Mathematik für Biologen

Prof. Dr. Rüdiger W. Braun

Ruediger.Braun@uni-duesseldorf.de

Heinrich-Heine Universität Düsseldorf

Hinweise

Internetseite zur Vorlesung:

http://blog.ruediger-braun.net

Dort können Sie Materialien und Übungsblätter herunterladen

- Termine der Vorlesung:
 - Mi, 11:15–13:00 in 6J
 - Mo, 18:15–19:00 in 6J

Übungen

- Termin der Übungen
 - Mo 19:15–20:00 in 6J
 - am 19.10. stattdessen Vorlesung
 - am 26.10.: Anfangsbuchstaben A–K, dann 14-tägig
 - am 02.11.: Anfangsbuchstaben L–Z, dann 14-tägig
- Übungsblätter: Ausgabe Montags, Abgabe am darauf folgenden Montag um 16:00 Uhr in einen der Übungsbriefkästen
- Die Lösungen werden bewertet
- Um zur Klausur zugelassen zu werden, benötigen Sie 30% der Übungspunkte. Das gilt nicht für Wiederholungsprüfungen

Klausurtermine

- Das Prüfungsamt hat die Klausurtermine veröffentlicht. Für "Mathematik für Biologen" sind dies
 - 12.02.2010, 10:15
 - 01.04.2010, 10:15
 - 2. Nachklausur in den Sommerferien
- Klausurhilfsmittel
 - Vier handgeschriebene Blätter
 - Taschenrechner

Literaturempfehlungen

- Rudolf, Kuhlisch: Biostatistik
- Timischl: Biostatistik
- Köhler, Schachtel, Voleske: Biostatistik (gibt es auch elektronisch unter

```
http://dx.doi.org/10.1007/978-3-540-37712-2)
```

Henze: Stochastik für Einsteiger (mathematischer als die anderen Titel)

Alle diese Werke enthalten weit mehr Stoff als die Vorlesung.

Übersicht

- Deskriptive Statistik
- Wahrscheinlichkeitstheorie
- Schließende Statistik
- Differentialrechnung
- Integralrechnung

Differential und Integralrechnung werden untergemischt.

Jetzt geht's los

Teil 1

Deskriptive Statistik

Grundbegriffe

Grundgesamtheit (Population)

Merkmal (Variable)

Ausprägung (Realisierung)

- die Elemente der Grundgesamtheit sind Träger von Merkmalen
- die Merkmale haben verschiedene Ausprägungen
- jedes Element der Grundgesamtheit besitzt für jedes Merkmal nur eine Ausprägung

Typen von Merkmalen

quantitatives Merkmal zahlenmäßig erfassbar; Zahlenwerte besitzen Bedeutung

stetiges Merkmal Zahlenwerte können kontinuierlich variieren (z.B. Gewicht)

diskretes Merkmal Skala ohne Zwischenstufen (z.B. Anzahl)

Qualitatives Merkmal alle anderen

Beispiele zu den Grundbegriffen

Grundgesamtheit: alle Bäume einer Baumschule

- Merkmal: Art (qualitatives Merkmal) Ausprägung: Fichte
- Merkmal: Größe (quantitativ stetiges Merkmal) Ausprägung: 3.38 m
- Merkmal: Pflanzdatum (quantitativ diskretes Merkmal) Ausprägung: 9.10.2003

Stichproben

- Eine Stichprobe ist eine zufällig gewonnene Teilmenge aus der zu untersuchenden Grundgesamtheit
- Der Stichprobenumfang ist die Anzahl der Elemente in der Stichprobe
- Die Daten sind die beobachteten Ausprägungen des Merkmals bzw. der Merkmale
- Die Erfassung der Daten geschieht in der Urliste, auch Protokoll genannt

Zufall

- Zufall bedeutet hier: Kein erkennbares Muster
- Zufällige Auswahl ist nicht einfach. Verwende
 - Würfel
 - Zufallsgenerator
 - Zufallstafeln

Versuchsplanung

Folgendes Experiment:

