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Introduction

Bounded cohomology is a variant of singular cohomology where instead of all
cocycles only uniformly bounded cocycles are considered. It was first introduced
by Johnson [12] in order to study Banach algebras. Only later on when Gromov [8]
extended the theory to topological spaces, and proved many of its fundamental
properties, it developed into its own area of research with applications in geometry
and group theory. Both Ivanov [10] and Noskov [20] further generalised the theory
by considering twisted coefficients. Moreover, Ivanov gave a description of bounded
cohomology using methods from homological algebra.

One very powerful tool for the computation of (co)homology are spectral se-
quences. They where invented by Leray [14, 15] during the second world war and
then further developed by Koszul [13] and Cartan [4, 5].

This minicourse is intended as an introduction to spectral sequences with a
special consideration of spectral sequences in bounded cohomology. Since it is/was
given as part of the International young seminar on Bounded Cohomology and
Simplicial Volume.1, where most of the audience is familiar with the theory of
bounded cohomology but not the theory of spectral sequences, we will first spend
some time introducing spectral sequences and giving some examples. Only later on
we will come to the “application” of spectral sequences in bounded cohomology.

One of the result we will see in this course is the construction of the Hochschild-
Serre spectral sequence in bounded cohomology with semi-normed coefficients:

Theorem (Hochschild-Serre spectral sequence in bounded cohomology). Let R be
a normed ring, let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
there exists a cohomological first-quadrant spectral sequence (E∗, d∗) converging to
the bounded cohomology of Γ with coefficients in V

Ep,q2 =⇒ Hp+q
b (Γ;V ).

1Due to the long and unwieldy title of this seminar we henceforth refer to it as the IYSBC-SV.
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Introduction

Moreover, there are “good” cases where we have the identification

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)

for some p, q ∈ N.

The Hochschild-Serre spectral sequence in bounded cohomology was first con-
structed by Noskov [21] for the case of Banach coefficients. Later Monod [18]
generalised the result to work with continuous bounded cohomology.

We will see that this spectral sequence can for example be used to prove the
characterisation of boundedly n-acyclic morphisms by Moraschini and Raptis [19].

The structure of this course In Chapter 1 will first discuss some of the classical
theory of spectral sequences. We begin by defining spectral sequences and the
notion of convergence of first-quadrant spectral sequences. To see how spectral
sequences can helpful, we then continue with some examples of spectral sequences
and their applications. As a last point in this chapter we discuss how spectral
sequences can be constructed out of filtered complexes and double complexes.

Then only in Chapter 2 we discuss the above applications of spectral sequences
to the theory of bounded cohomology.

Prerequisites Since this course is/was given in the context of the IYSBC-SV, we
will not cover any of the basic theory of bounded cohomology. For this we refer
the reader to the book of Frigerio [7].

However, for our introduction on spectral sequences we do not require any special
prerequisites and only use some basic homological algebra.

A few remarks on notation The natural numbers N include 0. All rings are
assumed to have a unit. (Co)chain complexes are, unless stated otherwise, always
assumed to be N-indexed. For a non-empty, path-connected topological space X
we just write π1(X) for “the” fundamental group of X and omit the basepoint.
Similarly, we omit the basepoint in the notation of higher homotopy groups.

A note on literature As the origin of this course is the authors masters thesis
[6] and we will cover a very general case of bounded cohomology with coefficients
in semi-normed modules over normed rings it might occasionally2 happen that
we refer to some results about this very general case of bounded cohomology in
this thesis. However most of these results should also be found in the books of
Frigerio [7] (in the case of normed modules over R or Z) and Monod [18] (in the case
of Banach modules over R or C) and can be adapted without much modification
of the proofs.

2This “might occasionally” should be read as “will definitely”.
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Chapter 1
Spectral sequences

Spectral sequences are a very helpful and powerful tool of homological algebra to
compute some graded module, i.e., a family of modules (Hn)n∈N, most notably the
the (co)homology of a (co)chain complex.

We first introduce the notion of spectral sequences and the convergence of first-
quadrant spectral sequences. In order to see that spectral sequences have indeed
useful applications we will then discuss some examples of spectral sequences and
their applications. Finally we discuss how one can construct spectral sequences
using filtered cochain complexes and double complexes.

Overview of this chapter

1.1 The notion of spectral sequences . . . . . . . . . . . . . . . . . . . 2
1.1.1 Spectral sequences . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Convergence of first-quadrant spectral sequences . . . . . . 6

1.2 Classical examples of spectral sequences . . . . . . . . . . . . . . . 13
1.2.1 The Künneth spectral sequence . . . . . . . . . . . . . . . . 13
1.2.2 The Serre spectral sequence . . . . . . . . . . . . . . . . . . 15
1.2.3 The Hochschild-Serre spectral sequence . . . . . . . . . . . 21

1.3 Constructions of spectral sequences . . . . . . . . . . . . . . . . . . 23
1.3.1 Spectral sequence of a filtered complex . . . . . . . . . . . . 23
1.3.2 Spectral sequences of a double complex . . . . . . . . . . . 31
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1 Spectral sequences

1.1 The notion of spectral sequences
We begin by introducing the notion of spectral sequence of R-modules. Although
we generally define what a spectral sequence is, we restrict our coverage of the
further theory to the case of first-quadrant spectral sequences, which is sufficient
for most applications and greatly reduces the complexity of the theory. The more
general theory is for example studied in the books of McCleary [17], Rotman [23,
Chapter 10], or Weibel [25, Chapter 5], where the latter discusses the most general
case of spectral sequences in abelian categories.

1.1.1 Spectral sequences
Before we come to the definition of spectral sequences we first introduce some
auxiliary definitions.

Definition 1.1.1 (bigraded module, morphism of bigraded modules). Let R be a
ring.

• A family E = (Ep,q)p,q∈Z of R-modules is called a bigraded R-module.
For p, q ∈ Z we call (p, q) the bidegree of Ep,q and p + q the total degree
of Ep,q.

• For two bigraded R-modules E and F a morphism of bigraded R-mod-
ules f : E → F is a family (fp,q : Ep,q → F p,q)p,q∈Z of R-module homomor-
phisms.

• If f : E → F and g : F → G are two morphisms of bigraded R-modules we
define the composition g ◦ f : E → G to be the family

g ◦ f := (gp,q ◦ fp,q : Ep,q → Gp,q)p,q∈Z.

• A morphism of bigraded R-modules f : E → F is called an isomorphism if fp,q
is an isomorphism for each p, q ∈ Z. If there exists an isomorphism f : E → F
we call E and F isomorphic and write E ∼=R F .

Besides morphisms of bigraded modules that keep the bidegree constant we can
also consider morphisms that change the bidegree uniformly. This leads to the
following definition.

Definition 1.1.2 (bigraded morphisms of bigraded modules). Let R be a ring

• Let E,F be bigraded R-modules and let r, s ∈ Z. A bigraded morphism of
bigraded R-modules f : E → F of bidegree (r, s), or bigraded morphism of
bidegree (r, s) for short, is a family

(fp,q : Ep,q → F p+r,q+s)p,q∈Z

2



1.1 The notion of spectral sequences

p

q

E2,0

f2,0

E1,2 E4,2

f4,2

E3,4

Figure 1.1: Visualisation of a bigraded morphism f : E → E of bidegree (−1, 2)

of R-linear morphisms.

• If f : E → F and g : F → G are bigraded morphisms of bidegree (r, s)
and (r′, s′), respectively, we define their composition g ◦ f : E → G to be the
bigraded morphism of bidegree (r + r′, s+ s′) given by the family

(gp+r,q+s ◦ fp,q : Ep,q → Gp+r+r
′,q+s+s′)p,q∈Z.

With this definition morphisms of bigraded modules are simply bigraded mor-
phisms of bidegree (0, 0).

If we are now given a bigraded endomorphism d : E → E of bidegree (r, s) such
that each “line of slope (r, s)”

. . . Ep−r,q−s Ep,q Ep+r,q+s . . .dp−2r,q−2s dp−r,q−s dp,q dp+r,q+s

is a complex we obtain the notion of a differential bigraded module.

Definition 1.1.3 (differential bigraded module). Let R be a ring and let r, s ∈ Z.

• A differential bigraded R-module of bidegree (r, s) is a pair (E, d) of a bigraded
R-module E together with a bigraded morphism d : E → E of bidegree (r, s),
called differential such that d ◦ d = 0, i.e., (d ◦ d)p,q = 0 for all p, q ∈ Z.

• If (E, d) is a differential bigraded R-module of bidegree (r, s) we define its
homology to be the bigraded R-module

H(E, d) :=
(
Hp,q(E, d) := ker dp,q

im dp−r,q−s

)
p,q∈Z

.
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1 Spectral sequences

• For two differential bigraded R-modules (E, dE), (F, dF ) of the same bidegree,
a morphism of differential bigraded R-modules f : (E, dE) → (F, dF ) is a
morphism of bigraded R-modules f : E → F which commutes with the
differentials, i.e., such that

dF ◦ f = f ◦ dE .

By the compatibility of a morphism of differential bigraded modules

f : (E, dE) −→ (F, dF )

with the differentials, it is easy to see that f induces a well-defined morphism of
bigraded modules

H(f) : H(E, dE) −→ H(F, dF ).

Example 1.1.4 (differential bigraded module of bidegree (1, 0)). Let R be a ring
and let (E, d) be a differential bigraded R-module of bidegree (1, 0). Since we
have by definition that dp+1,q ◦ dp,q = 0 for each p, q ∈ Z, each “row” E∗,q turns,
with d∗,q as coboundary operator, into an Z-indexed R-cochain complex.

Conversely if we are given a family
(
(C∗

q , δ
∗
q )
)
q∈Z of Z-indexed R-cochain com-

plexes, we can assemble them into a differential bigraded module of bidegree (1, 0),
such that the rows are given by these cochain complexes, by letting

Ep,q = Cpq and dp,q = δpq .

It is easy to see that the homology of this differential bigraded module is simply
given by the cohomology of the cochain complexes (C∗

q , δ
∗
q ), i.e., that

Hp,q(E, d) = Hp(C∗
q , δ

∗
q ).

In particular we can turn a single R-cochain complex (C∗, δ∗) into a differential
bigraded module of bidegree (1, 0) such that the 0-th row E∗,0 is given by this
cochain complex and all other entries and differentials are trivial.

Similarly we can turn every differential bigraded module of bidegree (−1, 0) into
a family of chain complexes and vice-versa.

We finally come to the definition of a spectral sequence.

Definition 1.1.5 (spectral sequence). Let R be a ring and let a ∈ N. A (coho-
mological) spectral sequence (starting with Ea) consists of a family (Er, dr)r∈N≥a

of differential bigraded R-modules (Er, dr) of bidegree (r, 1 − r) together with
isomorphisms H(Er, dr) ∼=R Er+1 for each r ∈ N≥a.

For r ∈ N≥a we call Er the r-th page of the spectral sequence and the isomor-
phism Er+1

∼=R H(Er, dr) the r-th page-turning isomorphism.
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1.1 The notion of spectral sequences

Usually we will denote a spectral sequence just by the family of (E∗, d∗) of
differential bigraded modules, which, for simplicity, we assume to be N-indexed
instead of N≥a-indexed. However one should keep in mind that the page-turning
isomorphisms are also part of the spectral sequence.

Dual to the notion of a cohomological spectral sequence there is also the notion
of a homological spectral sequence where the differential on the r-th page is
supposed to have bidegree (−r, r−1). We will focus our discussion of the theory to
cohomological spectral sequences, however one can easily obtain the corresponding
definitions and statements for homological spectral sequences by dualizing.

Additionally to the notion of spectral sequences there is also the notion of a
morphism of spectral sequences:

Definition 1.1.6 (morphism of spectral sequences). Let R be a ring and
let (E∗, d∗) and (Ẽ∗, d̃∗) be two spectral sequences. A morphism of spectral
sequences f : (E∗, d∗) → (Ẽ∗, d̃∗) is a family(

fr : (Er, dr) → (Ẽr, d̃r)
)
r∈N

of morphisms of differential bigraded R-modules, that are compatible with the
page-turning isomorphisms, i.e., for each r ∈ N we have a commutative diagram

H(Er, dr) Er+1

H(Ẽr, d̃r) Ẽr+1,

∼=

H(fr) fr+1

∼=

where the horizontal maps are the page-turning isomorphisms.

Example 1.1.7 (spectral sequence of a cochain complex). Let R be a ring and
let C = (C∗, δ∗) be an R-cochain complex. We start with (E1, d1) as the differ-
ential bigraded module of bidegree (1, 0) with (C∗, δ∗) as 0-th row as described
in Example 1.1.4 and want to construct a spectral sequence starting with this
differential bigraded module.

Since we are required to have page-turning isomorphisms Er+1
∼=R H(Er, dr) we

define the second page to be E2 := H(E1, d1), which is as seen in Example 1.1.4
given by the cohomology of (C∗, δ∗) in the 0-th row and trivial in all other entries.
As E2 is supposed to be a differential bigraded module of bidegree (2, 1) and we
only have a single non-trivial row, the differential d2 has to be trivial. Now the
triviality of d2 gives that H(E2, d2) = E2, and thus we define, again with the
page-turning isomorphism in mind, E3 := E2. Again for bidegree reasons we get
that the differential d3 has to be trivial. By repeating this argument inductively
we see that with Er+1 := Er and dr+1 = 0 for r ∈ N≥1 we obtain a spectral
sequence (Er, dr)r≥N≥1

.

5



1 Spectral sequences

p

q

E1

C0 C1 C2 C3 C4
δ0 δ1 δ2 δ3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 1.2: The first page of the spectral sequence described in Example 1.1.7

This example is already an example of a first-quadrant spectral sequence.

Definition 1.1.8 (first-quadrant spectral sequence). Let R be a ring and a ∈ N. A
spectral sequence (E∗, d∗) starting at Ea is called a first-quadrant spectral sequence,
if we have for p, q ∈ Z that Ep,qa = 0 whenever p < 0 or q < 0.

By the page-turning isomorphisms Er+1
∼=R H(Er, dr) we obtain that Ep,qr+1

is always a subquotient of Ep,qr . Thus for ever first-quadrant spectral sequence
(E∗, d∗) we have that Ep,q∗ = 0 whenever p < 0 or q < 0.

1.1.2 Convergence of first-quadrant spectral sequences

We now come to the convergence of spectral sequences. Since the convergence of
general spectral sequences is rather complicated we only discuss the convergence
of first-quadrant spectral sequences.

We begin by noticing that the entries of a first-quadrant spectral sequences
eventually “stabilise”:

Remark 1.1.9 (∞-page of a first-quadrant spectral sequence). Let R be a ring,
let (E∗, d∗) be a first-quadrant spectral sequence and let p, q, r ∈ N. We consider

6



1.1 The notion of spectral sequences

p

q

E2 = E3 = E4 = . . .

H0(C) H1(C) H2(C) H3(C) H4(C)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 1.3: The higher pages of the spectral sequence described in Example 1.1.7

the two differentials involving Ep,qr :

dp,qr : Ep,qr −→ Ep+r,q−r+1
r and dp−r,q+r−1

r : Ep−r,q+r−1
r −→ Ep,qr .

