
Spectral Sequences – Exercise solutions
Daniel Echtler 10th April 2025

Exercise 1 (Short questions). Are the following statements true or false? Give either a
short proof or a counterexample.

1) Two spectral sequences converging towards the same graded module have to have
isomorphic E∞-pages.

2) A spectral sequence can converge towards two different (non-isomorphic) terms.

3) A spectral sequence whose E∞-page has at most one non-trivial entry Ep,q
∞ with

p+ q = n for each n ∈ N hat as unique term it converges to.

4) If a spectral sequence converges towards zero, E∞ has to be trivial.

5) If a spectral sequence converges towards zero, En has to be trivial for some n ∈ N.

Hint: It is always useful to examine the extension problems given by convergence.

Solution:

1) This statement is false: Consider the following two spectral sequences:

p

q

E2

Z

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

p

q

E2

Z0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

They are both degenerate and it is easy to see that they converge towards the same
term.

2) This is true: Consider the following spectral sequence
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p

q

E2

Z

Z/2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

In this case convergence towards H∗ only asks for the existence of a short exact
sequence

0 −→ Z −→ H1 −→ Z/2 −→ 0.

However there are at least two different such sequences:

0 −→ Z ·2−→ Z −→ Z/2 −→ 0 and 0 −→ Z −→ Z× Z/2 −→ Z/2 −→ 0.

3) This is also true: Converging towards H∗ is given by the extension problems

0 0 FnHn En,0
∞ 0

0 FnHn Fn−1Hn En−1,1
∞ 0

...

0 F 2Hn F 1Hn E1,n−1
∞ 0

0 F 1Hn Hn E0,n
∞ 0.

If there is only one non-trivial term Ep,q
∞ with p + q = n, all of these extension

problems become trivial and the only solution is given by Hn ∼= Ep,q
∞ .

4) This is again true: All of the extension problems given by convergence are of the
form

0 −→ 0 −→ 0 −→ Ep,q
∞ −→ 0.

Thus all entries of the E∞-page need to be trivial.

5) This is again false: Consider the spectral sequence with

E0,2n−1
2 = En,n

2 = Z for all n ∈ N>1 and Ep,q
2 = 0 otherwise.

We set all of the differentials to be trivial, except for

d0,2n−1
n : E0,2n−1

n −→ En,n
n ,

2



which should be the identity (or any isomorphism). Then the terms at position
(0, 2n−1) and (n, n) will vanish on the (n+1)-th page, and thus E∞ = 0. However
on the n-th page En,n

n will always be non-trivial.
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Exercise 2 (Homological algebra). In this exercise we want to prove some basic state-
ments form homological algebra using spectral sequences. Use the two spectral sequences
of a double cochain complex in order to prove the following lemmata.

Four lemmata: Let
A B C D

A′ B′ C ′ D′

f

i

g

j

h

k `

f ′ g′ h′

be a commutative diagram with exact rows.
1. If i and k are epimorphisms and ` is a monomorphism, prove that j is an

epimorphism.
2. If j and ` are monomorphisms and i is an epimorphism, prove that k is a

monomorphism.
Hint: A double complex that is exact in one direction is always nice ...

Nine lemma: Let
0 0 0

0 A B C 0

0 A′ B′ C ′ 0

0 A′′ B′′ C ′ 0

0 0 0

f

g

be a commutative diagram with exact rows. If the first two columns are exact,
prove that also the thrid is exact.

Snake lemma: Let
A B C 0

0 A′ B′ C ′

f

a

g

b c

f ′ g′

be a commutative diagram with exact rows. Prove that there is an exact sequence

ker a −→ ker b −→ ker c −→ coker a −→ coker b −→ coker c.

Zig-zag lemma Let
0 −→ A −→ B −→ C −→ 0
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be a short exact sequence of cochain complexes. Prove that there exists a long
exact sequence

. . . −→ Hk(A) −→ Hk(B) −→ Hk(C) −→ Hk+1(A) −→ . . .

