Introduction to Spectral Sequences and the Hurewicz Theorem

Daniel Echtler

Heinrich Heine University Düsseldorf

GRK-Retreat, September 2023 Non-Prof Meeting, December 2023

Part I

Spectral Sequences

What is a spectral sequence?

A spectral sequence consists of:

• For each $n \in \mathbb{N}$ a differential bigraded module

$$(E^n,d^n)=ig((E^n_{
ho,q})_{
ho,q\in\mathbb{N}},(d^n_{
ho,q})_{
ho,q\in\mathbb{N}}ig),$$

called the $\underline{n-\text{th page}}$ of the spectral sequence.

Isomorphisms

$$E_{p,q}^{n+1} \cong H_{p,q}(E^n, d^n) = \frac{\ker d_{p,q}^n}{\operatorname{im} d_{p+n,q-n+1}^n}$$

called page turning isomorphisms.

Example

Let $(C^q, \partial^q)_{q \in \mathbb{N}}$ be a family of chain complexes. We start with

where the differential d^1 is given by the chain complex differentials ∂^q .

Daniel Echtler (HHU)

Spectral Sequences and Hurewicz

Example

Because this is supposed to be a spectral sequence, the existence of the page turning isomorphisms force us to have

and we set the differentials d^n , $n \ge 2$, to be trivial.

The ∞ -page of a spectral sequence

Fixing $p, q \in \mathbb{N}$ there is always a $N \in \mathbb{N}$ such that all differentials

$$E_{p+n,q-n+1}^{n} \xrightarrow{d_{p+n,q-n+1}^{n}} E_{p,q}^{n} \xrightarrow{d_{p,q}^{n}} E_{p-n,q+n-1}^{n},$$

with $n \ge N$, are trivial.

Thus the page turning isomorphisms give

$$E_{p,q}^{\infty} \coloneqq E_{p,q}^{N} \cong E_{p,q}^{N+1} \cong \dots$$

This leads to the definition of the ∞ -page of a spectral sequence.

Example

In our previous example

all differentials d^n with $n \ge 2$ are trivial. Thus the second page is already the ∞ -page.

A spectral sequence is said to converge towards a graded module $(H_n)_{n \in \mathbb{N}}$ if there are short exact sequences $0 \longrightarrow 0 \longrightarrow F_0H_n \longrightarrow E_{0,n}^{\infty} \longrightarrow 0$ $0 \longrightarrow F_0 H_n \longrightarrow F_1 H_n \longrightarrow E_{1,n-1}^{\infty} \longrightarrow 0$ $0 \longrightarrow F_{n-1}H_n \longrightarrow H_n \longrightarrow E_{n,0}^{\infty} \longrightarrow 0.$ In this case we write $E_{p,q}^r \Longrightarrow H_{p+q}$. F^{∞} Take again the previous example, but this time with just $C^n = C$ non-trivial.

Then the only non-trivial entrys on the diagonals are the ones in the *n*-th row. Thus

$$E_{p+q}^2 \Longrightarrow H_{p+q}(C[n])$$

Part II

The Hurewicz theorem

For a topological space X denote by $H_*(X)$ the singular homology with integer coefficients.

Theorem (Hurewicz)

Let X be a path-connected topological space. If X is n-connected, i.e., $\pi_i(X) \cong 0$ for $i \leq n$, we have

$$H_i(X)\cong 0$$
 for $1\leq i\leq n$

and

$$H_{n+1}(X) \cong egin{cases} \pi_1(X)_{ab} & ext{if } n=0 \ \pi_{n+1}(X) & ext{otherwise}. \end{cases}$$

Definition (path space, loop space)

Let (X, x_0) be a pointed topological space. Then

$$\mathsf{PX} = ig\{\gamma \colon [0,1] o X \mid \gamma ext{ continuous with } \gamma(0) = x_0ig\},$$

equipped with the compact-open topology, is called the associated path space. The subspace

$$\Omega X = \{ \gamma \colon [0,1] \to X \mid \gamma \text{ continuous with } \gamma(0) = \gamma(1) = x_0 \}.$$

is called the loop space.