For r ≥ q + 2 we have that the codomain of dp,qr lies outside the first quadrant,
and thus is trivial. Similarly for r ≥ p+ 1 we have that the domain of dp−r,q+r−1

r

lies outside the first quadrant. Thus for r ≥ max {p+ 1, q + 2} both differentials
are trivial and thereby give

Hp,q(Er, dr) = ker dp,qr / im dp−r,q+r−1
r = Ep,qr /0 ∼=R E

p,q
r .

So the page-turning isomorphism gives an isomorphism Ep,qr+1
∼=R E

p,q
r . Hence the

value of Ep,q∗ “stabilises” eventually.
We define Ep,q∞ := Ep,qr0 to be this stable vale, where r0 ∈ N is the smallest value

such that the page-turning isomorphisms induce Ep,qr ∼=R Ep,qr+1 for all r ∈ N≥r0 .
Moreover we call the bigraded R-module

E∞ =
(
Ep,q∞

)
p,q∈Z

the ∞-page of the spectral sequence (E∗, d∗).
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1 Spectral sequences

Example 1.1.10. Let R be a ring, let (C∗, δ∗) be an R-cochain complex and
let (E∗, d∗) be the spectral sequence constructed out of (C∗, δ∗) in Example 1.1.7.
By construction we have that all differentials dr are trivial for r ∈ N≥2. Thus we
have E∞ = E2.

Definition 1.1.11 (filtration). Let R be a ring and let H∗ be a graded R-
module, i.e., a family (Hn)n∈N of R-modules. A decreasing filtration F of H∗ is a
family (F pHn)p∈Z of submodules ofHn, for each n ∈ N, such that F p+1Hn ⊆ F pHn

for each n ∈ N and p ∈ Z.
If H∗ and H̃∗ are two graded R-modules with filtrations F and F̃ respectively,

we call a morphism of graded R-modules f∗ : H∗ → H̃∗, i.e., a family

(fn : Hn −→ H̃n)n∈N

of R-module homomorphisms, compatible with the filtrations F and F̃ if

g(F pHn) ⊆ F̃ pH̃n

for all n ∈ N and p ∈ Z.
Moreover, we call a decreasing filtration F of H∗ canonically bounded if we have

Fn+1Hn = 0 and F 0Hn = Hn for each n ∈ N.

0 = Fn+1Hn ⊆ FnHn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn

Definition 1.1.12 (convergence of a first-quadrant spectral sequence). Let R be
a ring, let (E∗, d∗) be a cohomological first-quadrant spectral sequence and let H∗

be a graded R-module. We say the spectral sequence (E∗, d∗) converges to H∗ if
there exists a canonically bounded decreasing filtration F of H∗ such that

Ep,q∞
∼= F pHp+q/F p+1Hp+q

for all p, q ∈ N. If the spectral sequence (E∗, d∗) starts with Ea we denote the
convergence to H∗ by

Ep,qa =⇒ Hp+q.

Example 1.1.13. Let R be a ring and let (C∗, δ∗) be a R-cochain complex.
Then the spectral sequence (E∗, d∗) constructed out of (C∗, δ∗) in Example 1.1.7
converges towards the cohomology of (C∗, δ∗)

Ep,q1 =⇒ Hp+q(C∗, δ∗).

Let us simply write H∗ instead of H∗(C∗, δ∗). We consider the filtration F of H∗

given by

F pHn =

{
Hn if p ≤ 0

0 if p > 0

8



1.1 The notion of spectral sequences

for p ∈ Z and n ∈ N. This filtration is obviously decreasing and canonically
bounded. Moreover it is easy to see that for p, q ∈ N we have

F pHp+q/F p+1Hp+q ∼=R

{
Hq if p = 0

0 if p > 0,

which agrees with Ep,q∞ as

Ep,q∞ = Ep,q2 =

{
Hq if p = 0

0 if p > 0

by Example 1.1.10.

This example is in fact only one example of a collapsing spectral sequence.

Example 1.1.14 (collapsing spectral sequences). Let R be a ring and let (Er, dr)
be a first-quadrant spectral sequence and let r ∈ N≥2. We say that (Er, dr)
collapses at the r-th page, if Er only has a single row E∗,p

r or column Eq,∗r that is
non-trivial.

Since r ≥ 2 the condition of only having only a single non-trivial row or column
gives that all differential on Er and higher pages are trivial and thus gives E∞ = Er.
Now a similar argument as in Example 1.1.13 can be used to easily show that
such a collapsing spectral sequence converges towards (En−q,qr )n∈N if E∗,q

r is the
non-trivial row of Er, or towards (Ep,n−pr )p∈N if Ep,∗r is the non-trivial column
of Er.

Remark 1.1.15 (extension problems given by convergence). Let R be a ring
and let (E∗, d∗) be a first-quadrant spectral sequence converging to a graded
R-module H∗. Then for n ∈ N there are submodules

0 = Fn+1Hn ⊆ FnHn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn

with
Ep,n−p∞

∼=R F
pHn/F p+1Hn

for all p ∈ {0, . . . , n}. Now we can rewrite these isomorphism as extension problems,
i.e., short exact sequences,

0 Fn+1Hn = 0 FnHn En,0∞ 0

0 FnHn Fn−1Hn En−1,1
∞ 0

...

0 F 1Hn F 0Hn = Hn E0,n
∞ 0.

9



1 Spectral sequences

If all of these extension problems can be solved, we can determine the module Hn.
But even in the case were one can not solve all of these problems one might still
obtain some information about Hn: For example, if all the modules E∗,n−∗

∞ are
finitely generated we can inductively deduce that also the module Hn is finitely
generated.

Now assume we are given a morphism f : (E∗, d∗) → (Ẽ∗, d̃∗) of two first-quadrant
spectral sequences that are both convergent

Ep,q2 =⇒ Hp+q

Ẽp,q2 =⇒ H̃p+q.

Although the morphism f induces a morphism f∞ : E∞ → Ẽ∞ of the ∞-pages,
the convergence of both spectral sequences does not guarantee that f induces a
morphism H∗ → H̃∗.

However, if we are given a morphism of graded modules H∗ → H̃∗ we can say
whether this morphism is compatible with f :

Definition 1.1.16 (morphism of convergent spectral sequences). Let R be a
ring and let (E∗, d∗) and (Ẽ∗, d̃∗) be two first-quadrant spectral sequences con-
vergent towards graded R-modules H∗ and H̃∗, respectively. We call a mor-
phism f : (E∗, d∗) → (Ẽ∗, d̃∗) of spectral sequences and a morphism g∗ : H∗ → H̃∗

of graded R-modules compatible if:

1) There are canonically bounded filtrations F and F̃ of H∗ and H̃∗, respectively,
such that g∗ is compatible with these filtrations.

2) The filtrations F and F̃ witness the convergence of (E∗, d∗) and (Ẽ∗, d̃∗),
respectively.

3) For each n ∈ N and p ∈ {0, . . . , n} the diagram

0 F p+1Hn F pHn Ep,n−p∞ 0

0 F̃ p+1H̃n F̃ pH̃n Ẽp,n−p∞ 0

gn gn fp,n−p
∞

commutes, where the rows are the extension problems of Remark 1.1.15.

If f : (E∗, d∗) → (Ẽ∗, d̃∗) and g∗ : H∗ → H̃∗ are compatible we also say that

Ep,q2 Hp+q

Ẽp,q2 H̃p+q

fp,q2
gp+q

10



1.1 The notion of spectral sequences

commutes.

Proposition 1.1.17 (five-term exact sequence). Let R be a ring and let (E∗, d∗)
be a first-quadrant spectral sequence converging to a graded R-module H∗. Then
we have H0 ∼= E0,0

2 and an exact sequence

0 E1,0
2 H1 E0,1

2 E2,0
2 E2,0

∞ 0,
d0,12

where E2,0
∞ is isomorphic to a submodule of H2.

Moreover, this exact sequence is natural in the following sense: If we are given
compatible morphisms

Ep,q2 Hp+q

Ẽp,q2 H̃p+q

fp,q2
gp+q

we obtain a commutative diagram

0 E1,0
2 H1 E0,1

2 E2,0
2 E2,0

∞ 0

0 Ẽ1,0
2 H̃1 Ẽ0,1

2 Ẽ2,0
2 Ẽ2,0

∞ 0

f1,02
g1

d0,12

f0,12 f2,02 f2,0∞

d′0,12

where the rows are exact.

Proof. Let F be a canonically bounded filtration of H∗ witnessing the convergence
of (E∗, d∗). This filtration gives in particular submodules

0 = F 1H0 ⊆ F 0H0 = H0,

0 = F 2H1 ⊆ F 1H1 ⊆ F 0H1 = H1

and
0 = F 3H2 ⊆ F 2H2 ⊆ F 1H2 ⊆ F 0H2 = H2.

By the convergence we have isomorphisms

E0,0
∞

∼=R F
0H0/F 1H0 ∼=R H

0,

E1,0
∞

∼=R F
1H1/F 2H1 ∼=R F

1H1,

E2,0
∞

∼=R F
2H2/F 3H2 ∼=R F

2H2,

and E0,1
∞

∼=R F
0H1/F 1H1 = H1/F 1H1,

11



1 Spectral sequences

and these isomorphisms give

H0 ∼=R E
0,0
∞

∼=R E
0,0
2 ,

as all differentials involving E0,0
r are trivial for r ≥ 2 (see Remark 1.1.9), that

E2,0
∞

∼=R F
2H2 ⊆ H2

is isomorphic to a submodule of H2 and the exact sequence

0 E1,0
∞ ∼=R F

1H1 H1 E0,1
∞ 0.

Moreover, since the differentials

d−2,2
2 : E−2,2

2 = 0 −→ E0,1
2

and d2,02 : E2,0
2 −→ E4,−1

2 = 0

are trivial the page-turning isomorphisms give

E0,1
3

∼=R ker d0,12 and E2,0
3

∼=R E
2,0
2 / im d0,12 .

So we also obtain the exact sequence

0 E0,1
3 E0,1

2 E2,0
2 E2,0

3 0.
d0,12

Now in our computation in Remark 1.1.9 we have seen that Ep,qr ∼=R E
p,q
∞ whenever

r ≥ max {p+ 1, q + 2}, thus the above two exact sequences can be rewritten as

0 E1,0
∞ ∼=R E

1,0
2 H1 E0,1

∞ 0
ϕ

and

0 E0,1
3

∼=R E
0,1
∞ E0,1

2 E2,0
2 E2,0

∞ ∼=R E
2,0
3 0.

ψ d0,12

By combining these two sequences we obtain the claimed exact sequence

0 E1,0
2 H1 E0,1

2 E2,0
2 E2,0

∞ 0.
ψ◦ϕ d0,12

The naturality follows from the compatibility of f with the morphism g∗, the
differentials and the page-turning isomorphisms.

12
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1.2 Classical examples of spectral sequences

Now that we have introduced the notion of spectral sequences we give some
classical examples of spectral sequences in algebraic topology, group cohomology
and homological algebra.

1.2.1 The Künneth spectral sequence

We begin with an example of a spectral sequence in homological algebra: the
Künneth spectral sequence. This spectral sequence relates the homology of two
chain complexes with the homology of their tensor product.

Definition 1.2.1 (tensor product of chain complexes). Let R be a ring and let C∗
and D∗ be R-chain complexes. Then the tensor product C∗ ⊗D∗ is defined as the
R-chain complex with chain modules

(C∗ ⊗D∗)n :=
⊕
i+j=n

Ci ⊗R Dj

and differentials

d : (C∗ ⊗D∗)n −→ (C∗ ⊗D∗)n−1

Ci ⊗R Dj 3 v ⊗ w 7−→ dCi (v)⊗ w + (−1)i · v ⊗ dDj (w)

for each n ∈ N.

Theorem 1.2.2 (Künneth spectral sequence [17, Theorem 2.20]). Let R be a ring
and let C∗ and D∗ be R-chain complexes where C∗ consists only of flat R-modules.
Then there exists a converging first-quadrant spectral sequence

Ep,q2 =
⊕
i+j=q

TorpR
(
Hi(C∗),Hj(D∗)

)
=⇒ Hp+q(C∗ ⊗D∗).

Using this spectral sequences one can easily derive the algebraic Künneth theorem
(without the splitting property).

Theorem 1.2.3 (algebraic Künneth theorem). Let R be a principal ideal domain
and let C∗ and D∗ be R-chain complexes where C∗ consists only of flat R-modules.
Then we have for each n ∈ N an exact sequence

0 →
⊕
i+j=n

Hi(C∗)⊗R Hj(D∗) → Hn(C∗ ⊗D∗) →
⊕

i+j=n−1

Tor1R
(
Hi(C∗),Hj(D∗)

)
→ 0.

13



1 Spectral sequences

Proof. We consider the converging first-quadrant spectral sequence

Ep,q2 =
⊕
i+j=q

TorpR
(
Hi(C∗),Hj(D∗)

)
=⇒ Hp+q(C∗ ⊗D∗).

given by Theorem 1.2.2. Since R is a principal ideal domain we know that the
terms TornR( · , · ) vanish for n ≥ 2, and thus Ep,q2 can only have non-trivial entries
for p ∈ {0, 1}.

p

q

E2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

d2

d2

For degree reasons we now obtain that each differential dr for r ∈ N≥2 is trivial,
and thus have E∞ = E2. Finally from the convergence of the spectral sequence we
obtain for each n ∈ N an exact sequence

0 E0,n
∞ Hn(C∗ ⊗D∗) E1,n−1

∞ 0,

where
E1,n−1

∞ = E1,n−1
2 =

⊕
i+j=n−1

Tor1R(Hi(C∗),Hj(D∗)

and

E0,n
∞ = E0,n

2 =
⊕
i+j=n

Tor0R
(
Hi(C∗),Hj(D∗)

)
=

⊕
i+j=n

Hi(C∗)⊗R Hj(D∗),

which gives the claim.

In the special case that D∗ only consists of a single module in degree 0 this gives
the universal coefficient theorem (again without the splitting property).

Theorem 1.2.4 (universal coefficient theorem). Let R be a principal ideal domain,
let C∗ be a R-chain complex consisting of flat R-modules, and let A be an R-module.
Then we have for each n ∈ N an exact sequence

0 Hn(C∗)⊗R A Hn(C∗ ⊗R A) Tor1R
(
Hn−1(C∗), A

)
0.

14



1.2 Classical examples of spectral sequences

Since by definition the singular chain complex of a topological space consists of
free modules we can apply both the universal coefficient theorem and the algebraic
Künneth theorem. We note, however, that in order to obtain the Künneth theorem
in algebraic topology [22, Theorem 9.37], which relates the singular homology of a
product X ×Y to the homology of X and Y , one still requires the Eilenberg-Zilber
theorem [22, Theorem 9.33] to relate the singular chain complex of X × Y with
the tensor product of the singular chain complexes of X and Y .

1.2.2 The Serre spectral sequence
Next we come to an example of a spectral sequence in algebraic topology: the
Serre spectral sequence. This spectral sequence relates the (co)homology of the
total space of a fibration to the (co)homology of the base space and the fiber of the
fibration.