Solution:

• We consider the two spectral sequences associated to the double complex (up to
signs of the differentials)

ker f ′ A′ B′ C ′ D′ cokerh′

ker f A B C D cokerh

f ′ g′ h′

f

i

g

j

h

k `

Since by construction the rows are exact, the spectral sequence obtained by taking
the horizontal differentials first turns out to be trivial on the first page. The second
spectral sequence, taking the vertical differentials, has as first page

p

q

E1

ker i ker j ker k ker `

coker i coker j coker k coker `

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1. In the case that i and k are epimorphisms and ` is a monomorphism the first
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page looks as follows:

p

q

E1

ker i ker j ker k 0

0 coker j 0 coker `

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Thus every differential involving the entry coker j has to be trivial. But as
the spectral sequence converges towards 0 the E∞-page needs to be trivial.
Hence coker j needs to be trivial, i.e. j is an epimorphism.

2. In the case that j and ` are monomorphisms and i is an epimorphism the first
page looks as follows:

p

q

E1

ker i 0 ker k 0

0 coker j coker k coker `

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

This time every differential involving ker k is trivial. Thus ker k = 0, so k is a
monomorphism.
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• We consider the spectral sequence associated to the double complex

0 0 0

0 A′′ B′′ C ′′ 0

0 A′ B′ C ′ 0

0 A B C 0

0 0 0

g

f

As before we obtain two spectral sequences. Since the complex is exact in the
horizontal direction they both converge towards zero. The spectral sequence taking
the vertical differentials first has as first page

p

q

E1

coker g

ker g�im f

ker f

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

as the first two columns are exact. As all differentials on this and all higher pages
are trivial, this is also the E∞-page. But as the spectral sequence converges towards
zero we obtain that the three terms have to be trivial, and thus the last column is
exact as well.

• We consider the spectral sequence associated to the double complex

0 A′ B′ C ′ coker g′

ker f A B C 0

f ′ g′

f

a

g

b c
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As in the previous part the horizontal cohomology is trivial, thus the two spectral
sequences converge to zero. The first page of the spectral sequence obtained by
taking the vertical differentials first is

p

q

E1

ker f ker a ker b ker c

coker a coker b coker c coker g

i

p

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

As all higher differentials are trivial and the spectral sequence converges toward 0,
the second page looks like

p

q

E2

coker i

ker p
d2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

On the one hand this gives that the sequences

0 ker p coker a coker b coker c

and
ker a ker b ker c coker i 0

are exact. On the other hand this give that

d2 : ker p −→ coker i

has to be an isomorphism. Then combining the above two sequences yields the
desired kernel/cokernel sequence.
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• We consider the short exact sequence 0 → A
i→ B

p→ C → 0 of cochain complexes
as a double complex. As previously, the cohomology in horizontal direction is trivial.
Thus the two spectral sequences converge to zero. The spectral sequence obtained
by taking vertical differentials first has as first page

p

q

E1

0

0

0

0

0

H0(A)

H1(A)

H2(A)

H3(A)

H4(A)

H0(B)

H1(B)

H2(B)

H3(B)

H4(B)

H0(C)

H1(C)

H2(C)

H3(C)

H4(C)

0

0

0

0

0

i∗ p∗

i∗ p∗

i∗ p∗

i∗ p∗

i∗ p∗

Then the second page will be

p

q

E2

0

0

0

0

0

ker i∗

ker i∗

ker i∗

ker i∗

ker i∗

0

0

0

0

0

coker p∗

coker p∗

coker p∗

coker p∗

coker p∗

0

0

0

0

0

d2

and all the differentials d2 : ker i∗ → coker p∗ have to be isomorphisms, which allows
us to combine the exact sequences

0 −→ ker i∗ −→ Hn(A) −→ Hn(B) −→ Hn(C) −→ coker p∗ −→ 0

to a long exact sequence.
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Exercise 3 (Cohomology of CP∞). Apply the Serre spectral sequence to the circle
bundle

S1 −→ S2n+1 −→ CPn

in order to compute the cohomology of CPn.
Hint: You will need that Hk(Sn) ∼= Z for k = 0, n and Hk(Sn) = 0 for k 6= 0, n.

Solution: For simplicity we just write Hk instead of Hk(CPn). Applying the Serre
spectral sequence we obtain as second page

p

q

E2

Z

Z

H1

H1

. . .

. . .

. . .

. . .

. . .