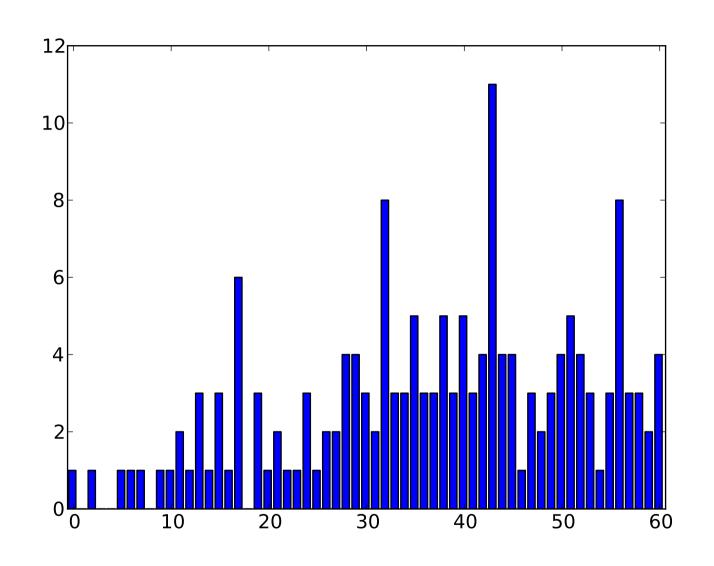
- 25 Fische zufällig ausgewählt
- Fische lernen, in einem Labyrinth Futter zu suchen; Zeit wird gemessen
- die Fische werden an 25 Artgenossen verfüttert
- die Artgenossen sollen im selben Labyrinth Futter suchen; Zeit wird gemessen
- die neuen Fische sind schneller
- Nobelpreis?

Versuchsplanung, Teil 2

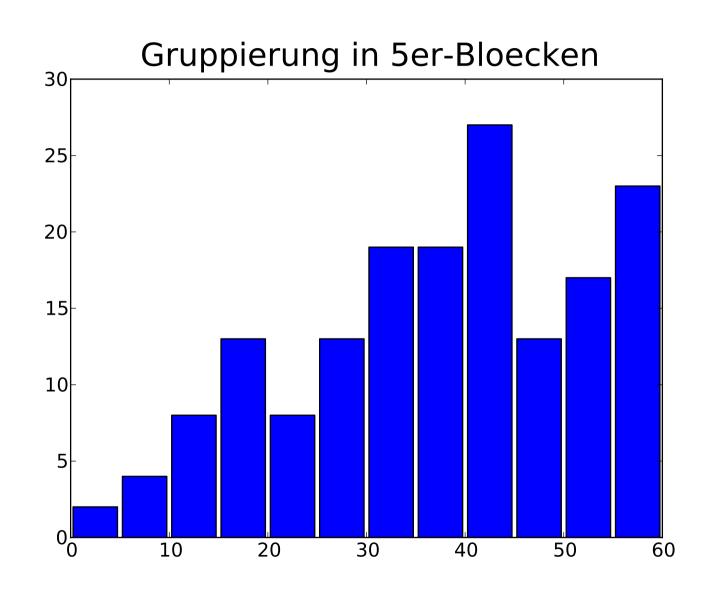
- Die Fische der ersten Gruppe wurden aus einem Aquarium mit 50 Fischen gefangen
- Die übrigen bildeten die zweite Gruppe
- Dadurch entstand ein Bias: Die Fische der zweiten Gruppe waren schneller und pfiffiger
- Fehler in der Versuchsplanung: Auswahl der Stichprobe war nicht zufällig

Urliste

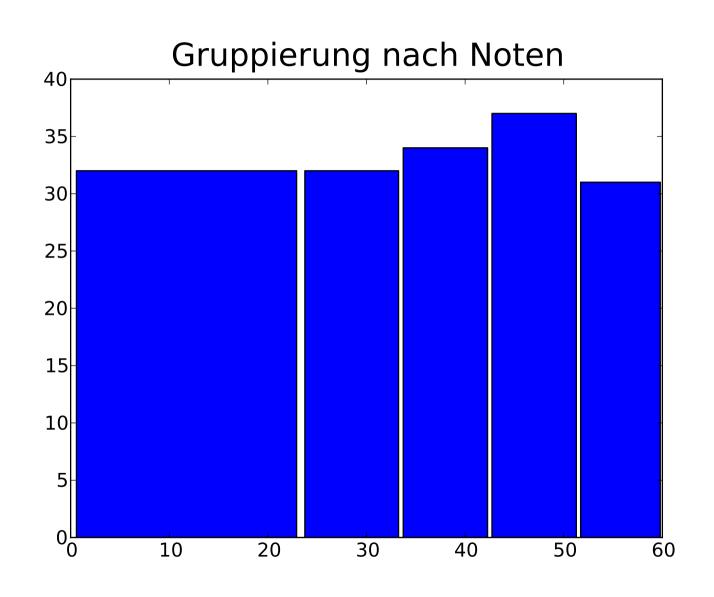
- Die Urliste ist die Liste der bei dem Experiment gewonnenen Daten (auch Rohdaten genannt).
- Die Urliste wird als Tabelle dargestellt.
- Die Urliste ist heilig.