Definition 1.2.5 (fibration, fiber). A continuous map π : E → B of topological
spaces is called a (Hurewicz) fibration if it has the homotopy lifting property with
respect to all topological spaces, i.e., given a topological space Y , a homotopy
h : Y × [0, 1] → B and a continuous map f : Y → E with π ◦ f = h( · , 0)

Y E

Y × [0, 1] B,

f

(idY ,0) π

h

H

there exists a homotopy H : Y × [0, 1] → E such that

H( · , 0) = h( · , 0) and π ◦H = h.

If π : E → B is a fibration, we call E the total space and B the base space of the
fibration. Moreover, for x ∈ B we call

Fx := π−1 {x} =
{
e ∈ E

∣∣ π(e) = x
}

the fiber over x.

In the case that π : E → B is a fibration with B path-connected, then for any
x, y ∈ B we have that the fibers Fx and Fy are homotopy equivalent [9, Proposition
4.61]. With this result in mind we will assume in the following for simplicity that
the base space B is always a path connected pointed space, i.e., has a designated
base point b0 ∈ B, and write a fibration as

F ↪−→ E
π−→ B

where F is the fiber over the base-point b0 ∈ B.

15
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Example 1.2.6 (path space fibration). Let X be a path-connected pointed
topological space with basepoint x0 ∈ X. The path space of X is defined as

PX :=
{
γ : [0, 1] → X

∣∣ γ is continuous with γ(0) = x0
}
,

equipped with the compact-open topology. The continuous map

PX −→ X

γ 7−→ γ(1)

is a fibration [9, Proposition 4.64], the so-called path space fibration, and we call
its fiber

ΩX :=
{
γ : [0, 1] → X

∣∣ γ is continuous with γ(0) = γ(1) = x0
}

the loop space of X.
One special property of this fibration ΩX ↪→ PX → X is that the total space

PX is contractible by continuously truncating paths.

After this short recap on the notation of fibrations we come the the formulation
of the Serre spectral sequence. We will only give a simplified version where we
assume that the base space is simply connected and only use integer coefficients in
(co)homology. Therefore we also use the shorthand notation H∗(X) and H∗(X),
instead of H∗(X;Z) and H∗(X;Z), respectively, for the (co)homology with integer
coefficients. The general statement can for example be found in the book of
McCleary [17, Chapter 5].

Theorem 1.2.7 (Serre spectral sequence [17, Theorem 5.1, Theorem 5.2]). Let

F ↪−→ E −→ B

be a fibration where B is simply connected, i.e., π1(B) ∼= 0, and F is connected.
Then there exists a cohomological first-quadrant spectral sequence

Ep,q2
∼=Z H

p
(
B;Hq(F )

)
=⇒ Hp+q(E).

Similarly, there exists a homological first-quadrant spectral sequence

E2
p,q

∼=Z Hp

(
B;Hq(F )

)
=⇒ Hp+q(E).

As an application we can consider the case of the path space fibration.

16
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Corollary 1.2.8. Let n ∈ N≥1 and let X be a simply connected pointed space
with Hi(X) ∼= 0 for i ∈ {1, . . . , n}. Then we have

Hi(ΩX) ∼=Z 0

for i ∈ {1, . . . , n− 1} and

Hn(ΩX) ∼=Z Hn+1(X).

Similarly, if H i(X) ∼= 0 for i ∈ {1, . . . , n} then we obtain

H i(ΩX) ∼=Z 0 for i ∈ {1, . . . , n− 1}

and

Hn(ΩX) ∼=Z H
n+1(X).

Proof. Let us consider the path space fibration ΩX ↪→ PX → X and the corre-
sponding converging spectral sequence

E2
p,q

∼=Z Hp

(
X;Hq(ΩX)

)
=⇒ Hp+q(PX).

Since X and ΩX are both path-connected we have

E2
0,q

∼=Z H0

(
X;Hq(ΩX)

) ∼=Z Hq(ΩX)

and

E2
p,0

∼=Z Hp

(
X;H0(ΩX)

) ∼=Z Hp(X)

for all p, q ∈ N. Moreover, since the path space PX is contractible, we have

Hi(PX) ∼=Z 0

for i ∈ N≥1. Thus the convergence of the spectral sequence gives E∞
p,q

∼= 0 for
all p, q ∈ N with p+ q 6= 0.

17
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p

q

E2

Z H1(X) H2(X) H3(X) H4(X)

H1(ΩX)

H2(ΩX)

H3(ΩX)

H4(ΩX)

d22,0

Now let us precede by induction on n. First we assume n = 1. Since d22,0 is the
last non-trivial differential involving E∗

2,0 and E∗
0,1 we obtain

ker d22,0 = E∞
2,0

∼=Z 0,

which gives the injectivity of d22,0, and

H1(ΩX)/ im d22,0
∼=Z E

2
0,1/ im d22,0 = E∞

0,1
∼=Z 0,

which gives the surjectivity of d22,0. Hence d22,0 : H2(X) → H1(ΩX) is an isomor-
phism.

Now let us assume we have proven the claim for n ∈ N≥1 an that Hi(X) ∼=Z 0
for i ∈ {1, . . . , n+ 1}. By using the induction hypothesis we obtain

Hi(ΩX) ∼=Z 0 for i ∈ {1, . . . , n− 1}

and
Hn(ΩX) ∼=Z Hn+1(X) ∼=Z 0.

Since we have
E2
p,q

∼= Hp

(
X;Hq(ΩX)

)
this gives that the rows E2

∗,q are all trivial for q ∈ {1, . . . , n}.

18
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p

q

E2

Z 0 0 0 Hn+2(X)

0

0

0

0

0

0

0

0

0

0

Hn+1(ΩX)

Hn+2(ΩX)

Using this we can deduce that the only non-trivial differential involving E∗
n+2,0

and E∗
0,n+1 is dn+2

n+2,0: For r < n+ 2 either the domains and codomains lie inside
one of trivial rows or outside the first quadrant and for r > n+2 both the domains
and the codomains are outside the first quadrant.

Now the triviality of the differential for r < n + 2 gives (inductively) that we
have

Hn+1(ΩX) ∼=Z E
2
0,n+1

∼=Z E
3
0,n+1

∼=Z . . . ∼=Z E
n+2
0,n+1

and
Hn+2(X) ∼=Z E

2
n+2,0

∼=Z E
3
n+2,0

∼=Z . . . ∼=Z E
n+2
n+2,0.

Moreover a similar argument as in the above case shows that dn+2
n+2,0 induces an

isomorphism Hn+2(X) ∼=Z Hn+1(ΩX).
The proof of the statement for cohomology works analogously using the corre-

sponding cohomological spectral sequence.

Now this can be used to prove the Hurewicz theorem:

Theorem 1.2.9 (Hurewicz theorem). Let X be a path-connected pointed topological
space. Then we have

H1(X) ∼=Z π1(X)ab.

If, moreover, X is n-connected for some n ∈ N≥1, i.e., πi(X) ∼= 0 for
all i ∈ {1, . . . , n}, then we have

Hi(X) ∼=Z 0
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for all i ∈ {1, . . . , n} and

Hn+1(X) ∼=Z πn+1(X).

Sketch of proof. By considering loops S1 → X as singular 1-simplices ∆1 → X one
obtains a well defined group homomorphism π1(X) → H1(X). One can check that
this group homomorphism is surjective and has the commutator subgroup of π1(X)
as kernel, and thus induces the isomorphism H1(X) ∼=Z π1(X)ab [22, pp. 80-84].

Before we come to the second part we recall that for each n ∈ N≥1 there is an
isomorphism

πn(ΩX) ∼=Z πn+1(X).

This can for example be seen using the long exact sequence of homotopy groups [9,
Theorem 4.41] of the fibration ΩX ↪→ PX → X and the contractibility of PX. In
particular, if X is (n+ 1)-connected then the loop space ΩX is n-connected.

Now let us prove the second claim by induction on n. If n = 1 and X is
n-connected, i.e., if X is simply connected, we have

H1(X) ∼=Z π1(X)ab ∼=Z 0

as well as

π2(X) ∼=Z π1(ΩX)
∼=Z π1(ΩX)ab (π1(ΩX) ∼=Z π2(X) is abelian)
∼=Z H1(ΩX) (by the first part)
∼=Z H2(X). (by Corollary 1.2.8)

Now let n ∈ N≥1, let X be an (n + 1) connected space and assume we have
already show the claim for n-connected spaces. Since X is in particular n-connected
we have by induction

Hi(X) ∼=Z 0

for all i ∈ {1, . . . , n} and

Hn+1(X) ∼=Z πn+1(X) ∼=Z 0.

Moreover, since the (n+ 1)-connectedness of X gives the n-connectedness of ΩX
we have for Hn+2(X) that

Hn+2(X) ∼=Z Hn+1(ΩX) (by Corollary 1.2.8)
∼=Z πn+1(ΩX) (by induction)
∼=Z πn+2(X),

which concludes the proof.
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1.2.3 The Hochschild-Serre spectral sequence
As a final example of a spectral sequence we consider the Hochschild-Serre spectral
sequence in group (co)homology.

Theorem 1.2.10 (Hochschild-Serre spectral sequence [25, Theorem 6.8.2]). Let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be an Z[Γ]-module. Then there exists
a natural converging cohomological first-quadrant spectral sequence

Ep,q2 = Hp
(
∆;Hq(Λ;V )

)
=⇒ Hp+q(Γ;V ).

Similarly, there is a natural converging homological first-quadrant spectral se-
quence

E2
p,q = Hp

(
∆;Hq(Λ;V )

)
=⇒ Hp+q(Γ;V ).

As usual for first-quadrant spectral sequences we obtain a five-term exact se-
quence.

Corollary 1.2.11 (five-term exact sequence for group cohomology). Let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be an Z[Γ]-module. Then there exists
an exact sequence

0 H1(∆;V Λ) H1(Γ;V ) H1(Λ;V )∆ H2(∆;V Λ) H2(Γ;V ).

Proof. Using the Hochschild-Serre spectral sequence the five-term exact sequence
of a converging first-quadrant spectral sequence Proposition 1.1.17 gives the exact
sequence

0 E1,0
2 H1(Γ;V ) E0,1

2 E2,0
2 H2(Γ;V ),

where we have used that E2,0
∞ is isomorphic to a submodule of H2(Γ;V ). Now

the identification of the second page and the computation of group cohomology in
degree zero as invariants gives the claim.

In order to obtain a similar result for group homology we need the following.

Lemma 1.2.12 (group homology in degree 0 [25, Definition 6.1.2]). Let Γ be a
group and let V be be an Z[Γ]-module. Then we we group homology of Γ with
coefficients in V is isomorphic to the coinvariants of V

H0(Γ;V ) ∼=Z VΓ := V�{g · v − v | g ∈ Γ, v ∈ V }.
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Using this we obtain dual to Corollary 1.2.11 the following corollary.
Corollary 1.2.13 (five-term exact sequence in group homology). Let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be an Z[Γ]-module. Then there exists
an exact sequence

H2(Γ;V ) H2(∆;VΛ) H1(Λ;V )∆ H1(Γ;V ) H1(∆;VΛ) 0.

One application of this exact sequence is Hopf’s formula which allows to describe
the second group homology, with trivial Z coefficients, using a representation of
the group.
Theorem 1.2.14 (Hopf’s formula [25, Theorem 6.8.8]). Let Γ be a free group,
let Λ ⊆ Γ be a free subgroup and let ∆ = Λ/Γ. Then we have

H2(∆;Z) ∼=R
Λ ∩ [Γ,Γ]

[Γ,Λ]
,

where ∆ acts trivial on Z and [Γ,Λ] denotes the subgroup of Γ generated by the
commutators [h, g] with h ∈ Λ and g ∈ Γ.
Sketch of proof. We consider the five term exact sequence of the short exact se-
quence

0 Λ Γ ∆ 0

in group homology with trivial Z coefficients:

H2(Γ;Z) H2(∆;Z) H1(Λ;Z)∆ H1(Γ;Z) H1(∆;Z) 0.

Moreover, using the naturality of the spectral sequence one can give an explicit
description of the morphism H1(Λ;Z)∆ → H1(Γ;Z).

Now group homology in degree 1 with trivial Z coefficients is given by the
abelianisation [25, Theorem 6.1.11] and since Γ is a free group we have

H2(Γ;V ) ∼=Z 0

[25, Corollary 6.2.7]. Thus we have the exact sequence

0 H2(∆;Z) (Λab)∆ Γab ∆ab 0.

Furthermore, by identifying the action ∆ y Λab one can compute

(Λab)∆ ∼=Z
Λ

[Γ,Λ]

and use the explicit description of the morphism (Λab)∆ → Γab to obtain that

H2(∆;Z) ∼=Z ker
(
(Λab)∆ → Γab

) ∼=Z ker
(

Λ

[Γ,Λ]
→ Γ

[Γ,Γ]

)
=

Λ ∩ [Γ,Γ]

[Γ,Λ]
.
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1.3 Constructions of spectral sequences
Now that we have seen that the theory of spectral sequences can indeed be helpful
we will discuss some constructions of spectral sequences. First we construct a
spectral sequence out of a filtered complex and then apply this construction to
obtain two spectral sequences of a double complex.

1.3.1 Spectral sequence of a filtered complex
Definition 1.3.1 (filtered cochain complex). Let R be a ring. A filtered R-cochain
complex is a pair (C,F ) where C = (C∗, δ∗) is an R-cochain complex and F is
a filtration of the graded R-module C∗ that is compatible with the coboundary
operators, i.e., we have

δn(F pCn) ⊆ F pCn+1

for all n ∈ N and p ∈ Z.
A morphism of filtered R-cochain complexes f : (C,F ) → (C̃, F̃ ) is a morphisms of

R-cochain complexes f : C → C̃ that is, as morphism of graded R-modules f : C∗ →
C̃∗, compatible with the filtrations F and F̃ .

We call a filtered cochain complex (C,F ) canonically bounded if the filtration F
of C∗ is canonically bounded.

Remark 1.3.2 (alternative description of filtered cochain complexes). Let R be
a ring and let (C,F ) be a filtered R-cochain complex. By the compatibility of
the filtration F with the coboundary operator of C we obtain for each p ∈ Z a
sub-cochain complex

F pC := (F pC∗, δ∗)

of C. Moreover, since F is a decreasing filtration this gives a decreasing sequence

· · · ⊆ F p+1C ⊆ F pC ⊆ · · · ⊆ C

of sub-cochain complexes of C. Conversely it is easy to see that each such decreasing
sequence (F pC)p∈Z of sub-cochain complexes of C give C the structure of a filtered
cochain complex.

Remark 1.3.3 (induced filtration on cohomology). Let R be a ring and let (C,F )
be a filtered R-cochain complex. Then the filtration F induces a filtration (which
we will also denote by F ) on the cohomology H∗(C) of C with

F pHn(C) := im
(
Hn(F pC) → Hn(C)

)
,

where Hn(F pC) → Hn(C) is the map induced by inclusion. Moreover, if (C,F ) is
a canonically bounded filtered cochain complex the induced filtration on H∗(C) is
canonically bounded as well.
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Theorem 1.3.4 (spectral sequence of filtered cochain complex). Let R be a
ring and let (C,F ) be a filtered cochain complex. Then there exists a spectral
sequence (E∗, d∗) starting with

Ep,q1
∼=R H

p+q(F pC/F p+1C)

for all p, q ∈ Z.
Moreover, if (C,F ) is a canonically bounded filtered cochain complex this is a

first-quadrant spectral sequence and we have

Ep,q∞
∼=R

F pHp+q(C)�F p+1Hp+q(C)

for all p, q ∈ N, i.e., we have

Ep,q1 =⇒ Hp+q(C).