H2n

H2n

0

0

0

0

0

0

0

0

0

0

0

0

0

0

where we used that CPn has dimension 2n and thus Hk = 0 for k ≥ 2n+ 1.
As the differentials on all higher pages are all trivial (they either start or end outside

the first two rows), we have E3 = E∞. Moreover, the convergence towards H∗(S2n+1)
gives short exact sequences

0 −→ Ek−1,1
3 −→ Hk(S2n+1) −→ Ek,0

3 −→ 0

for each k ∈ N>1. As S2n+1 has only non-trivial cohomology in degrees 0 and 2n+1, the
only non-trivial entries on E3 can be E0,0

3
∼= Z, E2n,1

3 and E2n+1,0
3 . However we already

know that E2n+1,0
2 = H2n+1(CPn) = 0. Thus also E2n+1,0

3 has to be trivial. So the third
page of our spectral sequence needs to be

p

q

E3

Z

Z

. . .

. . .

. . .

. . .

. . .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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Using

0 = Ek−1,1
3 = ker(dk−1,1

2 )�im(dk−3,2
2 ) = ker(dk−1,1

2 )

we see that dk−1,1
2 needs to be injective for all k ∈ {1, . . . , 2n}. Moreover,

0 = Ek+1,0
3 = ker(dk+1,0

2 )�im(dk−1,1
2 ) =

Hk+1
�im(dk−1,1

2 )

shows that dk−1,1
2 needs to be surjective for all k ∈ {0, . . . , 2n+ 1}. Thus the second

page has to be

p

q

E2

Z

Z

Z

Z

. . .

. . .

∼= ∼= ∼= ∼=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

and so

Hk(CPn) ∼=

{
Z for k ≤ 2n even
0 else.

11



Exercise 4 (five term exact sequence). Let n ∈ N and let Ep,q
2 be a cohomological

spectral sequence converging towards H∗. Assume that Ep,q
∞ ∼= 0 for all p, q > 0 with

p+ q = n− 1. Prove that there exists a natural five-term exact sequence

0 En−1,0
n Hn−1 E0,n−1

n En,0
n Hn.

Solution: Because d0,n−1
n is the last non-trivial differential involving E0,n−1

∗ and En,0
∗ we

have an exact sequence

0 E0,n−1
∞ E0,n−1

n En,0
n En,0

∞ 0.
d0,n−1
n (1)

By the convergence towards Hn we have extension problems

0 0 F 0Hn−1 En−1,0
∞ 0

0 F 0Hn−1 F 1Hn−1 En−2,1
∞ 0

...

0 Fn−2Hn−1 Hn−1 E0,n−1
∞ 0

and the assumption on Ep,q
∞ gives that most of these extension problems degenerate.

Thus we obtain another exact sequence

0 En−1,0
∞ Hn−1 E0,n−1

∞ 0, (2)

where in fact En−1,0
∞ = En−1,0

n . Finally again the the convergence gives extension problems

0 0 F 0Hn En,0
∞ 0

0 F 0Hn F 1Hn En−1,1
∞ 0

...

0 Fn−1Hn Hn E0,n
∞ 0,

where F 0Hn ⊆ Hn. In particular we get the exact sequence

0 En,0
∞ Hn. (3)

Combining the three exact sequences (1), (2) and (3) gives the desired sequence

0 En−1,0
n Hn−1 E0,n−1

n En,0
n Hn.

d0,n−1
n
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Exercise 5 (Grothendieck spectral sequence). Let F : A → B and G : B → C be additive,
left exact functors between abelian categories such that A and B have enough injectives
and F takes injective objects to G-acyclic objects. Show that for every object A of A
there is a spectral sequence

Ep,q
2 = (RpG ◦RqF )(A) =⇒ Rp+q(G ◦ F )(A).

Hint: Use a Cartan-Eilenberg resolution.

Solution: Let A be an object of A, and let (Cp)p∈N be an injective resolution of A. Then(
F (Cp)

)
p∈N is a chain complex whose homology gives the right derived functors RpF (A).

Taking a Cartan-Eilenberg resolution I∗,∗ of F (C∗) an applying the functor G we obtain
a double complex

(
G(Ip,q)

)
p,q∈N.

Associated to this double complex we obtain two spectral sequences. Taking the
vertical differentials first we obtain

vEp,q
1 = Hq

(
G(Ip,∗), dv

)
= RqG

(
F (Cp)

)
,

as Ip,∗ is an injective resolution of F (Cp). By assumption F maps injective objects to
G-acyclic ones, thus we get

vEp,q
1

∼=

{
G
(
F (Cp)

)
if q = 0

0 otherwise

and thus
vEp,q

2
∼=

{
Rp(G ◦ F )(A) if q = 0

0 otherwise.

