Coxetergruppen II

Übungsblatt 6

Definition. Sei V ein n-dimensionaler \mathbb{R} -Vektorraum. Eine Teilmenge L von V heißt Gitter, falls \mathbb{R} -unabhängige Vektoren v_1, \ldots, v_m in L existieren, so dass

$$L = v_1 \mathbb{Z} + \dots + v_m \mathbb{Z}$$

ist. Ist m = n, dann heißt das Gitter voll.

Lemma 1. Sei L ein Gitter in einem \mathbb{R} -Vektorraum V. Für jedes $\phi \in GL(V)$ mit $\phi(L) = L$ gilt $Spur(\phi) \in \mathbb{Z}$.

Lemma 2. (WS 2013/14) Sei v_1, \ldots, v_n eine \mathbb{Z} -Basis eines vollen Gitters L in V. Wir betrachten die Matrix

$$A = \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & & \vdots \\ v_{n1} & \dots & v_{nn} \end{pmatrix}$$

Die Zahl

$$Vol(L) = |\det(A)|$$

ist unabhängig von der Wahl der \mathbb{Z} -Basis in L.

Aufgabe 1. Wir identifizieren \mathbb{C} mit \mathbb{R}^2 . Sei $\zeta = e^{\frac{2\pi i}{5}}$. Ist

$$\zeta^0 \mathbb{Z} + \zeta^1 \mathbb{Z} + \zeta^2 \mathbb{Z} + \zeta^3 \mathbb{Z} + \zeta^4 \mathbb{Z}$$

ein Gitter in \mathbb{R}^2 ?

Hinweis. Finden Sie eine Lineartransformation ϕ von \mathbb{C} , für die $\phi(L) = L$ gilt. Berechnen Sie Spur (ϕ) . Dabei kann das folgende Kreispolynom nützlich sein

$$\begin{split} \Phi_5 &= \frac{x^5 - 1}{x - 1} \\ &= x^4 + x^3 + x^2 + x + 1 \\ &= \left(x^2 + \frac{1 + \sqrt{5}}{2}x + 1\right) \left(x^2 + \frac{1 - \sqrt{5}}{2}x + 1\right) \\ &= \left((x - \zeta^2)(x - \zeta^3)\right) \left((x - \zeta^1)(x - \zeta^4)\right). \end{split}$$

Aufgabe 2. Jedes Gitter L in \mathbb{R}^n ist diskret.

Hinweis. Zuerst betrachten Sie den Fall, wobei L voll ist und wenden Sie Vol(L) an. Den allemeinen Fall reduzieren Sie zu diesem Spezialfall.

Fortsetzung Seite 2.

Sei e_1, e_2, e_3 die Standardbasis in \mathbb{R}^3 . Aus den Übungsblättern 1-4 zum Kurs Coxetergruppen (WS 2013/14) wissen wir folgendes:

1) Das System

$$\Psi := \{c_i e_i + c_j e_j \mid i, j \in \{1, 2, 3\}, i \neq j, c_i, c_j \in \{-1, 1\}\}.$$

ist ein Wurzelsystem in \mathbb{R}^3 .

2) In Ψ gibt es ein einfaches System $\Delta = \{\alpha_1, \alpha_2, \alpha_3\}$ mit

$$\alpha_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

- 3) Wir bezeichnen $s_i := s_{\alpha_i}$. Dann gilt $W = W_{\Psi} = W_{\Delta} = \langle s_1, s_2, s_3 \rangle \cong S_4$.
- 4) Der Coxeter-Graph des Coxeter-Paars $(W, \{s_1, s_2, s_3\})$ ist

$$\alpha_1$$
 α_3 α_2

Lesen Sie Abschnitt 6.6 im Kurzskript und denken Sie über das Beispiel daraus nach.

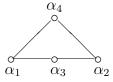
Aufgabe 3. Wir benutzen die Bezeichnungen oben. Sei

$$\widetilde{\alpha} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

- 1) Skizzieren Sie genau den Bereich (siehe das Bild 1 im Kurzskript) zwischen den affinen Ebenen H_{α_1} , H_{α_2} , H_{α_3} und $H_{\tilde{\alpha},1}$.
- 2) Der Bereich ist ein Tetraheder mit 4 Wänden. Berechnen Sie die Winkel zwischen jedem Paar der Wände dieses Bereichs.
 - 3) Sei $s_4 = s_{\tilde{\alpha},1}$. Man kann beweisen, dass die mit W assoziierte affine Gruppe ist:

$$W_a = \langle s_1, s_2, s_3, s_4 \rangle.$$

Überprüfen Sie die 6 Relationen der Sorte $(s_i s_j)^{m_{ij}} = 1$ zwischen verschiedenen Erzeugern s_1, s_2, s_3, s_4 , die in dem Diagramm enthalten sind:



4) Schreiben Sie W_a als ein semidirektes Produkt auf.

Keine weiteren Aufgaben.