Proof. We divide the proof into several steps:

Introduction of notation: For p, q ∈ Z and r ∈ N ∪ {−1} we define

Zp,qr := F pCp+q ∩ (δp+q)−1
(
F p+rCp+q+1

)
,

Bp,q
r := F pCp+q ∩ δp+q−1

(
F p−rCp+q−1

)
,

Zp,q∞ := F pCp+q ∩ ker δp+q

and Bp,q
∞ := F pCp+q ∩ im δp+q−1.

Since F is a decreasing filtration it is easy to see that for all p, q ∈ Z we
obtain a chain of inclusions

Bp,q
0 ⊆ Bp,q

1 ⊆ · · · ⊆ Bp,q
∞ ⊆ Zp,q∞ ⊆ · · · ⊆ Zp,q1 ⊆ Zp,q0 . (1)

Moreover we have

Zp+1,q−1
r−1 = F p+1Cp+q ∩ (δp+q)−1

(
F p+rCp+q+1

)
⊆ F pCp+q ∩ (δp+q)−1

(
F p+rCp+q+1

)
(F is decreasing)

= Zp,qr (2)

as well as

δp+q
(
Zp,qr

)
= δp+q

(
F pCp+q ∩ (δp+q)−1

(
F p+rCp+q+1

))
= δp+q

(
F pCp+q

)
∩F p+rCp+q+1

= Bp+r,q+1−r
r (3)

for all p, q ∈ Z and r ∈ N.
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Construction of the differential bigraded modules (Er, dr): Let r ∈ N. Since
for p, q ∈ Z the inclusions (1) and (2) give Zp+1,q−1

r−1 + Bp,q
r−1 ⊆ Zp,qr we can

define
Ep,qr := Zp,qr �Zp+1,q−1

r−1 +Bp,q
r−1

and denote by ηp,qr : Zp,qr −→ Ep,qr the canonical projection. For the construc-
tion of the differential dp,qr we consider the diagram

Zp,qr Zp+r,q+1−r
r

Ep,qr Ep+r,q+1−r
r .

δp+q

ηp,qr ηp+r,q+1−r
r

dp,qr

Since we have

δp+q
(
Zp+1,q−1
r−1 + Zp,qr+1

)
= Bp+r,q+1−r

r−1 +Bp+r+1,q−r
r+1 (by (3))

⊆ Zp+r,q+1−r
r−1 +Bp+r+1,q−r

r+1 (by (1))
= ker ηp+r,q+1−r

r

we obtain, with Zp+1,q−1
r−1 + Zp,qr+1 ⊆ Zp,qr from (1) and (2), that

Zp+1,q−1
r−1 +Bp,q

r−1 ⊆ Zp+1,q−1
r−1 + Zp,qr+1 (by (1))

⊆ ker(ηp+r,q+1−r
r ◦ δp+q|Zp,q

r
).

Thus an application of the universal property of the quotient gives the
existence of a well-defined R-linear map

dp,qr : Ep,qr −→ Ep+r,q+1−r
r

making the above diagram commute.
For the differential property, i.e., dr ◦ dr = 0, we consider the commutative
diagram

Zp−r,q+r−1
r Zp,qr Zp+r,q+1−r

r

Ep−r,q+r−1
r Ep,qr Ep+r,q+1−r

r .

δp+q−1

ηp−r,q+r−1
r

δp+q

ηp,qr ηp+r,q+1−r
r

dp−r,q+r−1
r dp,qr

By the surjectivity of ηp−r,q+r−1
r and δp+q ◦ δp+q−1 = 0 the commutativity of

this diagram gives dp,qr ◦ dp−r,q+r−1
r = 0.
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1 Spectral sequences

Construction of the page-turning isomorphisms: Let r ∈ N. For p, q ∈ Z we first
compute ker dp,qr . By construction we have that

ker dp,qr = ηp,qr

(
ker

(
ηp+r,q+1−r
r ◦ δp,q|Zp,q

r

))
,

and in the above step we have seen that

Zp+1,q−1
r−1 + Zp,qr+1 ⊆ ker

(
ηp+r,q+1−r
r ◦ δp,q|Zp,q

r

)
= (δp,q|Zp,q

r
)−1

(
ker ηp+r,q+1−r

r

)
= Zp,qr ∩ (δp,q)−1

(
Zp+r+1,q−r
r−1 +Bp+r,q+1−r

r−1

)
.

We now claim that this is in fact an equality: Let c ∈ Zp,qr such that

δp,q(c) ∈ Zp+r+1,q−r
r−1 +Bp+r,q+1−r

r−1 .

Since Bp+r,q+1−r
r−1 = δp,q(Zp+1,q−1

r−1 ) by (3), we can assume without loss of
generality that

δp+q(c) ∈ Zp+r+1,q−r
r−1 = F p+r+1Cp+q+1 ∩ (δp+q+1)−1

(
F p+2rCp+q+2

)
.

Because δp+q+1 ◦ δp+q = 0 we thus obtain

c ∈ Zp,qr ∩ (δp,q)−1
(
F p+r+1Cp+q+1

)
= F pCp+q ∩ (δp,q)−1

(
F p+rCp+q+1

)
∩ (δp,q)−1

(
F p+r+1Cp+q+1

)
= F pCp+q ∩ (δp,q)−1

(
F p+r+1Cp+q+1

)
(F is decreasing)

= Zp,qr+1,

which gives in total the inclusion

ker
(
ηp+r,q+1−r
r ◦ δp,q|Zp,q

r

)
⊆ Zp+1,q−1

r−1 + Zp,qr+1,

and thus the claimed equality.
Now back in our computation of ker dp,qr this gives

ker dp,qr = ηp,qr

(
ker

(
ηp+r,q+1−r
r ◦ δp,q|Zp,q

r

))
= ηp,qr

(
Zp+1,q−1
r−1 + Zp,qr+1

)
= ηp,qr

(
Zp,qr+1

)
. (since Zp+1,q−1

r−1 ∈ ker ηp,qr )

Using this we obtain that

Zp,qr+1 ker dp,qr Hp,q(Er, dr)
ηp,qr can. proj.
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1.3 Constructions of spectral sequences

is a surjective map, which induces an isomorphism

Hp,q(Er, dr) ∼=R
Zp,qr+1�(ηp,qr |Zp,q

r+1
)−1

(
im dp−r,q+r−1

r

).
For the “denominator” we first compute

im dp−r,q+r−1
r = im dp−r,q+r−1

r ◦ ηp−r,q+r−1
r (ηp−r,q+r−1

r is surjective)
= im ηp,qr ◦ δp+q−1|

Zp−r,q+r−1
r

(by construction of dp−r,q+r−1
r )

= ηp,qr
(
δp+q−1(Zp−r,q+r−1

r )
)

= ηp,qr
(
Bp,q
r

)
, (by (3))

which gives

(ηp,qr |Zp,q
r+1

)−1
(
im dp−r,q+r−1

r

)
= Zp,qr+1 ∩ (ηp,qr )−1

(
im dp−r,q+r−1

r

)
= Zp,qr+1 ∩

(
Bp,q
r + ker ηp,qr

)
= Zp,qr+1 ∩

(
Bp,q
r + Zp+1,q−1

r−1 +Bp,q
r−1

)
= Zp,qr+1 ∩

(
Bp,q
r + Zp+1,q−1

r−1

)
(Bp,q

r−1 ⊆ Bp,q
r by (1))

= Bp,q
r + Zp,qr+1 ∩ Z

p+1,q−1
r−1 .

(Bp,q
r ⊆ Zp,qr+1 by (1))

Now the decreasing property of F gives

Zp,qr+1 ∩ Z
p+1,q−1
r−1 = F pCp+q ∩ (δp,q)−1

(
F p+r+1Cp+q+1

)
∩ F p+1Cp+q ∩ (δp+q)−1

(
F p+rCp+q+1

)
= F p+1Cp+q ∩ (δp+q)−1

(
F p+r+1Cp+q+1

)
= Zp+1,q−1

r

and thus we have

(ηp,qr |Zp,q
r+1

)−1
(
im dp−r,q+r−1

r

)
= Bp,q

r + Zp+1,q−1
r ,

which finally gives

Hp,q(Er, dr) ∼=R
Zr+1�(ηp,qr |Zp,q

r+1
)−1

(
im dp−r,q+r−1

r

)
= Zr+1�Bp,q

r + Zp+1,q−1
r

= Ep,qr+1.
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Identification of the first page: We first compute the 0-th page E0:
Since the decreasing filtration F is compatibility with the differentials δ∗ we
have

δn(F pCn) ⊆ F pCn+1 ⊆ F p−1Cn+1

for all p ∈ Z and n ∈ N. For p, q ∈ Z and r ∈ {−1, 0} this gives

F pCp+q ⊆ (δp+q)−1
(
F p+rCp+q+1

)
,

and thus

Zp,qr = F pCp+q ∩ (δp+q)−1
(
F p+rCp+q+1

)
= F pCp+q

as well as

Bp,q
r = F pCp+q ∩ δp+q−1

(
F p−rCp+q−1

)︸ ︷︷ ︸
⊆ F p−rCp+q ⊆ F pCp+q

= δp+q−1
(
F p−rCp+q−1

)
⊆ F p−rCp+q.

Hence we obtain

Ep,q0 = Zp,qr �Zp+1,q−1
r−1 +Bp,q

r−1

= F pCp+q�F p+1Cp+q + Bp,q
r−1︸ ︷︷ ︸

⊆ F p+1Cp+q

= F pCp+q�F p+1Cp+q.

Now, since by construction the differential d0 : E0 → E0 is induced by the
coboundary operators δ∗, the page-turning isomorphism gives

Ep,q1
∼=R H

p,q(E0, d0) = Hp+q
(
F pC�F p+1C

)
.

Convergence in the bounded case: Now assume that (C,F ) is a bounded filtered
cochain complex. First we show that the constructed spectral sequence is
indeed a first-quadrant spectral sequence:
Let p, q ∈ Z and first assume p < 0. Then our identification of the E1-page
gives

Ep,q1
∼=R H

p+q(F pC/F p+1C) ∼=R 0,
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1.3 Constructions of spectral sequences

as we have that F p+1C = F pC = C, since p, p+1 ≤ 0. In the case that q < 0
we can use our original definition of Ep,q1 as quotient of

Zp,qr = F pCp+q ∩ (δp+q)−1
(
F p+1Cp+q+1

)
⊆ F pCp+q.

Since p+ q < p we obtain F pCp+q = 0 which gives the triviality of Ep,q1 .
For the convergence of the spectral sequence we first note that for p, q ∈ N
and r ∈ N large enough the canonical boundedness of F gives

Zp,qr = F pCp+q ∩ (δp+q)−1
(
F p+rCp+q+1︸ ︷︷ ︸

= 0 for r large enough

)
= F pCp+q ∩ ker δp,q = Zp,q∞

and

Bp,q
r = F pCp+q ∩ δp+q−1

(
F p−rCp+q−1︸ ︷︷ ︸

= Cp+q+1 for r large enough

)
= F pCp+q ∩ im δp+q−1 = Bp,q

∞ .

Thus, for p, q ∈ N, we can assume without loss of generality that the module
on the ∞-page E∞ is given by

Ep,q∞ = Zp,q∞�Zp+1,q−1
∞ +Bp,q

∞
.

Similar as before we denote by

ηp,q∞ : Zp,q∞ −→ Ep,q∞

the canonical projection and moreover we also denote by

π : ker δp+q −→ Hp+q(C)

the canonical projection.
Now we have by definition that Zp,q∞ ⊆ ker δp+q and

π(Zp,q∞ ) = π
(
F pCp+q ∩ ker δp+q

)
= im

(
Hp+q(F pC) → Hp+q(C)

)
= F pHp+q(C).

Next we consider the diagram

Zp,q∞ F pHp+q(C)

Ep,q∞
F pHp+q(C)�F p+1Hp+q(C).

π

ηp,q∞ can. proj.

ϕ
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1 Spectral sequences

Since

π
(
ker ηp,q∞

)
= π

(
Zp+1,q−1
∞ +Bp,q

∞︸︷︷︸
⊆ im δp+q−1 = kerπ

)
= π

(
Zp+1,q−1
∞

)
= F p+1Hp+q(C) (same computation as above)

we can again apply the universal property of the quotient to obtain a well-
defined R-linear map

ϕ : Ep,q∞ −→ F pHp+q(C)�F p+1Hp+q

making the above diagram commute. Because π|Zp,q
∞ : Zp,q∞ → F pCp+q(C) is

surjective, also ϕ is surjective. Moreover, ϕ is also injective as

kerϕ = ηp,q∞

(
Zp,q∞ ∩ π−1

(
F p+1Hp+q(C)

))
= ηp,q∞

(
Zp,q∞ ∩

(
kerπ + ker ηp,q∞

))
(since π(ker ηp,q∞ ) = F p+1Hp+q(C))

= ηp,q∞

(
F pCp+q ∩ ker δp+q ∩ im δp+q−1

)
(by construction kerπ = im δp+q−1)

= ηp,q∞
(
F pCp+q ∩ im δp+q−1

)
(as im δp+q−1 ⊆ ker δp+q)

= ηp,q∞
(
Bp,q

∞
)

= 0. (Bp,q
∞ ⊆ ker ηp,q∞ )

Hence ϕ is the claimed isomorphism

Ep,q∞
∼=R

F pHp+q(C)�F p+1Hp+q(C).

Remark 1.3.5 (naturality of the construction). The above construction of a
filtered cochain complex is functorial in the following sense:

Let R be a ring, let (C,F ) and (C̃, F̃ ) be filtered R-cochain complexes and
let (E∗, d∗), (Ẽ∗, d̃∗) be the spectral sequences given by Theorem 1.3.4 from (C,F )
and (C̃, F̃ ), respectively. Moreover, let f : C → C̃ be a morphism of cochain
complexes that is compatible with the filtrations F and F̃ , i.e., for each p ∈ Z the
morphism f restricts to a morphism F pC → F̃ pC̃ of cochain complexes.

Then f induces a morphism of spectral sequences g : (E∗, d∗) → (Ẽ∗, d̃∗) such
that the identification of the first page gives for all p, q ∈ Z a commutative diagram

Ep,q1 Hp+q(F pC/F p+qC)

Ẽp,q1 Hp+q(F̃ pC̃/F̃ p+qC̃),

∼=

gp,q1 Hp+q(ϕp)

∼=
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1.3 Constructions of spectral sequences

where ϕp : F pC/F p+1C → F̃ pC̃/F̃ p+1C̃ is also induced by f .
If the filtered cochain complexes (C,F ), (C̃, F̃ ) are additionally both canonically

bounded, the induced morphism of spectral sequences is compatible with the
induced morphism in cohomology, i.e., we have that

Ep,q1
∼=R H

p+q(F pC/F p+1C) Hp+q(C)

Ẽp,q1
∼=R H

p+q(F̃ pC̃/F̃ p+qC̃) Hp+q(C̃)

Hp+q(ϕp) Hp+q(f)

commutes.