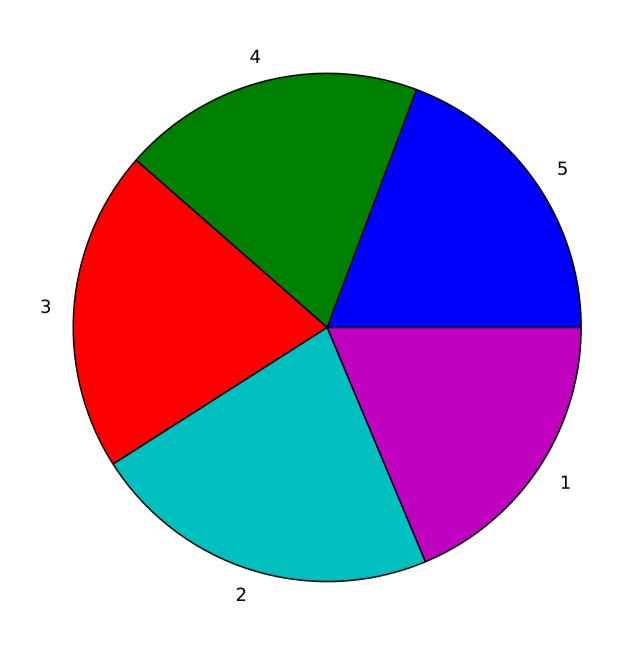

Beispieldaten aus alter Klausur

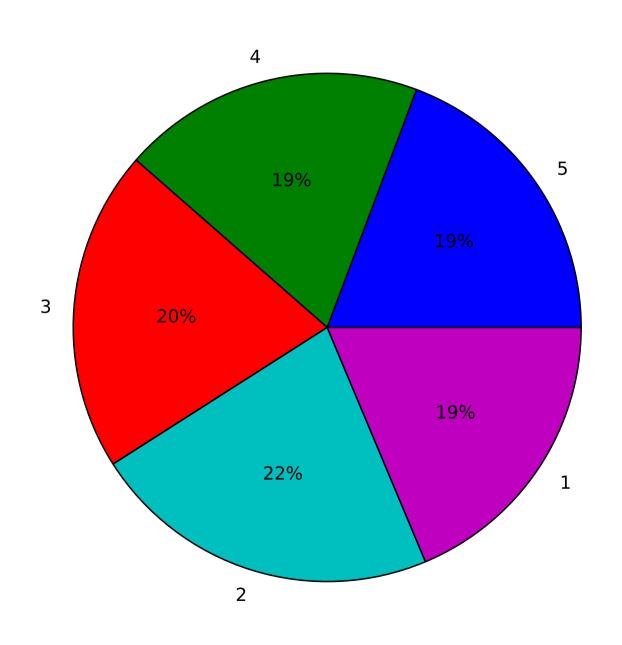
Matr-Nr.	Punkte	Matr-Nr.	Punkte
4243160	13	6716449	57
5374456	44	4281557	45
7170345	42	3046340	57
2607622	51	7723348	39
3082286	0	5077284	55
489020	45	2446842	56
2499076	52	4966092	30
2609079	42	8006611	34
7168582	16	938558	48
317162	13	7914011	32


grafische Darstellung

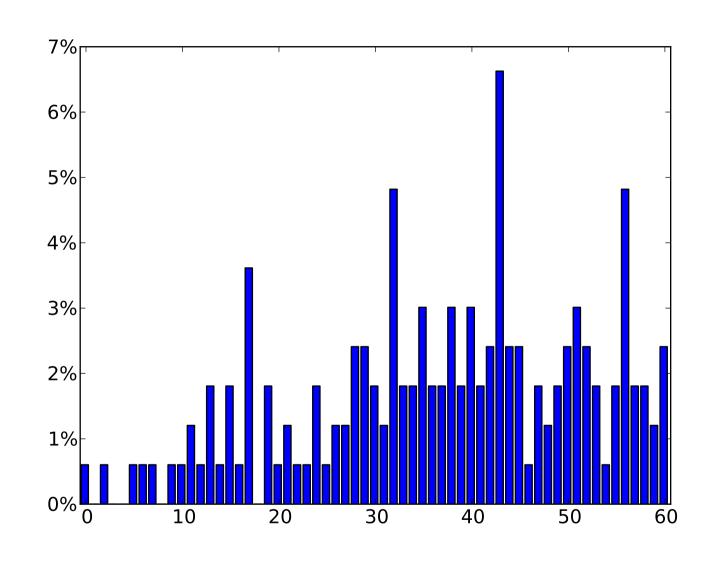
- Balkendiagramm: Für jeden möglichen Wert ein Balken, der die Anzahl anzeigt
- Histogramm: Wie Balkendiagramm, aber Werte werden vorher in Klassen zusammengefasst Bei Stichprobenumfang n Anzahl der Klassen ungefähr \sqrt{n}
- Tortendiagramm: Anteile an der Gesamtpopulation werden grafisch dargestellt