In particular, this spectral sequence degenerates and converges towards Rp+q(G ◦ F )(A).
On the other hand, taking the horizontal differentials first we get

hEp,q
1 = Hq

(
G(I∗,p), dh

)
∼= G(Zq,p)�G(Bq,p)
∼= G

(
Hq(Ip,∗, dv)

)
,

where we have used, that the short exact sequence

0 −→ im(dp,q+1
v ) −→ ker(dp,qv ) −→ Hq(Ip,∗, dv) −→ 0

is split (all objects are injecitve!), and thus stays exact after applying G. Hence we finally
obtain

hEp,q
2

∼= Hp
(
G
(
Hq(Ip,∗, dv), dh

))
∼= RpG

(
RqF (A)

)
= (RpG ◦RqF )(A),
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as Hq(I∗,∗, dv) is an injective resolution of Hq
(
F (C∗)

)
= RqF (A).

Since both of these spectral sequences converge towards the same term, we obtain the
desired spectral sequence

Ep,q
2 = (RpG ◦RqF )(A) =⇒ Rp+q(G ◦ F )(A).
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Exercise 6 (Universal coefficient theorem). Let R be a ring, let C∗ be a chain complex
of projective R-modules and let M be an R-module.

1. Prove that there is a spectral sequence

Ep,q
2 = ExtpR

(
Hq(C∗),M

)
=⇒ Hp+q

(
HomR(C∗,M)

)
.

Hint: Take a HomR of C∗ with a resolution of M to get a double complex. Then
proceed as in the construction of the Grothendieck spectral sequence.

2. Deduce the universal coefficient theorem:
Let R be a principal ideal domain. Then for each n ∈ N>0 there is a short exact
sequence

0 −→ Ext1R
(
Hn−1(C∗),M

)
−→ Hn

(
HomR(C∗,M)) −→ HomR

(
Hn(C∗),M) −→ 0.

Solution:

1. Taking a injective resolution (I∗) of M we define the double complex HomR(Cp, Iq)p,q∈N
with the obvious differentials (up to sign). As the Cp are projective the complexes
HomR(Cp, I∗) are still exact. Thus the vertical spectral sequence converges trivially
towards HomR(Cp,M). For the other spectral sequence we see that

Ep,q
1

∼= Hq
(
HomR(C∗, Ip)

) ∼= HomR

(
Hq(C∗), Ip)

and thus
Ep,q

2
∼= Extp

(
Hq(C∗),M).

2. For R a principal ideal domain, all Extn≥2
R -terms are trivial. Thus the second page

of the above spectral sequence has only two non-trivial columns: HomR

(
H∗(C),M

)
as the zeroth column and Ext1R

(
H∗(C),M

)
as the first column. As all differentials

fall outside this two column band this is also the E∞-page. Then convergence
towards Hn

(
Hom(C∗,M)

)
gives the desired short exact sequences.
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Exercise 7 (Cohomology of the loops space). Let n ∈ N and let X be a simply connected
space. Prove inductively, that if H i(X) = 0 for all 1 ≤ i ≤ n we have

Hn+1(X) ∼= Hn(ΩX),

where ΩX denotes the loop space of X.
Hint: Use the path space fibration PX → X with fiber ΩX and the fact that PX is
contractible, i.e., has the cohomology of a point.

Solution: Applying the Serre spectral sequence to the path space fibration we obtain a
spectral sequence

Ep,q
2 = Hp

(
X;Hq(ΩX)

)
=⇒ Hp+q(PX) ∼=

{
Z if p+ q = 0

0 esle.

Since X is simply connected, ΩX is path connected. Thus

Ep,0
2

∼= Hp(X) and E0,q
2

∼= Hq(ΩX).

Now for the base case n = 1 the second page of the spectral sequence is

p

q

E2

Z 0 H2(X) H3(X) H4(X)

H1(ΩX)

H2(ΩX)

H3(ΩX)

H4(ΩX)

d2

Since PX is contractible all E∞-terms (except for E0,0
∞ ) are trivial. In particular

0 = E0,1
∞

∼= ker d0,12 and 0 = E2,0
∞

∼= H2(X)�im d0,12
,

which shows that d0,12 : H1(ΩX) → H2(X) is an isomorphism.
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For the induction step we now assume that H i(X) ∼= 0 for 1 ≤ i ≤ n and that
H i(ΩX) ∼= H i+1(X) ∼= 0 for 1 ≤ i ≤ n− 1. Using the identification

Ep,q
2 = Hp(X;Hq(ΩX))

we obtain that the rows 1, . . . , n− 1 are all trivial. This behaviour also persists on the
higher pages of the spectral sequence.