1.3.2 Spectral sequences of a double complex
Now that we have a first tool at hand to construct spectral sequences, we apply it
to construct two spectral sequences of a double complex.

Definition 1.3.6 (double complex). Let R be a ring. A R-double complex con-
sists of a bigraded R-module M and two bigraded morphisms of bigraded mod-
ules dh : M → M of bidegree (1, 0) and dv : M → M of bidegree (0, 1) such that
we have

dh ◦ dh = 0, dv ◦ dv = 0

and
dv ◦ dh = dh ◦ dv.

For two R-double complexes M, M̃ , we call a morphism of bigraded mod-
ules f : M → M̃ a morphism of double complexes, if it commutes with the two
differentials, i.e., we have

d̃v ◦ f = f ◦ dv and d̃h ◦ f = f ◦ dh,

where dh, dv are the differentials of M and d̃h, d̃v are the differentials of M̃ .
Moreover we say that M is a first-quadrant double complex, if M is a double

complex such that Mp,q = 0 for all p, q ∈ Z with p < 0 or q < 0.

Remark 1.3.7 (the two homologies of a double complex). Let R be a ring and
let M be a R-double complex. Since by definition both (M,dh) and (M,dv) are
differential bigraded modules we have two possibilities of taking homology:H(M,dh)
and H(M,dv).

Moreover, as dv and dh commute with each other we obtain that dv induces for
each p, q ∈ Z a well-defined R-linear map

d̄p,qv : Hp,q(M,dh) −→ Hp,q+1(M,dh)
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1 Spectral sequences

such that d̄v turns H(M,dh) into a differential bigraded module of bidegree (0, 1).
Similar, the differential dh induces a bigraded morphism

d̄h : H(M,dv) → H(M,dv),

turning H(M,dv) into a differential bigraded module of bidegree (1, 0).

p

q

M

dv

dh

Tot(M)3

Figure 1.4: Visualisation of a double complex and its double complex

Definition 1.3.8 (total complex). Let R be a ring and let M be a double complex.
The total complex Tot(M) of M is defined to be the R-cochain complex with the
cochain modules (

Tot(M)n :=
⊕
p+q=n

Mp,q

)
n∈N

and the coboundary operators(
δn : Tot(M)n → Tot(M)n+1

)
n∈N

given by

δn : Tot(M)n −→ Tot(M)n+1

Mp,q 3 m 7−→ dp,qv (m) + (−1)p · dp,qh (m)

for each n ∈ N.

Due to the conditions on the differentials dv and dh it is easy to see that the
total complex Tot(M) is indeed a cochain complex.
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1.3 Constructions of spectral sequences

Remark 1.3.9 (two filtrations of the total complex). Let R be a ring and let M
be a R-double complex. Then the total complex Tot(M) of M has two canonical
filtrations:

The column-wise filtration given by
1F p Tot(M)n =

⊕
r+s=n
r≥p

M r,s,

for p ∈ Z and n ∈ N, and the row-wise filtration given by
2F p Tot(M)n =

⊕
r+s=n
s≥p

M r,s,

for p ∈ Z and n ∈ N.

p

q p ≥ 2

1F 2 Tot(M)5

p

q

q ≥ 2

2F 2 Tot(M)5

Figure 1.5: Visualisation of the column-wise and the row-wise filtration

We can now consider the spectral sequences associated to these filtrations.
Theorem 1.3.10 (spectral sequences of a double complex). Let R be a ring and
let M be a R-double complex. Then there are two spectral sequences ( 1E∗,

1d∗)
and (2E∗,

2d∗) starting with
1Ep,q1

∼=R H
p,q(M,dv) and 2Ep,q1

∼=R H
q,p(M,dh),

where the differentials 1d1 and 2d1 are given by d̄h and d̄v respectively.
Moreover, if M is a first-quadrant double complex, both of these spectral sequences

are first-quadrant spectral sequences converging to the cohomology of the total
complex

1Ep,q1
∼=R H

p,q(M,dv) =⇒ Hp+q
(
Tot(M)

)
2Ep,q1

∼=R H
q,p(M,dh) =⇒ Hp+q

(
Tot(M)

)
.
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1 Spectral sequences

Proof. Consider the column-wise filtration 1F of Tot(M). By Theorem 1.3.4 there
exists a spectral sequence ( 1E∗,

1d∗) starting with

1Ep,q1
∼=R H

p+q

(
1F p Tot(M)�1F p+1 Tot(M)

)
.

Using the definition of the filtration we could use this to directly compute the first
page. However, since we also want to identify the the differentials we make another
computation:

With the same notation as in the proof of Theorem 1.3.10, we know that the
page 1E1 is given by

1Ep,q1 = Zp,q1 �Zp+1,q−1
0 +Bp,q

0

= Zp,q1 �Zp+1,q−1
0 + dp+q(Zp,q−1

0 ).

Now we can compute for p, q ∈ Z that

Zp,q1 = 1F p Tot(M)p+q ∩ (δp+q)−1
(

1F p+1 Tot(M)p+q+1
)

=
⊕

r+s=p+q
r≥p

M r,s ∩ (δp+q)−1
( ⊕
r+s=p+q
r≥p+1

M r,q
)

=
⊕

r+s=p+q
r≥p

M r,s ∩
⊕

r+s=p+q

{
m ∈M r,s

∣∣∣∣ δp+q(m) ∈
⊕

r′+s′=p+q
r′≥p+1

Mp′,q′
}

=
⊕

r+s=p+q
r≥p

{
m ∈M r,s

∣∣∣∣ dr,sv (m)︸ ︷︷ ︸
∈Mr,s+1

+(−1)r · dr,sh (m)︸ ︷︷ ︸
∈Mr+1,s

∈
⊕

r′+s′=p+q
r′≥p+1

Mp′,q′
}

= ker dp,qv +
⊕

r+s=p+q
r≥p+1

M r,s,

and similar computations show

Zp+1,q−1
0 = 1F p+1 Tot(M)p+q ∩ (δp+q)−1

(
1F p+1 Tot(M)p+q+1

)
=

⊕
r+s=p+q
r≥p+1

M r,s

as well as

Zp,q−1
0 = 1F p Tot(M)p+q−1 ∩ (δp+q−1)−1

(
1F p Tot(M)p+q

)
=

⊕
r+s=p+q−1

r≥p

M r,s.
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1.3 Constructions of spectral sequences

Thus we have

Zp+1,q−1
0 + δp+q−1

(
Zp,q−1
0

)
=

⊕
r+s=p+q
r≥p+1

M r,s + δp+q−1
( ⊕
r+s=p+q−1

r≥p

M r,s
)

=
⊕

r+s=p+q
r≥p+1

M r,s +
⊕

r+s=p+q−1
r≥p

(
im dr,sv + im dr,sh

)
(by construction of δ)

=
⊕

r+s=p+q
r≥p+1

M r,s + im dp,q−1
v

(only im dp,q−1
v is not contained in the first sum)

and thereby

1Ep,q1 = Zp,q1 �Zp+1,q−1
0 + dp+q(Zp,q−1

0 )

=
ker dp,qv +

⊕
r+s=p+q
r≥p+1

M r,s

� ⊕
r+s=p+q
r≥p+1

M r,s + im dp,q−1
v

∼=R
ker dp,qv �im dp,q−1

v
(as im dp,q−1

v ⊆ ker dp,qv ⊆Mp,q)

= Hp,q(M,dv).

Since the differential 1d1 is induced by the differential δ, we obtain that under
this identification 1d1 coincides, up to a sign, with d̄h. However, this sign neither
affects the differential condition nor the page-turning isomorphisms (the homology
does not change). Thus we can assume with out loss of generality that 1d1 is given
by d̄h.

If now M is a first-quadrant double complex the filtration 1F is obviously
canonically bounded, thus the construction of Theorem 1.3.4 gives that the spectral
sequence (1E∗,

1d∗) indeed converges to the cohomology of Tot(M).
The second spectral sequence ( 2E∗,

2d∗) arises similar, by considering the row-
wise filtration 2F of Tot(M).

Remark 1.3.11 (naturality of the construction). Using the naturality of the
spectral sequence of a filtered complex we also obtain the following naturality of
the two spectral sequences of a double complex:

Let R be a ring and let f : M → M̃ be a morphism of R-double complexes.
Then f obviously induces morphisms of filtered complexes between the column-wise
and row-wise filtrations of M and M̃ . Theses morphism of filtered complexes in
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1 Spectral sequences

turn induces morphisms of the first and second spectral sequences, which under
the identifications of the first pages are simply given by

Hp,q(f) : Hp,q(M,dv) −→ Hp,q(M̃, d̃v)

in the case of the first spectral sequence, and by

Hq,p(f) : Hq,p(M,dh) −→ Hq,p(M̃, d̃h)

in the case of the second spectral sequence.
If moreover both M and M̃ are first-quadrant double complexes these morphism

of spectral sequences are compatible with the induced map in cohomology of the
double complex, i.e., we have that both

1Ep,q1
∼=R H

p,q(M,dv) Hp+q
(
Tot(M)

)
1

Ẽp,q1
∼=R H

p,q(M̃, d̃v) Hp+q
(
Tot(M̃)

)Hp,q(f) Hp+q
(

Tot(f)
)

and
2Ep,q1

∼=R H
q,p(M,dh) Hp+q

(
Tot(M)

)
2

Ẽp,q1
∼=R H

q,p(M̃, d̃v) Hp+q
(
Tot(M̃)

)Hq,p(f) Hp+q
(

Tot(f)
)

commute, where Tot(f) : Tot(M) → Tot(M̃) is the map induced by f on the total
complexes.
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Chapter 2
Spectral sequences in bounded
cohomology

Now that we have seen some examples of spectral sequences we now come to the
spectral sequences in bounded cohomology.

We begin by constructing an analogue of the Hochschild-Serre spectral sequence
for bounded cohomology. As one application of this spectral sequence we will prove
a characterisation of amenable and boundedly n-acyclic morphisms.

Another application of spectral sequences to bounded cohomology we will discuss
cohomological Leray theorem, with a special focus on the Leray theorem in bounded
cohomology.

If the reader is not already familiar with the computation of bounded cohomology
via resolutions and the relation of bounded cohomology with amenability we highly
recommend reading the corresponding chapters in the book of Frigerio [7] before
proceeding with this chapter.

Overview of this chapter
2.1 The Hochschild-Serre spectral sequence . . . . . . . . . . . . . . . 37

2.1.1 Construction of the Hochschild-Serre spectral sequence . . . 38
2.1.2 Application: Amenability and bounded acyclicity . . . . . . 56

2.1 The Hochschild-Serre spectral sequence
The goal of this section is to derive a bounded cohomology analogue of the
Hochschild-Serre spectral sequence and to discuss some of its applications. In the
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2 Spectral sequences in bounded cohomology

ideal case we could associate to each short exact sequence

0 Λ Γ ∆ 0

of groups and each semi-normed R[Γ]-module V a convergent spectral sequence

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)
=⇒ Hp+q

b (Γ;V ).

Although it is always possible to construct a spectral sequence converging to the
bounded cohomology of Γ with coefficient in V it is not always possible to identify
the second page as above.

The Hochschild-Serre spectral sequence in bounded cohomology was first con-
structed by Noskov [21] and later generalised by Burger and Monod [3] to continuous
bounded cohomology.

Remark 2.1.1. We note that there also is a paper of Bouarich on the Hochschild-
Serre spectral sequence for bounded cohomology with semi-normed vector spaces
as coefficients [2]. In this paper it is claimed that the above identification of the
second page can always be made. However, a fundamental step in this proof is
flawed as we will discuss in Remark 2.1.20.

2.1.1 Construction of the Hochschild-Serre spectral sequence
For simplicity we will assume in the following that Λ is a normal subgroup of Γ and
that ∆ is given by the quotient Γ/Λ. Moreover, in order to avoid confusion between
the coboundary operators of the bounded cochain complexes we will indicate the
corresponding group with a lower index, e.g., δ∗Λ will denote the usual differential
of C∗

b (Λ;V ) for some semi-normed R[Λ]-module V .
We first construct a double complex which will then give us two spectral sequences.

We define the first-quadrant bigraded R-module M for p, q ∈ N by

Mp,q := Cqb
(
∆;Cpb (Γ;V )Λ

)∆
,

where Cpb (Γ;V )Λ carries the ∆-action induced by the Γ-action on Cpb (Γ;V ). On
this double complex we define two differentials. The differential dv : M → M of
bidegree (0, 1) is simply given by the standard differential

δq∆ : Cqb
(
∆;Cpb (Γ;V )Λ

)∆ −→ Cp+1
b

(
∆;Cpb (Γ;V )Λ

)∆
,

and the differential dh : M → M of bidegree (1, 0) induced by the standard
differential of C∗

b (Γ;V ):

Cqb (∆; δpΓ)
∆ : Cqb

(
∆;Cpb (Γ;V )Λ

)∆ −→ Cqb
(
∆;Cp+1

b (Γ;V )Λ
)∆

f 7−→ δpΓ ◦ f.
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2.1 The Hochschild-Serre spectral sequence

By definition it is easy to see that these two differentials indeed turn M into a
double complex.

Now that we have a double complex we can apply Theorem 1.3.10 to obtain two
spectral sequences, (1E∗,

1d∗) and (2E∗,
2d∗), both converging to the cohomology

of the total complex Tot(M). The first spectral sequence (1E∗,
1d∗) already

collapses on the second page and thus can be used to determine the cohomology
of the total complex Tot(M). But first we briefly mention the naturality of this
construction.

Remark 2.1.2 (naturality of the two spectral sequences). Let R be a normed
ring, let

0 Λ Γ ∆ 0

0 Λ̃ Γ̃ ∆̃ 0

ϕ ψ

be a commutative diagram of groups with exact rows, let V be a semi-normed
R[Γ]-module, let Ṽ be a semi-normed R[Γ̃]-module and let f : Ṽ → V be a bounded
R-morphism that is compatible with ϕ in the sense that

∀g∈Γ∀ṽ∈Ṽ : f
(
ϕ(g) · ṽ

)
= g · f(ṽ).

Then it is easy to see that ϕ and f first induce a bounded R-cochain map

C∗
b (ϕ; f) : C

∗
b (Γ̃, Ṽ )Λ̃ −→ C∗

b (Γ, V )Λ.

Now by the commutativity of the above diagram these morphisms are compatible
with ψ and thus induce for p ∈ N a bounded R-cochain map

C∗
b

(
ψ;Cpb (ϕ; f)

)
: C∗

b

(
∆̃;Cpb (Γ̃; Ṽ )Λ̃

)∆̃ −→ C∗
b

(
∆;Cpb (Γ;V )Λ

)∆
,

i.e., a morphism of double complexes M̃ → M , where M is the double complex
associated to the first row and the R[Γ]-module V and M̃ is the double complex
associated to the second row and the R[Γ̃]-module Ṽ .

