Mathematik für Biologen

Prof. Dr. Rüdiger W. Braun

Heinrich-Heine Universität Düsseldorf

13. Januar 2010

Termine

- ▶ Letzte Vorlesung am 28.01.2010
- ► Letzte Übung am 27.01.2010, und zwar für alle Anfangsbuchstaben

t-Tests für Erwartungswerte

- X_1, \ldots, X_n bezeichnen unabhängig erhobene, gleichartige Messwerte.
- ▶ Verteilungsvoraussetzungen: Alle X_j sind normalverteilt mit unbekanntem Erwartungswert μ und unbekannter Varianz σ^2
- ▶ Ziel: μ soll mit einem festen Referenzwert μ_0 verglichen werden.
- x_j seien Realisierungen der X_j
- ▶ Bestimme arithmetisches Mittel und Stichprobenstreuung

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$
 und $s_x = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{x})^2}$

Die Teststatistik ist

$$t = \frac{\overline{x} - \mu_0}{s_x} \sqrt{n}$$

t-Tests, Fortsetzung

- Das Signifikanzniveau sei α
- Im Gegensatz zum Gauß-Test müssen nun die Quantile der t-Verteilung verwendet werden

$$t_{n-1,1-lpha/2}$$
 beim zweiseitigen Test $t_{n-1,1-lpha}$ bei einem einseitigen Test

Entscheidung:

$$H_0=\{\mu=\mu_0\}$$
: Die Nullhypothese H_0 wird abgelehnt, wenn $|t|>t_{n-1,1-\alpha/2}$ $H_0=\{\mu\geq\mu_0\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t<-t_{n-1,1-\alpha}$ $H_0=\{\mu\leq\mu_0\}$: Die Nullhypothese H_0 wird abgelehnt, wenn $t>t_{n-1,1-\alpha}$

Zurück zum Filterbeispiel

- ▶ Sie haben bei einem Händler für Laborartikel eine Partie Filter bestellt. Sie sind nur dann bereit, die Ware abzunehmen, wenn zum Niveau $\alpha=0.05$ sicher ist, dass der Mittelwert der Porengröße weniger als $3.6\mu m$ beträgt.
- ▶ Sie messen 30 Filter aus und finden folgende Werte

Porengröße in µm	Anzahl der Beobachtungen	
3.0	2	
3.2	4	
3.4	6	
3.6	8	
3.7	8	
4.0	2	

▶ Die Varianz wird durch die empirische Varianz geschätzt.

t-Test im Filterbeispiel

Empirische Varianz

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = 0.0623$$

- ▶ Also s = 0.2496
- Der Wert der Teststatistik ist

$$t = \frac{\overline{x} - \mu_0}{s_x} \cdot \sqrt{30} = -1.756$$

- ▶ Das benötigte Quantil ist $t_{29.0.95} = 1.699$
- ▶ Wegen $t < -t_{29,0.95}$ wird die Nullhypothese auch in diesem Setting abgelehnt.

p-Wert

- ▶ Der p-Wert für den t-Test ist p = 0.045
- ▶ Der p-Wert für den Gauß-Test ist p = 0.040
- Der p-Wert für den Gauß-Test ist etwas besser, weil der Gauß-Test mit mehr Informationen startet.
- ► Tabellen für die t-Verteilungen der verschiedenen Freiheitsgrade liegen meist nicht vor. Daher können p-Werte für die t-Verteilung nur mit entsprechender Software bestimmt werden. (Ich verwende http://www.scipy.org für die Vorlesung.)

Verteilungsannahmen

- ▶ Alle bisherigen Tests verwenden Verteilungsannahmen.
- ► Entweder waren alle Zufallsvariablen normalverteilt oder binomialverteilt.
- In der Praxis ist oft nicht klar, ob diese Voraussetzungen erfüllt sind.
- Der t-Test ist konservativ. Das bedeutet, dass er auch dann noch gute Ergebnisse liefert, wenn die Zufallsvariablen nur annähernd normalverteilt sind.

