Spectral Sequences – Exercise sheet

Daniel Echtler 10th April 2025

Exercise 1 (Short questions). Are the following statements true or false? Give either a short proof or a counterexample.

- 1) Two spectral sequences converging towards the same graded module have to have isomorphic E_{∞} -pages.
- 2) A spectral sequence can converge towards two different (non-isomorphic) terms.
- 3) A spectral sequence whose E_{∞} -page has at most one non-trivial entry $E_{\infty}^{p,q}$ with p+q=n for each $n \in \mathbb{N}$ hat as unique term it converges to.
- 4) If a spectral sequence converges towards zero, E_{∞} has to be trivial.
- 5) If a spectral sequence converges towards zero, E_n has to be trivial for some $n \in \mathbb{N}$.

Hint: It is always useful to examine the extension problems given by convergence.

Exercise 2 (Homological algebra). In this exercise we want to prove some basic statements form homological algebra using spectral sequences. Use the two spectral sequences of a double cochain complex in order to prove the following lemmata.

Four lemmata: Let

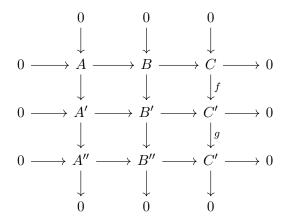
$$\begin{array}{ccccc} A & \stackrel{f}{\longrightarrow} & B & \stackrel{g}{\longrightarrow} & C & \stackrel{h}{\longrightarrow} & D \\ \downarrow_i & & \downarrow_j & & \downarrow_k & & \downarrow_\ell \\ A' & \stackrel{f'}{\longrightarrow} & B' & \stackrel{g'}{\longrightarrow} & C' & \stackrel{h'}{\longrightarrow} & D' \end{array}$$

be a commutative diagram with exact rows.

- 1. If i and k are epimorphisms and ℓ is a monomorphism, prove that j is an epimorphism.
- 2. If j and ℓ are monomorphisms and i is an epimorphism, prove that k is a monomorphism.

Hint: A double complex that is exact in one direction is always nice ...

Nine lemma: Let



be a commutative diagram with exact rows. If the first two columns are exact, prove that also the thrid is exact.

Snake lemma: Let

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C & \longrightarrow & 0 \\
\downarrow^{a} & & \downarrow_{b} & & \downarrow_{c} \\
0 & \longrightarrow & A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C'
\end{array}$$

be a commutative diagram with exact rows. Prove that there is an exact sequence

$$\ker a \longrightarrow \ker b \longrightarrow \ker c \longrightarrow \operatorname{coker} a \longrightarrow \operatorname{coker} b \longrightarrow \operatorname{coker} c.$$

Zig-zag lemma Let

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

be a short exact sequence of cochain complexes. Prove that there exists a long exact sequence

$$\dots \longrightarrow H^k(A) \longrightarrow H^k(B) \longrightarrow H^k(C) \longrightarrow H^{k+1}(A) \longrightarrow \dots$$

Exercise 3 (Cohomology of $\mathbb{C}P^{\infty}$). Apply the Serre spectral sequence to the circle bundle

$$S^1 \longrightarrow S^{2n+1} \longrightarrow \mathbb{C}P^n$$

in order to compute the cohomology of $\mathbb{C}P^n$.

Hint: You will need that $H^k(S^n) \cong \mathbb{Z}$ for k = 0, n and $H^k(S^n) = 0$ for $k \neq 0, n$.

Exercise 4 (five term exact sequence). Let $n \in \mathbb{N}$ and let $E_2^{p,q}$ be a cohomological spectral sequence converging towards H^* . Assume that $E_{\infty}^{p,q} \cong 0$ for all p,q > 0 with p+q=n-1. Prove that there exists a natural five-term exact sequence

$$0 \longrightarrow E_n^{n-1,0} \longrightarrow H^{n-1} \longrightarrow E_n^{0,n-1} \longrightarrow E_n^{n,0} \longrightarrow H^n.$$

Exercise 5 (Grothendieck spectral sequence). Let $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$ be additive, left exact functors between abelian categories such that \mathcal{A} and \mathcal{B} have enough injectives and F takes injective objects to G-acyclic objects. Show that for every object A of \mathcal{A} there is a spectral sequence

$$E_2^{p,q} = (R^p G \circ R^q F)(A) \implies R^{p+q}(G \circ F)(A).$$

Hint: Use a Cartan-Eilenberg resolution.

Exercise 6 (Universal coefficient theorem). Let R be a ring, let C_* be a chain complex of projective R-modules and let M be an R-module.

1. Prove that there is a spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_R^p(H_q(C_*), M) \Longrightarrow H^{p+q}(\operatorname{Hom}_R(C_*, M)).$$

Hint: Take a Hom_R of C_* with a resolution of M to get a double complex. Then proceed as in the construction of the Grothendieck spectral sequence.

2. Deduce the universal coefficient theorem:

Let R be a principal ideal domain. Then for each $n \in \mathbb{N}_{>0}$ there is a short exact sequence

$$0 \longrightarrow \operatorname{Ext}_R^1(H_{n-1}(C_*), M) \longrightarrow H^n(\operatorname{Hom}_R(C_*, M)) \longrightarrow \operatorname{Hom}_R(H_n(C_*), M) \longrightarrow 0.$$

Exercise 7 (Cohomology of the loops space). Let $n \in \mathbb{N}$ and let X be a simply connected space. Prove inductively, that if $H^i(X) = 0$ for all $1 \le i \le n$ we have

$$H^{n+1}(X) \cong H^n(\Omega X),$$

where ΩX denotes the loop space of X.