Now the naturality of the spectral sequences of a double complex (Remark 1.3.11)
give that this morphism of double complexes induces morphisms of the associated
first and second second spectral sequences that are compatible with the induced
morphism in cohomology of the total complexes.

Proposition 2.1.3 (cohomology of the total complex). Let R be a normed ring,
let

0 Λ Γ ∆ 0
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2 Spectral sequences in bounded cohomology

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
the cohomology of the total complex H∗(Tot(M)) is isomorphic to the bounded
cohomology H∗

b (Γ;V ) of Γ with values in V .
Moreover, assume we are given a commutative diagram of groups

0 Λ Γ ∆ 0

0 Λ̃ Γ̃ ∆̃ 0

ϕ ψ

with exact rows, a semi-normed R[Γ]-module V , a semi-normed R[Γ̃]-module Ṽ
and a bounded R-morphism f : Ṽ → V that is compatible with ϕ. Then under the
above isomorphisms the induced map in cohomology of the total complexes of the
rows is simply given by

H∗
b (ϕ; f) : H

∗
b (Γ̃; Ṽ ) −→ H∗

b (Γ;V ).

Proof. We consider the first spectral sequence (1E∗,
1d∗) of the double complex M

and let p, q ∈ N. For this spectral sequence we have
1Ep,q1

∼=R H
p,q(M,dv) = Hq(Mp,∗, dp,∗v ),

where by construction the cochain complex (Mp,∗, dp,∗v ) is just the cochain complex(
C∗
b

(
∆;C∗

b (Γ;V )Λ
)∆
, δ∗∆

)
.

Hence we have
1Ep,q1

∼=R H
q
b

(
∆;Cpb (Γ;V )Λ

)
.

Now we use that bounded cohomology with relatively injective coefficients
vanishes: The R[Γ]-module Cpb (Γ;V ) is relatively injective, using this one can show
that Cpb (Γ;V )Λ is a relatively injective R[∆]-module [6, Proposition A.1.7]. Thus
we have that 1Ep,q1 vanishes whenever q 6= 0, and for q = 0 we have

1Ep,01
∼=R

(
Cpb (Γ;V )Λ

)∆
= Cpb (Γ;V )Γ.

Moreover, since we know that the differential 1d1 :
1E1 → 1E1 is induced by the

differential dh, which in turn is induced by the standard differential of C∗
b (Γ;V ),

we obtain that
1Ep,02

∼=R H
p
b (Γ;V )

is the only non-zero row of 1E2. Thus for bidegree reasons 1E2 =
1E∞, and the

convergence towards H∗(Tot(M)) gives the claim

Hp
b (Γ;V ) ∼=R

1Ep,02 = 1Ep,0∞
∼=R H

p(Tot(M)).
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2.1 The Hochschild-Serre spectral sequence

Finally, for the identification of the map induced in cohomology we first see that
under the above identifications the induced morphism of spectral sequences is on
the first page simply given by

Cpb (ϕ; f) : C
p
b (Γ̃; Ṽ )Γ̃ −→ Cpb (Γ;V )Γ.

Thus on the second page, and thereby ∞-page, the morphism is given by

Hp
b (ϕ; f) : H

p
b (Γ̃; Ṽ ) −→ Hp

b (Γ;V ).

Now using the compatibility of the induced morphism of spectral sequences with
the morphism induced in cohomology this gives the claimed identification.

Next let us consider the second spectral sequence ( 2E∗,
2d∗). By construction

the first page of this spectral sequence is given by

2Ep,q1
∼=R H

q,p(M,dh)

= Hq
(
M∗,p, d∗,ph

)
= Hq

(
Cpb

(
∆;C∗

b (Γ;V )Λ
)∆
, Cpb (∆; δ∗Γ)

)
.

For our wished-for identification

2Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)

we would like this homology to be simply given by

Cpb
(
∆;Hq

b (Λ;V )
)∆
.

But therefor we need two things: First that Cpb (∆; · )∆ “commutes” with taking
homology, and second that the homology of C∗

b (Γ;V )Λ indeed gives the bounded
cohomology of Λ.

Let us begin with the second point.

Lemma 2.1.4. Let R be a normed ring, let Γ be a group, let V be a semi-normed
R[Γ]-module and let Λ ⊆ Γ be a normal subgroup. Then we have for each n ∈ N a
canonical bilipschitz isomorphism

Hn
(
C∗
b (Γ;V )Λ, δ∗Γ

) ∼= Hn
b (Λ, V ).

Proof. We first prove that
(
C∗
b (Γ;V ), δ∗Γ

)
is a strong relatively injective resolution

of the R[Λ]-module V :
The well-known contracting homotopy of

(
C∗
b (Γ;V ), δ∗Γ

)
as resolution of V as

R[Γ]-module [7, Proposition 4.3] also gives a contracting homotopy as resolution
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2 Spectral sequences in bounded cohomology

of V as R[Λ]-module. Moreover, since the diagonal action Λ y Γn+1 is clearly free
for each n ∈ N we obtain that the R[Λ]-modules

Cnb (Γ;V ) = `∞(Γn+1, V )

are relatively injective [6, Proposition A.1.3].
So

(
C∗
b (Γ;V ), δ∗Γ

)
is also a strong relatively injective resolution of the R[Λ]-

module V . Thus we obtain the claimed bilipschitz isomorphism [7, Corollary
4.5]

Hn
(
C∗
b (Γ;V )Λ, δ∗Γ

) ∼= Hn
b (Λ;V ).

For the “commutativity” of Cpb (∆; · )∆ and taking homology we first prove the
following lemma.

Lemma 2.1.5. Let R be a normed ring, let Γ be a group, let Γ y S be a group
action of Γ on a set S, let V be a semi-normed R[Γ]-module and let W ⊆ V be a
R[Γ]-submodule of V . Then we have a canonical R-isomorphism

`∞(S, V )Γ

`∞(S,W )Γ
−→ `∞(S, V /W )Γ.

Proof. We consider the R-linear morphism

ϕ : `∞(S, V )Γ −→ `∞(S, V /W )Γ

f 7−→
(
s 7→ [f(s)]

)
and first show the surjectivity of this map. Let g ∈ `∞(S, V /W )Γ and let ε > 0.
Then we have for each s ∈ S that g(s) ∈ V /W , and by construction of the
semi-norm on V/W there exists some f(s) ∈ V with [f(s)] = g(s) and∥∥f(s)∥∥

V
≤
∥∥g(s)∥∥

V /W
+ ε ≤‖g‖∞ + ε.

Thus f is a map f : S → V with ‖f‖∞ ≤‖g‖∞ + ε. Since g was by assumption
Γ-invariant we can also choose f to be Γ-invariant as well, i.e., such that we
have f ∈ `∞(S, V ) with

ϕ(f)(s) = [f(s)] = g(s)

for each s ∈ S. This shows the surjectivity of ϕ. Moreover, we have that the kernel
of ϕ is given by kerϕ = `∞(S,W )Γ: For f ∈ `∞(S,W )Γ and s ∈ S we have

ϕ(f)(s) = [f(s)︸︷︷︸
∈W

] = 0,
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2.1 The Hochschild-Serre spectral sequence

i.e., ϕ(f) = 0 which gives `∞(S,W )∆ ⊆ kerϕ. Conversely, if we have f ∈ `∞(S, V )Γ

with ϕ(f) = 0 we obtain for s ∈ S that

0 = ϕ(f)(s) = [f(s)]

and thus f(s) ∈W which gives the inclusion kerϕ ⊆ `∞(S,W )Γ.
Hence ϕ induces an isomorphism

`∞(S, V )Γ

`∞(S,W )Γ
−→ `∞(S, V /W )Γ.

Now in order to be able to apply the above lemma to identify the first page of
the spectral sequence ( 2E∗,

2d∗) we still need

ker
(
Cpb (∆; δqΓ)

∆
)
= Cpb (∆; ker δqΓ)

∆

as well as
im

(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆.

For the kernel it is fairly easy to see that this equality always holds without any
further assumptions. For the image, however, only one inclusion, namely the one
from left to right, is easy to show. But the other inclusion poses a problem: In
general it does not hold.

Example 2.1.6 (a positve example). Let R be a normed ring, let

0 Λ Γ ∆ 0

be a short exact sequence of groups where ∆ is finite, and let V be a semi-normed
R[Γ]-module. Since any map of a finite set is already finite, the condition that ∆
is finite gives that

C∗
b (∆;W ) = `∞(∆∗+1,W ) = HomSet(∆

∗+1,W ) = C∗(∆;W )

for each R[∆]-module W . Hence, the desired equality

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆

reduces to

im
(
HomSet(∆

p+1, δq−1
Γ )∆

)
= HomSet(∆

p+1, im δq−1
Γ )∆

which is easily seen to be true for all p, q ∈ N.

In the case that our coefficient module V is a Banach Γ-module, i.e., a Banach
space with isometric Γ-action, we have the following:
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2 Spectral sequences in bounded cohomology

Proposition 2.1.7 (characterization of equality for Banach coefficients). Let Γ
be a group, let Γ y S be a group action of Γ on a set S and let f : V → W be a
morphism of Banach Γ-modules. Then we have the following:

1. If the image of f is closed in W we have

im
(
`∞(S, f)Γ

)
= `∞(S, im f)Γ.

2. If Γ is infinite and the image of f is not closed then we have for all n ∈ N≥1

im
(
`∞(Γn+1, f)Γ

)
= `∞(Γn+1, im f)Γ.

In particular we obtain for a short exact sequence

0 Λ Γ ∆ 0

groups and a Banach Γ-module V the following:

3. If for q ∈ N the semi-norm on Hq
b (Λ;V ) is a norm we have

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆

for all p ∈ N.

4. If ∆ is infinite we have for q ∈ N that

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆

holds for all p ∈ N≥1 if and only if the semi-norm on Hq
b (Λ;V ) is a norm.

For the proof of the above proposition we will use the following functional
analytic fact.

Proposition 2.1.8 (characterisation of closed images [1, Corollary 2.15]). For a
bounded morphism f : V →W between Banach spaces the following are equivalent:

1. The image of f is closed in W .

2. There exists a c ∈ R>0 such that for each w ∈ im f there exists a v ∈ V with
f(v) = w and ‖v‖V ≤ c ·‖w‖W .

Proof of Proposition 2.1.7.

1. We prove the two inclusions:
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2.1 The Hochschild-Serre spectral sequence

“⊆”: First let g ∈ im
(
`∞(S, f)Γ

)
. Then there is some h ∈ `∞(S, V )Γ such

that g = f ◦ h. But this gives in particular that im g ⊆ im f , i.e., we
can consider g as element of `∞(S, im f)Γ.
As we already noted above this inclusion uses neither the completeness
of V and W nor the closedness of im f and in fact holds for any bounded
morphism f : V →W of semi-normed R[Γ]-module over some normed
ring R.

“⊇”: Now let g ∈ `∞(S, im f)Γ. Since g is a map S → im f we can choose
for each s ∈ S a preimage of g(s) under f to obtain a map h : S → V
with f ◦ h = g. Moreover, as both f and g are Γ-invariant we can also
choose h to be Γ-invariant.
Now at first glance it is not clear why h should be bounded, i.e., a
element in `∞(S, V )Γ, but here we can use the closedness of im f : From
Proposition 2.1.8 we obtain that there is a c ∈ R>0 such that we have∥∥h(s)∥∥

V
≤ c ·

∥∥g(s)∥∥
W

≤ c ·‖g‖∞ .

So h is indeed bounded.

2. We will construct an element in `∞(Γn+1, im f)Γ that does not have a preim-
age under `∞(Γn+1, f)Γ:
Since the image of f is not closed we can apply Proposition 2.1.8 to obtain
for each m ∈ N an element wm ∈ im f with

∀v∈f−1({wm}) : ‖v‖V > m ·‖wm‖ . (∗)

In particular each wm in non-zero as zero can’t be a preimage. So we can
multiply each wm with 1/‖wm‖W and thus assume without loss of generality
that we have ‖wm‖ = 1 for each m ∈ N.
Moreover, as Γ was assumed to be infinite there is a surjective map ϕ : Γ → N
and we define

h : Γn+1 −→ im f

(g0, . . . , gn) 7−→ g1 · wϕ(g−1
1 ·g0).

Since each wm lies in the image of f and f is Γ-equivariant this map is
indeed well-defined. Moreover, since‖wm‖W = 1 for all m ∈ N and the action
Γ yW is isometric we have that ‖h‖∞ = 1. Finally h is also Γ-equivariant,
since we have for g, g0, . . . , gn ∈ Γ that

g ·
(
h(g0, . . . , gn)

)
= g · g1 · wϕ(g−1

1 · g0)
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2 Spectral sequences in bounded cohomology

= g · g1 · wϕ(g−1
1 · g · g−1 · g0)

= h(g · g0, . . . , g · gn).

Now assume for a contradiction that there exists some k ∈ `∞(Γn+1, V )Γ

with f ◦ k = h. Then we have in particular for g ∈ Γ that

f
(
k(g, e, . . . , e)

)
= h(g, e, . . . , e) = wϕ(g).

Hence we obtain

‖k‖∞ = sup
g0,...,gn∈Γ

∥∥k(g0, . . . , gn)∥∥V
≥ sup

g∈Γ

∥∥k(g, e, . . . , e)∥∥
V

> sup
g∈Γ

ϕ(g) ·
∥∥wϕ(g)∥∥W (by (∗))

= sup
g∈Γ

ϕ(g) (‖wm‖ = 1 for all m ∈ N)

= sup
n∈N

n (as ϕ is surjective)

= ∞,

which is a contradiction. So h ∈ `∞(Γn+1, im f)Γ has no preimage under
`∞(Γn+1, f).

Finally, since we have by Lemma 2.1.4 for each q ∈ N an isometric isomorphism

Hq
b (Λ;V ) ∼=R H

q
(
C∗
b (Γ;V )Λ, δ∗Γ

)
= ker δqΓ�im δq−1

Γ

we get that the im δq−1
Γ is closed if and only if Hq

b (Λ;V ) is a normed space. Hence
both 3. and 4. follow from the first two parts.

Remark 2.1.9. Both Ivanov [11] and Matsumoto and Morita [16] showed inde-
pendently that for every group Γ the second bounded cohomology H2

b (Γ;R) with
real coefficients is a normed space. However, this result does not extend to higher
degrees: Soma [24] proved that the semi-norm on the third bounded cohomology
group H3

b (F2;R) of the free group of rank 2 is not a norm.

As we have seen we can not prove that we always have

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆

we will simply take it as an assumption in the following proposition.
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2.1 The Hochschild-Serre spectral sequence

Proposition 2.1.10 (identification of 2E1 and 2E2 terms). Let R be a normed
ring, let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module.

1. Let p, q ∈ N such that we have

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆.

Then we have a canonical isomorphism

2Ep,q1
∼=R C

p
b

(
∆;Hq

b (Λ;V )
)∆
.

2. Let p, q ∈ N such that we have the above canonical identification possible
for both 2Ep,q1 and 2Ep+1,q

1 . Then the differential 2Ep,q1 : 2Ep,q1 → 2Ep+1,q
1

corresponds under these isomorphisms to the usual differential

δp∆ : Cpb
(
∆;Hq

b (Λ;V )
)∆ −→ Cp+1

b

(
∆;Hq

b (Λ;V )
)∆
.