Then the (n+ 1)-th page looks as follows (here for n = 3)

p

q

E4

Z 0 0 0 H4(X)

0 0 0 0 0

0 0 0 0 0

H3(ΩX)

d4

As before, convergence gives

0 = E0,n
∞

∼= ker d0,nn+1 and 0 = En+1,0
∞

∼= Hn+1(X)�im d0,nn+1
,

which proves that d0,nn+1 : H
n(ΩX) → Hn+1(X) is an isomorphism.
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Exercise 8 (π4(S3)). In this exercise we want to compute π4 = π4(S
3).

1. First we want to see that S3 is not a K(Z, 3): Use the path space fibration

ΩK(Z, 3) −→ PK(Z, 3) −→ K(Z, 3)

in order to show

H4
(
K(Z, 3)

) ∼= H5
(
K(Z, 3)

) ∼= 0 and H6
(
K(Z, 3)

) ∼= Z/2.

Hint: Using the long exact sequence for homotopy groups one can see ΩK(Z, 3) =
K(Z, 2) = CP∞. Also use that the differentials on higher pages a compatible with
the ring structure of H∗(CP∞).

2. From the Postnikov tower of S3 we obtain a fibration

K(π4, 4) −→ X4 −→ K(Z, 3).

Use the homological Serre spectral sequence in order to prove π4 ∼= Z/2.
Hint: Using the computation of the the first part and the universal coefficient
theorem one can deduce H5

(
K(Z, 3)

) ∼= Z/2. Moreover, the space X4 is obtained
from S3 by killing the homotopy groups in dimensions ≥ 5 by attaching cells of
dimension ≥ 6. Thus the homology of X4 and S3 agree in degrees ≤ 5.

Solution:
1. Applying the Serre spectral sequence gives

Ep,q
2 = Hp

(
K(Z, 3);Hq(CP∞)

)
=⇒ Hp+q

(
PK(Z, 3)

) ∼= Hp+q({∗}).

Using Hurewicz and the universal coefficient theorem we can identify the second
page with

p

q

E3

Z

Z〈X〉

Z〈X2〉

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Z

Z〈X〉 ⊗ Z

Z〈X2〉 ⊗ Z

0

0

0

0

0

0

A

A

A

B

B

B

C

C

C

d0,43

d3,23d0,23
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where A ∼= H4
(
K(Z, 3)

)
, B ∼= H5

(
K(Z, 3)

)
and C ∼= H6

(
K(Z, 3)

)
. Because of the

direciton of the differentials this is also the third page.
Since the spectral sequence converges towards the homology of a contractible space,
the E∞-page is trivial, except for E0,0

∞ . As all differentials involving A are trivial,
we get A ∼= 0. Now let us investigate the differentials of the third page a bit more.
We know that H∗(CP∞) ∼= Z[X] where degX = 2. Because E0,2

∞ = E3,0
∞ = 0 we

get that d0,23 has to be an isomorphism. In particular it sends the generator X to a
generator a of Z.
As d0,43 and d3,23 are the last non-trivial differentials involving the entries at (3, 2)
and (6, 0) we obtain that

Z〈X2〉 Z〈X〉 ⊗ Z C 0
d0,43 d3,23

is exact. Using that d3 is compatible with the ring structure (i.e. is a derivation)
we get

d0,42 (X2) = 2X ⊗ d0,22 (X) = 2X ⊗ a.

In particular we get that d0,22 is injective and that the sequnece above is a actually
a short exact sequence

0 Z Z C 0.2·

Hence C ∼= Z/2.
Finally as d0,22 is injective we have E0,2

4 = 0. So also all higher differentials involving
B are trivial and thus B ∼= 0.

2. The homological Serre spectral sequence gives

E2
p,q = Hp

(
K(Z, 3);Hq

(
K(π4, 4)

))
=⇒ Hp+q(X4).
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Using Hurewicz and the (homological) universal coefficient theorem we get

p

q

E2

Z 0 0 Z Z/2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

π4

The differential
d55,0 : Z/2 −→ π4

is the only non-trivial differential involving the entries at (0, 4) and (5, 0). Since
H4(X4) ∼= H5(X4) ∼= 0 we obtain that this differential has to be an isomorphism,
so π4 ∼= Z/2.
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