dann ist die Gruppe $\langle T_{\alpha} \rangle$ für jedes α diskret, aber die Gruppe $\langle T_1, T_{\sqrt{2}} \rangle$ nicht.

Lemma 2.3. Sei G eine diskrete Untergruppe der Translationsgruppe $\mathbf{T}(\mathbb{E})$. Für jeden Punkt $x \in \mathbb{E}$ und jede Teilmenge $G_1 \subseteq G \setminus \{1\}$ existiert ein $g \in G_1$ mit

$$d(x,g(x)) = \min_{g_1 \in G_1} d(x,g_1(x)) > 0.$$

Satz 2.4. Sei G eine diskrete Untergruppe von **Isom** (\mathbb{E}). Dann ist

$$G \cap \mathbf{T}(\mathbb{E}) \cong \mathbb{Z}^r$$

mit r = 0, 1, oder 2.

¹Der Winkel wird entsprechend dem Uhrsinnzeiger gemessen.

Skizze des Beweises. Wir bezeichnen $T := G \cap \mathbf{T}(\mathbb{E})$. Dann ist T diskret, weil G diskret ist. Nehmen wir an $T \neq \{1\}$. Nach Lemma 2.3 existiert ein $a \in T \setminus \{1\}$ mit

$$d(x, a(x)) = \min_{t \in T \setminus \{1\}} d(x, t(x)) > 0.$$

Wenn $T = \langle a \rangle$ ist, dann sind wir fertig. Nehmen wir an, dass $T \neq \langle a \rangle$ ist. Wir betrachten die Gerade L, die die Menge $\{a^i(x) \mid i \in \mathbb{Z}\}$ enthält. Es ist leicht zu verstehen, dass L keinen Punkt aus der Menge $(T \setminus \langle a \rangle)(x)$ enthällt. Wieder nach Lemma 2.3 existiert ein $b \in T \setminus \langle a \rangle$ mit

$$d(x,b(x)) = \min_{t \in T \setminus \langle a \rangle} d(x,t(x)) > 0.$$

Wir betrachten die Gerade M, die die Menge $\{b^i(x) \mid i \in \mathbb{Z}\}$ enthält. Es gilt $L \cap M = \{x\}$. Dann werden die Geraden $a^i(M)$ und $b^j(L)$ die Ebene \mathbb{E} in Parallelogramme zerteilen. ... Schließlich wird das folgende Lemma benutzt. \square

Lemma 2.5. Sei P ein Punkt in einem Dreieck ABC, so dass $P \neq B, C$ ist. Dann gilt |AP| < |AB| oder |AP| < |AC|.

2.1. Klassifikation von Untergruppen $G \leq \text{Isom}(\mathbb{E})$ mit $G \cap T(\mathbb{E}) = 1$.

Satz 2.6. Ist G eine Untergruppe von $\operatorname{Isom}(\mathbb{E})$ mit $G \cap \mathbf{T}(\mathbb{E}) = 1$, dann existiert ein Punkt $O \in \mathbb{E}$ mit $G(O) = \{O\}$.

Skizze des Beweises. Wenn g eine Gleitspiegelung ist, dann ist g^2 eine nichttriviale Translation. Deswegen besteht G ausschließlich aus Rotationen und Spiegelungen. Angenommen $G \neq \{1\}$.

Fall 1. $G \setminus \{1\}$ besteht nur aus Spiegelungen.

Enthält G nur eine Spiegelung, dann sind wir fertig. Enthällt G mindestens zwei Spiegelungen s_1, s_2 , dann ist s_1s_2 eine Translation oder Rotation (s. Lemma 1.8) und wir bekommen einen Widerspruch.

Fall 2. $G \setminus \{1\}$ besitzt eine Rotation $r \in G$ um einen Punkt O.

Nehmen wir an, dass ein $g \in G$ mit $g(O) \neq O$ existiert. Wir bezeichnen $O_1 = g(O)$. Dann ist grg^{-1} eine Rotation um O_1 und $r^{-1}grg^{-1}$ eine nichttriviale Translation. Ein Widerspruch.

Korollar 2.7. Jede endliche Untergruppe G von $\mathbf{Isom}(\mathbb{E})$ ist entweder zyklisch oder dihedral, also ist $G \cong \mathbb{Z}_n$ oder $G \cong D_n$ für ein $n \in \mathbb{N}$.

Skizze des Beweises. Da G endlich ist, ist $G \cap \mathbf{T}(\mathbb{E}) = 1$. Nach Satz 2.6 existiert ein Punkt O mit $G(O) = \{O\}$. Insbesondere besteht G nur aus Rotationen und Spiegelungen.

Fall 1. G besteht nur aus Rotationen.

Ist $G = \mathbf{1}$, dann sind wir fertig. Ist $G \neq \mathbf{1}$, dann besitzt G eine nichttriviale Rotation mit dem minimalen Rotationswinkel $\alpha > 0$. Dann ist $n := 360/\alpha$ eine natürliche Zahl und es gilt $G \cong \mathbb{Z}_n$.