3. In particular: If p, q ∈ N such that we can apply the identification of 1.
to 2Ep−1,q

1 , 2Ep,q1 and 2Ep+1,q
1 then we have a canonical isomorphism

2Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)
.

Proof.

1. We know that 2Ep,q1 is given by
2Ep,q1

∼=R H
q,p(M,dh)

= Hq
(
M∗,p, d∗,ph

)
= Hq

(
Cpb

(
∆;C∗

b (Γ;V )Λ
)∆
, Cpb (∆; δ∗Γ)

∆
)

and that the differential 2d1 is induced by the standard differential of(
C∗
b

(
∆;Cqb (Γ, V )Λ

)
, δ∗∆

)
.

Since it is easy to see that we have

ker
(
Cpb (∆; δqΓ)

∆
)
= Cpb (∆; ker δqΓ)

∆

our assumption on the image gives canonical isomorphisms

2Ep,q1
∼=R H

q
(
Cpb

(
∆;C∗

b (Γ;V )Λ
)∆
, Cpb (∆; δ∗Γ)

)
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2 Spectral sequences in bounded cohomology

=
ker

(
Cpb (∆; δqΓ)

∆
)

im
(
Cpb (∆; δq−1

Γ )∆
)

=
Cpb (∆; ker δqΓ)∆

Cpb (∆; im δq−1
Γ )∆

∼=R C
p
b

(
∆; ker δqΓ/ im δq−1

Γ

)∆ (by Lemma 2.1.5)

= Cpb

(
∆;Hq

(
C∗
b (Γ;V )Λ, δ∗Γ

))∆

∼=R C
p
b

(
∆;Hq

b (Λ;V )
)∆
. (by Lemma 2.1.4)

2. By the construction of the above isomorphism it is clear that the differential
2dp,q1 : 2Ep,q1 −→ 2Ep+1,q

1

corresponds to the standard differential

δp∆ : Cpb
(
∆;Hq

b (Λ;V )
)∆ −→ Cp+1

b

(
∆;Hq

b (Λ;V )
)∆
.

3. Using the identification of the entries on the first page and the identifications
of the differentials, the page-turning isomorphism gives

2Ep,q2
∼=R H

p,q(2E1,
2d1)

=
ker dp,q1

im dp−1,q
1

∼=R
ker δp∆
im δp−1

∆

= Hp
(
C∗
b

(
∆;Hq

b (Λ;V )
)∆

; δ∗∆

)
= Hp

b

(
∆;Hq

b (Λ;V )
)
.

Corollary 2.1.11 (identification of 2Ep,01 and 2Ep,02 ). Let R be a normed ring, let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
we have for each p ∈ N canonical isomorphisms

2Ep,01
∼=R C

p
b (∆;V Λ)∆ and 2Ep,02

∼=R H
p
b (∆;V Λ).

Proof. Since we have that δ−1
Γ is trivial we obviously have for each p ∈ N

im
(
Cpb (∆; δ−1

Γ )∆
)
= 0 = Cpb (∆; im δ−1

Γ ).
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2.1 The Hochschild-Serre spectral sequence

Hence we can apply Proposition 2.1.10 to obtain canonical isomorphisms

2Ep,01
∼=R C

p
b

(
∆;H0

b (Λ;V )
)∆ and 2Ep,02

∼=R H
p
b

(
∆;H0

b (Λ;V )
)
.

Finally the identification H0
b (Λ;V ) ∼=R V

Λ gives the claim.

Corollary 2.1.12. Let R be a normed ring, let

0 Λ Γ ∆ 0

be a short exact sequence of groups with finite ∆ and let V be a semi-normed
R[Γ]-module. Then there are for all p, q ∈ N canonical isomorphisms

2Ep,q1
∼=R C

p
b

(
∆;Hq

b (Λ;V )
)∆ and 2Ep,q2

∼=R H
p
b

(
∆;Hq

b (Λ;V )
)
.

Proof. Due to Example 2.1.6 this follows directly from Proposition 2.1.10.

Corollary 2.1.13 (identification for Banach coefficients). Let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be a Banach Γ-module. If for q ∈ N the
semi-norm on Hq

b (Λ;V ) is a norm, we have for each p ∈ N canonical isomorphisms

2Ep,q1
∼=R C

p
b

(
∆;Hq

b (Λ;V )
)∆

and
2Ep,q2

∼=R H
p
b

(
∆;Hq

b (Λ;V )
)
.

Proof. Since Hq
b (Λ;V ) is a normed vector space we can apply Proposition 2.1.7 to

obtain for each p ∈ N the equality

im
(
Cpb (∆; δq−1

Γ )∆
)
= Cpb (∆; im δq−1

Γ )∆

and an application of Proposition 2.1.10 finishes the proof.

In addition to the condition in Proposition 2.1.10 we can use another argument
to always identify the terms 2E0,q

1 and 2E0,q
2 .

Lemma 2.1.14. Let R be a normed ring, let Γ be a group and let V be a
semi-normed R[Γ]-module. Then there are isometric R-isomorphisms

C0
b (Γ;V )Γ ∼=R V and C1

b (Γ;V )Γ ∼=R `
∞(Γ;V ),
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2 Spectral sequences in bounded cohomology

which are natural in the coefficient modules, i.e., each bounded morphism f : V →W
of semi-normed R[Γ]-modules induces a commutative diagram

C0
b (Γ;V )Γ V

C0
b (Γ;W )Γ W,

∼=R

C0
b (Γ;f) f

∼=R

and similar for C1
b (Γ; · )Γ.

Proof. First we consider the maps

ϕ0 : `
∞(Γ, V )Γ −→ V and ψ0 : V −→ `∞(Γ, V )

f 7−→ f(e) v 7−→
(
g 7→ g · v

)
.

These maps are obviously well-defined and R-linear with ‖ϕ0‖ ≤ 1 and ‖ψ0‖ ≤ 1.
Moreover the image of ψ0 is in fact already Γ-invariant: For v ∈ V and h, g ∈ Γ
we have (

h · ψ0(v)
)
(g) = h · ψ0(v)(h

−1 · g)
= h · h−1 · g · v
= g · v
= ψ0(v)(g).

Now when restricting ψ0 to a map V → `∞(Γ, V )Γ it is obvious that ϕ0 and ψ0

are mutually inverse, and thus are isometric isomorphisms

C0
b (Γ;V )Γ = `∞(Γ, V )Γ ∼=R V.

Next let us consider the maps

ϕ1 : `
∞(Γ2, V )Γ −→ `∞(Γ, V )

f 7−→
(
g 7→ f(e, g)

)
and

ψ1 : `
∞(Γ, V ) −→ `∞(Γ2, V )Γ

f 7−→
(
(g0, g1) 7→ g0 · f(g−1

0 · g1)
)
.

Again it is clear that these two maps are well-defined and R-linear with ‖ϕ1‖ ≤ 1
and ‖ψ1‖ ≤ 1. Similar as in the first part the image of ψ1 is Γ-invariant:
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2.1 The Hochschild-Serre spectral sequence

Let f ∈ `∞(Γ, V ) and g, g0, g1 ∈ Γ. Then(
g · ψ1(f)

)
(g0, g1) = g · ψ1(f)(g

−1 · g0, g−1 · g1)
= g · g−1 · g0 · f(g−1

0 · g · g−1 · g1)
= g0 · f(g−1

0 · g1)
= f(g0, g1).

As before by restricting the codomain of ψ1 we obtain a inverse of ϕ1 which provides
the isometric isomorphism

C1
b (Γ;V )Γ = `∞(Γ2, V )Γ ∼=R `

∞(Γ;V ).

In both cases the naturality is clear by construction.

Remark 2.1.15 (bar resolution). By generalising the above proof one can obtain
for each n ∈ N an isometric isomorphism

Cnb (Γ;V )Γ = `∞(Γn+1, V )Γ ∼=R `
∞(Γn, V ).

Under these isomorphisms we can identify the standard differential δ∗Γ with a
differential δ̄∗Γ of `∞(Γ∗, V ), such that the cochain complex(

`∞(Γ∗, V ), δ̄∗
)
,

the so-called bar cochain complex, can be used to isometrically compute the bounded
cohomology H∗

b (Γ;V ).
As an example let us compute the differential δ̄0Γ: Let v ∈ V and let g ∈ Γ.

With ψ0 and ϕ1 as in the above proof we have

δ̄0Γ(v)(g) = ϕ1 ◦ δ0Γ ◦ ψ0(v)(g)

= δ0Γ ◦ ψ0(v)(e, g)

= ψ0(v)(e)− ψ0(v)(g)

= v − g · v,

which immediately gives another proof of

H0
b (Γ;V ) ∼=R ker δ̄0Γ = V Γ.

Proposition 2.1.16 (identification of 2E0,q
1 and 2E0,q

2 ). Let R be a normed ring,
let

0 Λ Γ ∆ 0

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
we have for each q ∈ N the canonical identifications

2E0,q
1

∼=R H
q
b (Λ;V ) and 2E0,q

2
∼=R H

q
b (Λ;V )∆.
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Proof. Again we have for 2E0,q
1 the identification

2E0,q
1

∼=R H
q,0(M,dh)

= Hq
(
M∗,0, d∗,0h

)
= Hq

(
C0
b

(
∆;C∗

b (Γ;V )Λ
)∆
, C0

b (∆; δ∗Γ)
∆
)
.

Now using the natural isomorphism of Lemma 2.1.14 this cohomology is canonically
isomorphic to

2E0,q
1 = Hq

(
C0
b

(
∆;C∗

b (Γ;V )Λ
)∆
, C0

b (∆; δ∗Γ)
∆
)

∼=R H
q
(
C∗
b (Γ;V )Λ, δ∗Γ)

)
∼=R H

q
b (Λ;V ). (by Lemma 2.1.4)

Moreover, we can also apply the second natural isomorphism of Lemma 2.1.14
to see that

2E1,q
1

∼=R H
q,1(M,dh)

= Hq
(
M∗,1, d∗,1h

)
= Hq

(
C1
b

(
∆;C∗

b (Γ;V )Λ
)∆
, C1

b (∆; δ∗Γ)
∆
)

∼=R H
q
(
`∞

(
∆, C∗

b (Γ;V )Λ
)
, `∞(∆, δ∗Γ)

)
,

where the differential 2d0,q1 : 2E0,q
1 → 2E1,q

1 is induced by the differential δ̄0∆. Hence
the description of δ̄0∆ in Remark 2.1.15 gives that the image of [f ] ∈ Hq

b (Λ;V )

under 2d0,11 in 2E1,q
1 is represented by the map g 7→ f − g · f . So, using the

page-turning isomorphism, we obtain

2E0,1
2

∼=R H
p,q( 2E1,

2d1)

∼=R ker 2d0,11 ( 2d−1,0
1 is trivial)

= Hq
b (Λ;V )∆.

Now let us collect all the above results of concrete identifications, and give the
spectral sequence a proper name.

Theorem 2.1.17 (the Hochschild-Serre spectral sequence for bounded cohomology).
Let R be a normed ring, let

0 Λ Γ ∆ 0

52



2.1 The Hochschild-Serre spectral sequence

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
there exist a first-quadrant spectral sequence (E∗, d∗), called the Hochschild-Serre
spectral sequence, with

Ep,02
∼=R H

p
b (∆;V Λ) and E0,q

2
∼=R H

q
b (Λ;V )∆

for all p, q ∈ N, converging to the bounded cohomology of Γ with coefficients in V

Ep,q2 =⇒ Hp+q(Γ;V ).

Moreover, in the following cases we can further identify the second page:

1. If the group ∆ is finite we have for all p, q ∈ N

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)
.

2. If V is a Banach Γ-module and for q ∈ N the semi-norm on Hq
b (Λ;V ) is a

norm we have for each p ∈ N the identification

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)
.

Proof. We take (E∗, d∗) to be the spectral sequence (2E∗,
2d∗) constructed above.

By the construction of the spectral sequence and Proposition 2.1.3 we know that
this spectral sequence converges to H∗

b (Γ;V ). Moreover, the identifications of Ep,02

and E0,q
2 are just the results of Corollary 2.1.11 and Proposition 2.1.16.

The statements about the further identification of the second page are nothing
but Corollary 2.1.12 and Corollary 2.1.13.

Of course we could always use Proposition 2.1.10 to further identify entries in
the Hochschild-Serre spectral sequence.

Remark 2.1.18 (naturality of the Hochschild-Serre spectral sequence). Let R be
a normed ring, let

0 Λ Γ ∆ 0

0 Λ̃ Γ̃ ∆̃ 0

τ ϕ ψ

be a commutative diagram of groups with exact rows, let V be a semi-normed
R[Γ]-module, let Ṽ be a semi-normed R[Γ̃]-module and let f : Ṽ → V be a
bounded R-morphism that is compatible with ϕ. Moreover, denote by (E∗, d∗)
the Hochschild-Serre spectral sequence associated to the first row with coefficient
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2 Spectral sequences in bounded cohomology

module V and denote by (Ẽ∗, d̃∗) the Hochschild-Serre spectral sequence of the
second row with coefficient module Ṽ .

As we have seen in Remark 2.1.2 the morphism

Cqb
(
ψ;Cpb (ϕ; f)

)
: Cqb

(
∆̃;Cpb (Γ̃; Ṽ )Λ̃

)∆̃ −→ Cqb
(
∆;Cpb (Γ;V )Λ

)∆
of double complexes induces a morphism of spectral sequences (Ẽ∗, d̃∗) → (E∗, d∗),
which is compatible with the induced morphism in cohomology of the total complex.
In Proposition 2.1.3 we have identified this morphism in cohomology to be

H∗
b (ϕ; f) : H

∗
b (Γ̃; Ṽ ) → H∗

b (Γ;V ).

Hence we have a commutative diagram

Ẽp,q2 Hp+q
b (Γ̃; Ṽ )

Ep,q2 Hp+q
b (Γ;V ).

Hp+q
b (ϕ;f)

Now whenever we can identify for p, q ∈ N both

Ẽp,q2
∼=R H

p
b

(
∆̃;Hq

b (Λ̃; Ṽ )
)

and Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V )
)

with one of the identifications in Theorem 2.1.17, we get that the map between
the second pages corresponds to

Hp
b

(
ψ;Hq

b (τ ; f)
)
: Hp

b

(
∆̃;Hq

b (Λ̃; Ṽ )
)
−→ Hp

b

(
∆;Hq

b (Λ;V )
)
.

Since the Hochschild-Serre spectral sequence is a convergent first-quadrant
spectral sequence we obtain in particular a five-term exact sequence.