The map $p: PX \to X, \gamma \mapsto \gamma(1)$ is an example of a fibration. Its fiber $p^{-1}(x_0)$ is ΩX .

Theorem

Let $p: E \to B$ be a fibration, let $b_0 \in B$ and $x_0 \in F \coloneqq p^{-1}(b_0)$. The maps

$$(F, x_0) \hookrightarrow (E, x_0) \stackrel{p}{\longrightarrow} (B, b_0)$$

induce a long exact sequence

$$\ldots \rightarrow \pi_n(F) \rightarrow \pi_n(E) \rightarrow \pi_n(B) \rightarrow \pi_{n-1}(F) \rightarrow \ldots \rightarrow \pi_0(F) \rightarrow \pi_0(E).$$

Since the path space PX is contractible, and thus $\pi_*(PX) \cong 0$, we immediately get:

Corollary

$$\pi_{n+1}(X) \cong \pi_n(\Omega X)$$
 for all $n \in \mathbb{N}$.

In particular, if X is n-connected the loop space ΩX is (n-1)-connected.

Daniel Echtler (HHU)

Spectral Sequences and Hurewicz

Theorem (Serre spectral sequence)

Let $p: E \to B$ be a fibration where B is simply connected, i.e., $\pi_1(B) \cong 0$, and the fiber F is connected. Then there exists a spectral sequence

$$E^2_{p,q} \cong H_p(B; H_q(F)) \Longrightarrow H_{p+q}(E).$$

We will later proof:

Corollary

Let X be a simply-connected space with $H_i(X) = 0$ for $1 \le i \le n$. Then

 $H_{n+1}(X) \cong H_n(\Omega X).$

Proof by induction.

Base case: Considering loops $\mathbb{S}^1 \to X$ as singular simplices induces a well-defined isomorphism $\pi_1(X)_{ab} \to H_1(X)$.

Induction step: If X is now *n*-connected, it is in particular (n - 1)-connected. Thus induction gives $H_i(X) \cong 0$ for $1 \le i \le n - 1$ and

 $H_n(X) \cong \pi_n(X) \cong 0.$

Then by the corollary and induction we have

$$H_{n+1}(X) \cong H_n(\Omega X) \cong \pi_n(\Omega X) \cong \pi_{n+1}(X).$$

Corollary

Let X be a simply-connected space with $H_i(X) = 0$ for $1 \le i \le n$. Then

 $H_{n+1}(X) \cong H_n(\Omega X).$

Proof.

Consider the Serre spectral sequence

$$E^2_{p,q} \cong H_pig(X; H_q(\Omega X)ig) \Longrightarrow H_{p+q}(PX) \cong egin{cases} \mathbb{Z} & ext{if } p+q=0 \ 0 & ext{else.} \end{cases}$$

Since X is simply-connected ΩX is path-connected. Thus

$$E_{p,0}^2 \cong H_p(X; H_0(\Omega X)) \cong H_p(X)$$
 and $E_{0,q}^2 \cong H_0(X; H_q(\Omega X)) \cong H_q(\Omega X).$

Proof (base case n = 1).

Since *PX* is contractible all E^{∞} -terms (except for $E_{0,0}^{\infty}$) are trivial. In particular

 $0\cong \textit{E}_{2,0}^{\infty}\cong \ker \textit{d}_{2,0}^2$

and

$$0 \cong E_{0,1}^{\infty} \cong \frac{H_1(\Omega X)}{\operatorname{im} d_{2,0}^2}.$$

So $d_{2,0}^2 \colon H_2(X) \to H_1(\Omega X)$ has to be an isomorphism.

Proof (induction step).

Assume $H_i(X) \cong 0$ for $1 \le i \le n$. As before we have

$$0 \cong E_{n+1,0}^{\infty} \cong \ker d_{n+1,0}^{n+1}$$
$$0 \cong E_{0,n}^{\infty} \cong H_n(\Omega X) / \operatorname{im} d_{n+1,0}^{n+1}$$

So, as before, the differential

 $d_{n+1,0}^{n+1} \colon H_{n+1}(X) \to H_n(\Omega X)$

is an isomorphism.

and