Fall 2. G besitzt mindestens eine Spiegelung s. Sei G_1 die Untergruppe aller Rotationen aus G. Wie im Fall 1 ist $G_1 \cong \mathbb{Z}_n$ für ein $n \in \mathbb{N}$. Außerdem gilt $G = G_1 \cup sG_1$, also ist $|G:G_1| = 2$. Es ist leicht dann ein reguläres n-Eck P mit $\operatorname{Sym}(P) = G$ zu konstruieren. Dann ist $G \cong D_n$.

Korollar 2.8. Jede diskrete Untergruppe G von **Isom** (\mathbb{E}) mit $G \cap \mathbf{T}(\mathbb{E}) = \mathbf{1}$ ist endlich.

Beweis. Die Gruppe G fixiert einen Punkt O und besteht aus Rotationen und Spiegelungen. Sei G_1 die Untergruppe aller Rotationen von G. Wegen der Diskretheit von G ist G_1 endlich. Da $|G:G_1|\leqslant 2$ ist, ist G auch endlich. \square

2.2. Klassifikation von diskreten Untergruppen $G \leq \text{Isom}(\mathbb{E})$ mit $G \cap \mathbf{T}(\mathbb{E}) = \mathbb{Z}$.

Definition 2.9. Eine diskrete Untergruppe G von **Isom** (\mathbb{E}) heißt *Friesgruppe* (oder *Bandornamentgruppe*), falls folgendes gilt:

$$G \cap \mathbf{T}(\mathbb{E}) \cong \mathbb{Z}$$
.

Satz 2.10. Es gibt genau 7 geometrisch verschiedene Typen von Friesen und es gibt genau 4 Isomorphie-Typen von Friesgruppen (s. Fig. 1).

In folgenden Präsentationen steht t für eine Translation, r für eine Rotation, s für eine Spiegelung und g für eine Gleitspiegelung.

$$F_{1} = \langle t | \rangle$$

$$F_{1}^{(1)} = \langle t, s | s^{2}, s^{-1}ts = t \rangle$$

$$F_{1}^{(2)} = \langle t, s | s^{2}, s^{-1}ts = t^{-1} \rangle$$

$$F_{1}^{(3)} = \langle g | \rangle$$

$$F_{2} = \langle t, r | r^{2}, r^{-1}tr = t^{-1} \rangle$$

$$F_{2}^{(1)} = \langle t, r, s | r^{2}, r^{-1}tr = t^{-1}, s^{2}, s^{-1}ts = t, (sr)^{2} \rangle$$

$$F_{2}^{(2)} = \langle t, r, g | r^{2}, r^{-1}tr = t^{-1}, g^{2} = t, g^{-1}tg = t, (gr)^{2} \rangle.$$

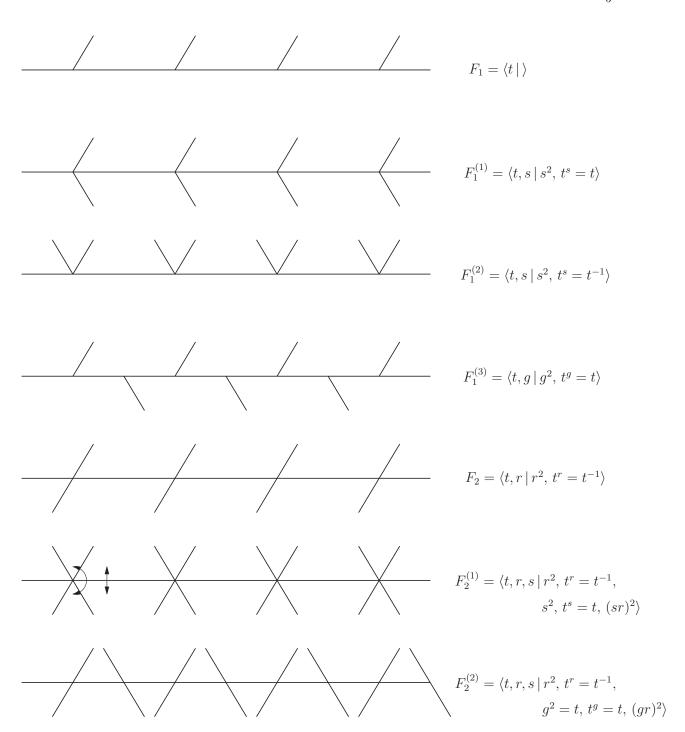


Fig. 1. Bandornamentgruppen

2.3. Klassifikation von diskreten Untergruppen $G\leqslant {
m Isom}\,(\mathbb E)$ mit $G\cap {
m T}(\mathbb E)=\mathbb Z^2$.

Definition 2.11. Eine diskrete Untergruppe G von $\mathbf{Isom}\,(\mathbb{E})$ heißt $\mathit{flache}\,$ kristallographische $\mathit{Gruppe},$ falls folgendes gilt:

$$G \cap \mathbf{T}(\mathbb{E}) \cong \mathbb{Z}^2$$
.

 ${\bf Satz}$ 2.12. Es gibt genau 17 Isomorphie-Typen von flachen kristallographischen Gruppen.