Q-Q-Plot

- Mit dem Quantil-Quantil-Plot kann man auf graphischem Wege beurteilen, ob Messwerte Realisierungen einer normalverteilten Zufallsvariablen sind.
- Man trägt dazu auf der x-Achse die Quantile der Standardnormalverteilung und auf der y-Achse die Quantile der Beobachtungsdaten auf.
- Wenn diese Punkte annähernd auf einer Geraden liegen, sind die Daten näherungsweise normalverteilt, ansonsten nicht.

Q-Q-Plot: Beispiel

 Wir legen Daten aus dem Beispiel "Blutdrucksenker" zu Grunde

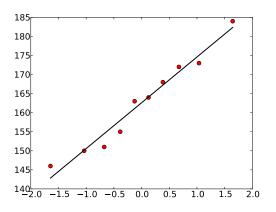
168 184 172 173 150 155 163 164 151 146

- Zur Bestimmung der Quantile ordnen wir sie an
 146 150 151 155 163 164 168 172 173 184
- Wir verteilen n = 10 Punkte gleichmäßig über [0, 1]

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

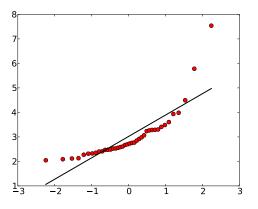
- Für allgemeines n wählt man in [0,1] die Punkte $\frac{j-0.5}{n}$, $j=1,\ldots,n$
- ▶ Der erste Datenpunkt hat dann die Koordinaten $(q_{0.05}, 146) = (-1.645, 146)$, der zweite $(q_{0.15}, 150)$ usw.

Q-Q-Plot



Der Q-Q-Plot der Blutdruckdaten zeigt, dass die Normalverteilungsannahme gerechtfertigt war.

noch ein Q-Q-Plot



Q-Q-Plot von Daten, bei denen die Normalverteilungsannahme nicht gerechtfertigt ist

Abschnitt 3.4

Parameterfreie Tests

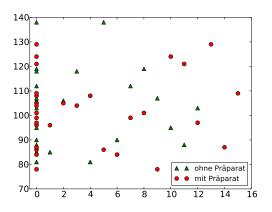
Beispiel: Reaktionszeit unter Alkoholeinfluss

- ▶ Überprüfe, ob die Beeinträchtigung der Reaktionszeit unter Alkoholeinfluss durch Präparat A aufgehoben werden kann.
- Bestimme dazu die Reaktionszeit von 27 Personen unter Alkoholeinfluss, von denen 15 zusätzlich noch das Präparat genommen haben.
- Reaktionszeiten sind nicht normalverteilt. Wir benutzen ein Verfahren, das auf Rängen basiert.
- Seien x₁,...,x₁₂ die Reaktionszeiten ohne und y₁,...,y₁₅ mit Präparat A. Wir ordnen alle 27 Daten der Größe nach an, mit dem kleinsten auf Platz 1. Das sind die Ränge.

Beispieldaten

ohne Präparat A		mit Präparat <i>A</i>	
Zeit in [<i>ms</i>]	Rang	Zeit in [<i>ms</i>]	Rang
85	4	96	10
106	17	105	16
118	22	104	15
81	2	108	19
138	27	86	5
90	8	84	3
112	21	99	12
119	23	101	13
107	18	78	1
95	9	124	25
88	7	121	24
103	14	97	11
		129	26
		87	6
		109	20

Grafik



Daten des Beispiels "Reaktionszeit". Auf der y-Achse kann man die Ränge ablesen.

Bindungen

- ▶ Stimmen mehrere Messwerte überein, so spricht man von *Bindungen.*
- In diesem Fall wird jedem dieser Messwerte als Rangplatz das arithmetische Mittel der fortlaufend vergebenen Rangplätze zugewiesen.
- Wir gehen vorerst von dem Fall aus, dass keine Bindungen auftreten.