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Ultrafilter, non-principal

I: an infinite set, p(/): the power set of /
An ultrafilter on / is a collection F of infinite elements of ©(/) such that

leF
ABeF=ANnBeF
For any A € o(), either A € F or A€ € F. In particular,

® 0e¢F
® AcFandACBCl=BeF

® ®

®

Remark (Literature-wise)

Any proper collection of elements of p(l) is a filter on | if it is closed
under intersection and supersets. In particular, any ultrafilter is a filter
which is maximal (wrt inclusion). The above ultrafilters are called
non-principal.
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Interlude on Pablo’s talk

The language of rings:

['Ring = {+v > '707 1}

® two binary function symbols Lging = {+,—,-,0,1}
® »CRing = {+a P 03 1}
® two constant symbols Lging = {+,—,,0,1}

Definition (quite informal)
A language L is a set of function, relation and constant symbols.

An L-structure can be defined as a triple (M, £, I) consisting of a
non-empty domain M, language £ and an interpretation function /.
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Ultraproduct Construction via Ultrafilters

Settlng L= ERing = {+7 =0, 1}

I: an infinite index set with an ~ (M)ies:family of rings

ultrafilter F on it
L= ﬁag = {+7 _’O}

(M)ier: a family of L-structures v (M)ies:family of abelian gps

Definition

Consider the Cartesian product [[ M; as the set of choice functions

{g: 1 = UM, Viel g(i)e M}
Define ~x on [[ M; by

g~rhs{iel:g(iy=h(i}eF
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Ultraproduct Construction via Ultrafilters

Definition
With T[] M;, F and ~x as above,

The ultraproduct M = [[ M;/ ~#, an L-structure, is defined as follows

® The domain £ = [[ M;/ ~£ is the set of equivalence classes of ~r
in [ M;, denote the eq. cl. by [g] or [g(i) : i €[]
V function symbol f € £, define fM by

®

Mg, -, [gn]) = [FM (g1(i), - .., gali)) s i € 1]
® V relation symbol R € £, define RM by
([g1]’ B [gn]) € RM

{iel: (g, lga()]) € RM} € F
® V constant symbol ¢ € £, define c™ by cM = [cMi € ]
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An Immediate Example - Ultraproduct of Ordered Fields
The language of ordered fields is Lo = {+,—,-,0,1, <} = Lring U {<}
Setting:

{R: i € N}: a countable collection of copies of R, as L,-structure
F: an ultrafilter on N

~ R = HieN R/ ~x
= {[g] : g(i) e R"}

function symbols

Y:iel] constant symbols
el

[g():iell+][h(i):iell=][g(i)+ h(i
[g(i):ielllh(i):iel]l=][g(i).h(i):i

zero [{0,0,0,...}]
relation symbol unity [{1,1,1,...}]

gl <[ e {ieN:g(i)<h()} eF
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Los$’ theorem - Fundamental Theorem of Ultraproducts

Setting: p truein [[M;/ ~x

(M,)ier: a family of L-structures

iff
F: an ultrafilter F on / e
M;)i
©(X) : first order formula in the free (Mi)iei
variables X @ true on a "large” subfamily

Theorem (Jerzy tos, '55)
For a tuple ([g1],---,[gn]) of elements from [[ M;/ ~F,

[IMi/ ~7 = o], [gn])

iff

{iel: Mikop(ali),..., &)} e F
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tos' theorem - Applications

Previously on this talk...

= R=TlienR/ ~5
={le): g(i) € B}

L = Lging = {+,—,+,0,1}

~ (M)ies:family of rings function symbols
o Definition } lg(i) i€ )+ [h(i): i € 1] = [g(i) + h(i) i € 1)
L=_Ly={+—-,0} With [[M;,  and ~r as above, lg(i) =i € 1L.[n(i) i€ 1] = [g(i)-h(i): i € 1]
~ (M;)ies:family of abelian gps
The ultraproduct M = [ M;/ ~, an L-structure} } relation symbol

[e] < (W] & {i € N: g(0) < h(i)} €

constant symbols

zer0 [{0,0,0,.. }]
unity [{1,1,1,...}]

(M;)ic:family of rings

~» L = LRing Is M a ring?

Answer: YES
M =TI M;/ ~F; an Lging-structure
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The ultraproduct of groups/rings/fields is again a group/ring/field.

Proposition

If almost all of the K; are algebraically closed fields, then so is
[Iic; Ki/ ~. for any ultrafilter F.

(Vao, a1,...,a3,)(3x)(an =0V ag + aix+ ...+ a,x" =0)

holds for almost all of K;
L% holds for [T, Ki/ ~#
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tos' theorem - Applications

Proposition

{K;}ici: a collection of fields such that for each prime p, only finitely
many K; have characteristic p.

Then Hie, K;/ ~z, for any ultrafilter F, has characteristic zero.

Consider, for a fixed prime p, (3a)(pa — 1 =0)
{i € I : the statement holds in K;} € F

Los

== the statement holds over [];., Ki/ ~»
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Field of Complex Numbers - External Point of View

Setting: Moreover F*
P={p e N:p prime} ® has characteristic 0.
I
{Fp™® }pep, as Lring-structure ® is algebraically closed.
® has the cardinality of
continuum.

Choose an ultrafilter 7 on P

~ F* = F,%% / ~ 1 is a field
HpE]P’ P / F F* ~ C
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Non-standard Reals - Internal Point of View

Setting:

{R:i € N}: a collection
of copies of R, as an
Lo-structure

Consider the eq. cl. e = [{1,3,3,.. }]

~RE0O<Ee
) 1y _
JF: an ultrafilter on N as{neN:0< n} NerF

Consider R =J[..nR/ ~
Lonsiaer HIEN /~F Moreover R |=e < [{r,r,r,...}], where

Observations: r e R>0
. as{nEN:%<r}e]—"
® This structure R
contains infinitesimal
numbers.
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Non-standard Reals - Internal Point of View

The ultraring R = [[;cyR/ ~7

Ob . ® R does not contain a
servations: largest element
® R contains elements larger than
any real number

Consider (Ix)(Vy)y < x

Consider the eq. cl. w = [{1,2,3,...}] It does not hold in R,
so must be false in R.

~RE[{rrr,...}] <w, for any real
number r.

as{neN:r<n}eF