Hint: Use the path space fibration $PX \to X$ with fiber ΩX and the fact that PX is contractible, i.e., has the cohomology of a point.

Exercise 8 $(\pi_4(S^3))$. In this exercise we want to compute $\pi_4 = \pi_4(S^3)$.

1. First we want to see that S^3 is not a $K(\mathbb{Z},3)$: Use the path space fibration

$$\Omega K(\mathbb{Z},3) \longrightarrow PK(\mathbb{Z},3) \longrightarrow K(\mathbb{Z},3)$$

in order to show

$$H^4\big(K(\mathbb{Z},3)\big)\cong H^5\big(K(\mathbb{Z},3)\big)\cong 0$$
 and $H^6\big(K(\mathbb{Z},3)\big)\cong \mathbb{Z}/2.$

Hint: Using the long exact sequence for homotopy groups one can see $\Omega K(\mathbb{Z},3) = K(\mathbb{Z},2) = \mathbb{C}P^{\infty}$. Also use that the differentials on higher pages a compatible with the ring structure of $H^*(\mathbb{C}P^{\infty})$.

2. From the Postnikov tower of S^3 we obtain a fibration

$$K(\pi_4,4) \longrightarrow X_4 \longrightarrow K(\mathbb{Z},3).$$

Use the homological Serre spectral sequence in order to prove $\pi_4 \cong \mathbb{Z}/2$.

Hint: Using the computation of the the first part and the universal coefficient theorem one can deduce $H_5(K(\mathbb{Z},3)) \cong \mathbb{Z}/2$. Moreover, the space X_4 is obtained from S^3 by killing the homotopy groups in dimensions ≥ 5 by attaching cells of dimension ≥ 6 . Thus the homology of X_4 and S^3 agree in degrees ≤ 5 .

Exercise 9. Formulate and prove the cohomological versions of Exercises 3–7.

Useful Theorems and Definitions

Theorem (Cartan-Eilenberg resolution). Let \mathcal{A} be an abelian category and let $(K^p)_{p\in\mathbb{N}}$ be a cochain complex. A Cartan-Eilenberg resolution of K^* is given by a double complex $(I^{p,q})_{p,q\in\mathbb{N}}$ and a morphism of complexes $\varepsilon\colon K^*\to I^{*,0}$ with the following properties:

- The complex $I^{p,*}$ is an injective resolution of K^p .
- The complex $\ker(d^{p,*})$ is an injective resolution of $\ker(d^p_K)$.
- The complex $\operatorname{im}(d^{p,*})$ is an injective resolution of $\operatorname{im}(d^p_K)$.
- The complex $H^p(I^{*,*}, d_v)$ is an injective resolution of $H^p(K^*)$.

Some of the above exercises are of topological flavour. Thus some notions from algebraic topology will be useful. For example the following (simplified version) of the *Serre spectral sequence*:

Theorem (Serre spectral sequence). Let $p: E \to B$ be a fibration with simply connected base B and connected fiber F. Then there exists a spectral sequence

$$E_2^{p,q} = H^p(B; H^q(F)) \Longrightarrow H^{p+q}(E).$$

Here $H^*(\cdot)$ denotes singular cohomology (possibly with coefficients).

Also the notion of Eilenberg-MacLane spaces and of Postnikov towers will be needed.

Definition (Eilenberg-MacLane space). Let $n \in \mathbb{N}_{>0}$ and let G be a group (which is abelian if n > 1). Then an *Eilenberg-MacLane space of type* K(G, n) is a connected topological space X such that

$$\pi_k(X) \cong \begin{cases} G & \text{if } k = n \\ 0 & \text{otherwise.} \end{cases}$$

Such Eilenberg-MacLane spaces are unique up to weak homotopy equivalence.

By abuse of notation we usually denote such an Eilenberg-MacLane space by K(G, n).

Definition (Postnikov tower). Let X be a path-connected topological space. A Postnikov tower is an inverse system of spaces

$$\ldots \longrightarrow X_n \xrightarrow{p_n} X_{n-1} \xrightarrow{p_{n-1}} \ldots \xrightarrow{p_2} X_1 \xrightarrow{p_1} \{*\}$$

with a sequence of maps $\varphi_n \colon X \to X_n$ compatible with the inverse system such that

- 1. The map φ_n induces an isomorphism $\pi_i(X) \to \pi_i(X_n)$ for every $i \leq n$.
- 2. $\pi_i(X_n) = 0 \text{ for } i > n$.
- 3. Each map $p_n \colon X_n \to X_{n-1}$ is a fibration.

Combined these conditions also give that the fiber F_n of p_n is a $K(\pi_n(X), n)$. It can be proven that Postnikov tower exist for every path-connected space.

Theorem (Hurewicz theorem). Let X be a path connected topological space. Then there is an isomorphism

$$(\pi_1(X))^{ab} \cong H_1(X).$$

Moreover, if $n \in \mathbb{N}_{>1}$ and X is n-connected, i.e., $\pi_i(X) \cong 0$ for all $i \leq n$, there is an isomorphism

$$\pi_{n+1}(X) \cong H_{n+1}(X).$$

Remark (proving Hurewicz). Using the homological version of Exercise 7 together with the long exact sequence of homotopy groups one can give a proof of the Hurewicz theorem.