Corollary 2.1.19 (five-term exact sequence in bounded cohomology). Let R be a
normed ring, let

0 Λ Γ ∆ 0i ϕ

be a short exact sequence of groups and let V be a semi-normed R[Γ]-module. Then
we have an exact sequence

0 H1
b (∆;V Λ) H1

b (Γ;V ) H1
b (Λ;V )∆ H2

b (∆;V Λ) H2
b (Γ;V ),

where for i ∈ {1, 2} the map H i
b(∆;V Λ) → H i

b(Γ;V ) is given by

H i
b(ϕ; IV ) : H

i
b(∆;V Λ) → H i

b(Γ;V ),

with IV : V Λ → V as the inclusion, and H1
b (Γ;V ) → H1

b (Λ;V )∆ is given by

H1
b (i; idV ) : H1

b (Γ;V ) → H1
b (Λ;V )∆.
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2.1 The Hochschild-Serre spectral sequence

Proof. By applying the usual five-term exact sequence of a convergent first-quadrant
spectral sequence Proposition 1.1.17 to the Hochschild-Serre spectral sequence we
obtain the exact sequence

0 E1,0
2 H1

b (Γ;V ) E0,1
2 E2,0

2 E2,0
∞ 0

and that E2,0
∞ is isomorphic to a submodule of H2

b (Γ;V ). Hence using our identifi-
cations for Ep,02 and E0,q

2 we obtain an exact sequence

0 H1
b (∆;V Λ) H1

b (Γ;V ) H1
b (Λ;V )∆ H2

b (∆;V Λ) H2
b (Γ;V ).

For the identification of the maps we use the naturality of the Hochschild-Serre
spectral sequence Remark 2.1.18 and the naturality of the five term exact sequence
Proposition 1.1.17: Consider the commutative diagram

0 Λ Λ 0 0

0 Λ Γ ∆ 0

0 0 ∆ ∆ 0

idΛ

idΛ i

i ϕ

ϕ id∆

id∆

of groups with exact rows with the coefficient modules V for the top and middle
row, and V Λ for the bottom row. The the naturality of the Hochschild-Serre
spectral sequence and the five-term exact sequence gives a commutative diagram

0 0 H1
b (Λ;V ) H1

b (Λ;V ) 0 H2
b (Λ;V )

0 H1
b (∆;V Λ) H1

b (Γ;V ) H1
b (Λ;V )∆ H2

b (∆;V Λ) H2
b (Γ;V )

0 H1
b (∆;V Λ) H1

b (∆;V Λ) 0 H2
b (∆;V Λ) H2

b (∆;V Λ),

id

H1
b (i;idV ) incl. H2

b (i;idV )

id

id H1
b (ϕ;IV )

id

id H2
b (ϕ;IV )

where the identification of the vertical maps follows from Remark 2.1.18. Now the
commutativity of the diagram allows us to identify the horizontal morphism of the
middle row as desired.

Remark 2.1.20 (the flaw of Bouarich’s proof). As we have seen above in Proposi-
tion 2.1.10 an important step in the identification of the entries of the first and
second page is the equality

im
(
Cpb (∆; δq−1)

)∆
= Cpb (∆; im δq−1)∆.
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2 Spectral sequences in bounded cohomology

However, we have also seen in Proposition 2.1.7 that this equality does not always
hold, even in the “good” case of Banach modules as coefficients.

Yet, Bouarich claims, without any proof, in his paper on the Hochschild-Serre
spectral sequence in bounded cohomology with semi-normed vector spaces as
coefficients that it is always true [2, p. 334].

Besides this flaw the rest of his proof for the identification of the first and second
page works, in fact our proof of Proposition 2.1.10 is not much different. Moreover,
any corollaries he deduces from his spectral sequence only require identifications
that can always be made, e.g., the identifications of Ep,02 and E0,q

2 , so they hold
regardless.

2.1.2 Application: Amenability and bounded acyclicity
One example of an application of the Hochschild-Serre spectral sequence a proof
of a characterisation of amenable and boundedly n-acyclic morphisms. This char-
acterisation was just recently proved by Moraschini and Raptis [19], without the
use of the Hochschild-Serre spectral sequence. However, they noted that a proof is
also possible using the spectral sequence.

Let us start by proving a “poor man’s” version of the mapping theorem:

Theorem 2.1.21 (poor man’s mapping theorem). Let ϕ : Γ → ∆ be a surjective
group homomorphism with amenable kernel Λ and let V be a semi-normed R[Γ]-
module. Then the canonical R-morphism

Hn
b (ϕ; IV #) : Hn

b

(
∆; (V #)Λ

)
−→ Hn

b (Γ;V
#),

induced by the inclusion IV # : (V #)Λ → V #, is an isomorphism for each n ∈ N.

Note that in contrast to the “real” mapping theorem the above theorem makes
no statement about the map being an isometric isomorphism.

Proof of Theorem 2.1.21. Consider the following commutative diagram of groups
with exact rows

0 Λ Γ ∆ 0

0 0 ∆ ∆ 0.

ϕ

ϕ id∆

id∆

Using the amenability of Λ we know that the bounded cohomology Hq≥1
b

(
Λ;V #)

vanishes [7, Theorem 3.6]. So we have that

Hq
b

(
Λ;V #)

=

{
(V #)Λ if q = 0

0 else
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2.1 The Hochschild-Serre spectral sequence

is for each q ∈ N a normed space, both V # and (V #)Λ are Banach spaces and ϕ is
compatible with IV # : (V #)Λ ↪→ V # we obtain the following commutative diagram

Ẽp,q2
∼=R H

p
b

(
∆;Hq

b

(
0; (V #)Λ

))
Hp+q
b

(
∆; (V #)Λ

)

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;V
#)

)
Hp+q
b (Γ;V #).

Hp
b

(
id∆;Hq

b (0,IV # )
)

Hp+q
b (ϕ;I

V # )

Now both Hq
b

(
0; (V #)Λ

)
and Hq

b (Λ;V
#) are trivial for q 6= 0. Thus both of the

above two spectral sequences have the second page as ∞-page. Together with
the above convergence and compatibility this gives for each p ∈ N a commutative
diagram

Ẽp,0∞ ∼=R H
p
b

(
∆;H0

b

(
0; (V #)Λ

))
Hp
b (Γ;V

#)

Ep,0∞ ∼=R H
p
b

(
∆;H0

b (Λ;V
#)

)
Hp
b (Γ;V

#).

∼=R

Hp
b

(
id∆;H0

b (0;IV # )
)

Hp
b (ϕ;IV # )

∼=R

Under the canonical identifications

H0
b

(
0; (V #)Λ

) ∼=R (V #)Λ ∼=R H
0
b (Λ;V

#)

both the right hand and upper morphism are given by the identity. Hence we are
given for each p ∈ N the commutative diagram

Hp
b

(
∆; (V #)Λ

)
Hp
b (Γ;V

#)

Hp
b

(
∆; (V #)Λ

)
Hp
b (Γ;V

#),

Hp
b (ϕ;IV # )

∼=R

which gives that

Hp
b (ϕ; IV #) : H

p
b

(
∆; (V #)Λ

)
−→ Hp

b (Γ;V
#)

is an isomorphism for each p ∈ N.

Moreover one can also prove a converse of the mapping theorem. Therefore let
us introduce the following notion.

Definition 2.1.22 (amenable group homomorphism). A surjective group homo-
morphism ϕ : Γ → ∆ with kernel Λ is called amenable, if for each semi-normed
R[Γ]-module and each n ∈ N the induced map

Hn
b (ϕ; IV #) : Hn

b

(
∆; (IV #)Λ

)
−→ Hn

b (Γ;V
#)

is an isometric isomorphism.
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Theorem 2.1.23 (characterisation of amenable morphisms [19, Theorem 3.1.3]).
Let ϕ : Γ → ∆ be a surjective group homomorphism with kernel Λ. Then the
following are equivalent:

1. The group homomorphism ϕ is amenable.

2. For all semi-normed R[Γ]-module V the induced map

H1
b (ϕ; IV #) : H1

b

(
∆; (V #)Λ

)
−→ H1

b (Γ;V
#)

is an isomorphism.

3. The group Λ is amenable.

Sketch of proof. Both the implications “1. ⇒ 2.” and “3. ⇒ 1.” are clear by
definition and the mapping theorem . Thus we only have to show “2. ⇒ 3.”, which
uses a similar argument as the characterisation of amenability using bounded
cohomology [7, Theorem 3.10]:

We consider the normed R[Γ]-module V = `∞(Γ,R)/R, where we identify R as
the subspace of constant maps. Since

H1
b (ϕ; IV #) : H1

b

(
∆; (V #)Λ

)
−→ H1

b (Γ;V
#)

is assumed to be an isomorphism the beginning of the five-term exact sequence in
bounded cohomology Corollary 2.1.19

0 H1
b

(
∆; (V #)Λ

)
H1
b (Γ;V

#) H1
b (Λ;V

#)∆
H1

b (ϕ;IV # ) H1
b (i;idV # )

gives that
H1
b (i; idV #) : H1

b (Γ;V
#) −→ H1

b (Λ;V
#),

where i : Λ → Γ is the inclusion, is trivial. In particular the image of the class
represented by the Johnson cocycle vanishes. With this triviality at hand one can
now construct a non-trivial Λ-invariant functional

`∞(Γ,R) −→ R,

which suffices to give the amenability of Λ.
For greater details we refer the reader to the paper of Moraschini and Raptis [19].

Definition 2.1.24 (R-generated Banach module). Let Γ be a group. For a group
action Γ y S of Γ on a set S, the normed R[Γ]-module `∞(S,R) is called an
R-generated Banach Γ-module
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2.1 The Hochschild-Serre spectral sequence

Remark 2.1.25 (pullback of a R-generated Banach module). Let ϕ : Γ → ∆ be
group homomorphism and let V = `∞(S,R) be an R-generated Banach ∆-module.
Then it is easy to see that the pullback module ϕ−1V is an R-generated Banach
Γ-module.

Definition 2.1.26 (boundedly n-acyclic morphisms and groups). Let n ∈ N.

• A group homomorphism ϕ : Γ → ∆ is called boundedly n-acyclic if for every
R-generated Banach ∆-module V the restriction map

H∗
b (ϕ;V ) : H∗

b (∆;V ) −→ H∗
b (Γ;ϕ

−1V )

is an isomorphism for i ≤ n and injective for i = n+ 1.

• A group Γ is called boundedly n-acyclic if for each i ∈ {1, . . . , n} we have

H i
b(Γ;R) ∼=R 0.

Moreover, we call a group homomorphism or group boundedly acyclic if it is
boundedly n-acyclic for each n ∈ N.

When comparing the definition of boundedly n-acyclic morphisms and groups
there is a slight discrepancy: For a boundedly n-acyclic group we only consider the
coefficient module R, where as in the case of boundedly n-acyclic morphism we
consider any R-generated Banach modules. But this is (at least to some extend)
resolved by the following.

Proposition 2.1.27 ([19, Proposition 2.6.4]). Let n ∈ N and let Γ be a boundedly
n-acyclic group. Then for each R-generated Banach Γ-module with trivial Γ-action
and each i ∈ {1, . . . , n} we have H i

b(Γ;V ) ∼=R 0.

Now that we have introduced all the relevant notions we come to the characteri-
sation of boundedly n-acyclic morphisms.

Theorem 2.1.28 (characterisation of boundedly n-acyclic morphisms [19, Theorem
4.1.1]). Let n ∈ N and let ϕ : Γ → ∆ be a group homomorphism with kernel Λ.
Then the following are equivalent:

1. The morphism ϕ is boundedly n-acyclic.

2. For every R-generated Banach ∆-module V the induced restriction map

H i
b(ϕ;V ) : H i

b(∆;V ) −→ H i
b(Γ;ϕ

−1V )

is surjective for i ∈ {0, . . . n}.

59



2 Spectral sequences in bounded cohomology

3. The morphism ϕ is surjective and for each relatively injective R-generated
Banach ∆-module V we have

H i
b(Λ;ϕ

−1V ) ∼=R 0

for i ∈ {1, . . . , n}.

4. The morphism ϕ is surjective and the group Λ is boundedly n-acyclic.

Proof of “4. ⇒ 1.” using the Hochschild-Serre spectral sequence. All other impli-
cations (and a proof of “4. ⇒ 1.” without using spectral sequences) can be found
in the original paper of Moraschini and Raptis [19].

Let V be an R-generated Banach ∆-module. Since Λ is the kernel of ϕ it is clear
that the restricted Λ-action on ϕ−1V is trivial. Hence Proposition 2.1.27 gives that

H i
b(Λ;ϕ

−1V ) ∼=R 0

for i ∈ {1, . . . , n} and we moreover have

H0
b (Λ;ϕ

−1V ) = (ϕ−1V )Λ = V.

Now this gives that in the Hochschild-Serre spectral sequence of the short exact
sequence

0 Λ Γ ∆ 0
ϕ

with coefficient module ϕ−1V we can identify

Ep,q2
∼=R H

p
b

(
∆;Hq

b (Λ;ϕ
−1V )

) ∼=R

{
Hp
b (∆;V ) if q = 0

0 if q ∈ {1, . . . , n}

for all p ∈ N. In particular we obtain for each r ∈ N≥2 and each p ∈ {0, . . . , n+ 1}
that the differential

dp−r,r−1
r : Ep−r,r−1

r −→ Ep,0r

is trivial, as either r > p, in which case the domain lies outside the first quadrant,
or r ≤ p ≤ n, where the domain is trivial by the above identification. Hence, we
get with the above identification of the second page that

Ep,q∞
∼=R

{
Hp
b (∆;V ) if q = 0 and p ∈ {0, . . . , n+ 1}

0 if q ∈ {1, . . . , n} and p ∈ N.
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2.1 The Hochschild-Serre spectral sequence

p

q

E2

V ∆ H1
b (∆;V ) H2

b (∆;V ) H3
b (∆;V ) H4

b (∆;V )

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hn+1
b (Λ;ϕ−1V )

Figure 2.1: The second page of the spectral sequence used in the proof of Theo-
rem 2.1.28

Now for i ∈ {0, . . . , n+ 1} the convergence towards H∗
b (Γ;ϕ

−1V ) gives the exten-
sion problems

0 0 F iH i Ei,0∞ ∼=R H
i
b(∆;V ) 0

0 F iH i F i−1H i Ei−1,1
∞ = 0 0

...

0 F 2H i F 1H i E1,i−1
∞ = 0 0

0 F 1H i H i
b(Γ;ϕ

−1V ) E0,i
∞ 0.
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2 Spectral sequences in bounded cohomology

Inductively solving these problems results in the short exact sequence

0 Ei,0∞ ∼=R H
i
b(∆;V ) H i

b(Γ;ϕ
−1V ) E0,i

∞ 0.

Hence we have a map
H i
b(∆;V ) −→ H i

b(Γ;ϕ
−1V )

which is for i = n+ 1 injective and for i ∈ {0, . . . , n} an isomorphisms as in this
case E0,i

∞ = 0.
In order to identify this map as H i

b(ϕ;V ) we use naturality: By considering

0 Λ Γ ∆ 0

0 0 ∆ ∆ 0

ϕ

ϕ id∆

id∆

the naturality of the Hochschild-Serre spectral sequence Remark 2.1.18 results in
the commutative diagram

0 Ei,0∞ ∼=R H
i
b(∆;V ) H i

b(Γ;ϕ
−1V ) E0,i

∞ 0

0 Ẽi,0∞ ∼=R H
i
b(∆;V ) H i

b(∆;V ) 0 0

id

id

Hi
b(ϕ;V )

of extension problems, where (Ẽ∗, d̃∗) denotes the Hochschild-Serre spectral se-
quence of the lower exact sequence. This gives the desired identification.
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