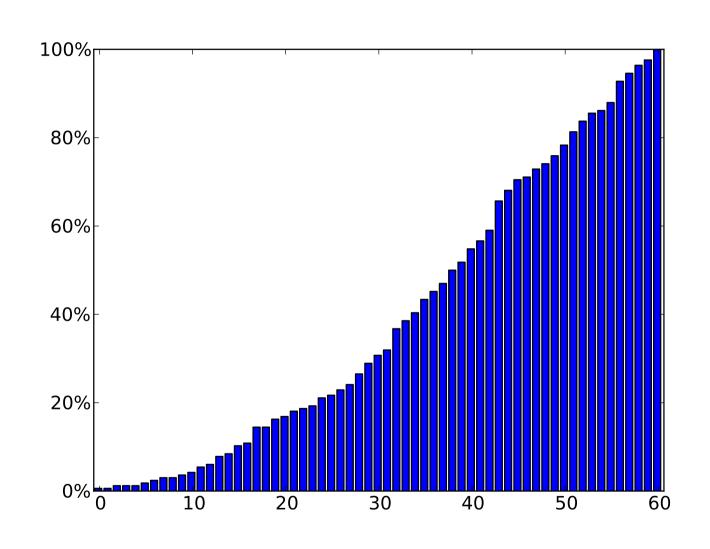

Balkendiagramm im Beispiel


Histogramm im Beispiel


variable Klassenbreite

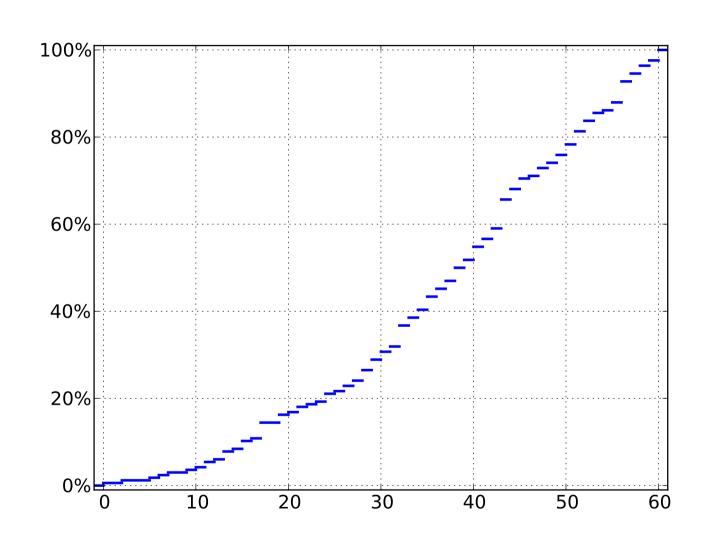
Tortendiagramm im Beispiel


Tortendiagramm mit Prozentangaben


Empirische Häufigkeitsverteilung

- Es liege eine Stichprobe vom Umfang π zu Grunde
- Die absolute Häufigkeit einer Merkmalsausprägung ist gleich der Anzahl der Beobachtungen dieser Ausgänge
- Die relative Häufigkeit ist gleich der absoluten Häufigkeit geteilt durch den Stichprobenumfang

Bsp. zur empirischen Häufigkeitsvert.


Kumulierte empirische Häufigkeitsvert.

Empirische Verteilungsfunktion

- Durch Kumulation der empirischen Häufigkeitsverteilung erhält man die empirische Verteilungsfunktion
- Genauer: Wir untersuchen ein quantitatives Merkmal. Die empirische Verteilungsfunktion F(t) gibt an, für welchen Prozentsatz der Daten sein Wert höchstens gleich t ist

Beispiel für Verteilungsfunktion

