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Preface
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• Chapter 2 is the paper of mine, “Infinite Groups with an Anticentral

Element”, [Ers12], appeared in Comm. Alg. 2012.

• Chapter 3 is the paper of mine, “Finite Groups with a Splitting Automor-

phism of Odd Order”, [Ers16], appeared in Arch. Math. 2016.

• Chapter 4 is the paper of us together with C.K. Gupta, with name “Locally

Finite Groups with Centralizers of Finite Rank”, [EG], appeared in Comm.

Alg. 2016.

• Chapter 5 is the paper of us together with M. Kuzucuoğlu and P. Shumy-

atsky, with name “Locally Finite Groups and Their Subgroups with Small

Centralizers”, [EKS], appeared in J. Algebra, 2017.

• Chapter 6 is the paper of mine, “Centralizers of p-subgroups in Simple

Locally Finite Groups”, [Ers19], that will appear in Glasgow Mathematical

Journal.

• Chapter 7 is the paper of us, together with A. Tortora and M. Tota,

with name “On groups with all subgroups subnormal or soluble of bounded

derived length”, [ETT], appeared in Glasgow Math. J., 2014.
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chapter 1

Introduction

In 20th century, there were two big projects in group theory. The first of them

was initiated by a question about periodic groups, raised by Burnside in 1902 (see

[Burn]). Recall that a group is called periodic if every element has finite order.

Question 1.1. (Burnside) Is every finitely generated periodic group necessary

finite?

A group is called locally finite if every finitely generated subgroup is finite.

That is, Question 1.1 can be formulated as the following: Is every periodic group

locally finite?

The answer of Question 1.1, which was later known as General Burnside Prob-

lem, is negative. The first examples of periodic finitely generated infinite groups

were given by Golod and Shafarevich (see [GS64] and [Gol64]). Later, other ex-

amples were given by Gupta-Sidki ([GS83]), Grigorchuk ([Gri80]) and Olshanskii

([Ols81]). The groups constructed by Olshanskii were 2-generated infinite simple

p-groups for primes greater than 1075 in which every proper subgroup has prime

order and any two elements are conjugate (see [Ols81] or [Ols91]). Clearly, if an

infinite group G has all its proper subgroups cyclic of order p, then G must be

generated by arbitrary two elements that are not in the same cyclic subgroup.

Moreover, these groups contain a unique non-trivial conjugacy class and hence

they are simple.

After the construction of examples of periodic groups which are not locally

finite, locally finite groups constituted an active area of research since it was

interesting to find conditions for a given periodic group to be locally finite. For

example, Shunkov proved in [Sun72] that an infinite periodic (residually finite)

group with a finite centralizer of an involution is locally finite.
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The other important project of 20th century was the Classification of Finite

Simple Groups. By Jordan-Hölder Theorem, every finite group has a composition

series consisting of a unique list of finite simple groups. So, finite simple groups

are building blocks of all finite groups. It was F. Klein who first suggested to

classify all finite simple groups. In 1950’s Brauer and Fowler proved the following:

Theorem 1.2. (Brauer-Fowler Theorem [BF]) There exists a natural val-

ued function f such that if a finite simple group contains an involution whose

centralizer has order k, then the order of the group is less than f(k).

Moreover, in 1960’s, Feit and Thompson proved that every group of odd order

is solvable. As a consequence of this result one can easily deduce that any finite

non-abelian simple group contains involutions. Since the center of a non-abelian

simple group must be trivial, centralizer of involutions are large proper subgroups

of finite simple groups. Hence, the centralizers of involutions became key objects

to study to classify all finite simple groups.

One of the biggest achievements in finite group theory of 20th century was

the following theorem of Thompson:

Theorem 1.3. (Thompson, [Th59]) Let G be a finite group with a fixed point

free automorphism α ∈ Aut(G) of prime order p. Then G is nilpotent.

Higman, Kreknin and Kostrikin proved that the nilpotency class is bounded

in terms of p (see [Hig57] and [KK63]).

Thompson’s result on nilpotence and Brauer-Fowler Theorem are examples

of two types of results about centralizers in group theory. First of these is prov-

ing the group has a restricted structure when the centralizer of an element (or

equivalently the set of fixed points of an automorphism) is “small”, that is, has

restrictions on it. In infinite group theory, first example of results assuming a

restriction on the fixed point of an automorphism, is the important theorem of B.

Neumann. Neumann proved that if G is a periodic group with a fixed-point-free

automorphism of order 2, then G is abelian without elements of order 2, so locally

finite (see [Neu40]). Shunkov proved in [Sun72] that a periodic group with an

involutory automorphism with finite centralizer is locally finite. Because of Gen-

eral Burnside Problem (Question 1.1) , it was interesting to know under which
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conditions a periodic group has to be locally finite, so, the results of Neumann

and Shunkov can be seen as first examples. Later, Hartley and Meixner proved

in [HM80] that there is a natural valued function f such that if a periodic group

G has an involution i with CG(i) of order less than m, then G has a nilpotent

normal subgroup of nilpotency class at most 2, and index less than f(m).

The second type of results related to centralizers are obtained by proving that

the centralizers are “big” when the group is simple. A classical and most impor-

tant example of a result of this kind is the Brauer-Fowler Theorem. In locally

finite simple groups, also it has analogues. Kegel and Wehrfritz asked whether

the centralizer of any element in an infinite simple locally finite group is infinite

(see [KW73, Question II.4]). This was later proved by Hartley and Kuzucuoğlu

(see [HK91]). Most of the theorems proven throughout my mathematical research

fit into one of these two types of questions, either proving the group has a re-

stricted structure when the centralizer is “small” or proving the centralizer (of

an element, a subgroup etc.) is “big” when the group is simple.

In my Ph.D. thesis [Ers09], I worked on a problem of Brian Hartley (1939-

1994) on centralizers of finite subgroups in simple locally finite groups. In the

following Section 1.3 I give details about this work. In my Phd, I proved that the

centralizers of finite subgroups in particular classes of non-linear simple locally

finite groups are “big”, in the sense they are infinite, also they do not even satisfy

minimal condition on subgroups. For the definitions and history of these kind of

questions in simple locally finite groups, see Section 1.3 and for the details and

the proofs, see [Ers09, EK].

In Section 1.4 I summarize my research after my Ph.D, mostly about the first

type of problems I have described above: In all of the five papers presented in

this section, we prove structural results on the given finite or locally finite groups

having a restriction on the centralizer. Details of these works are presented in

Chapters 2, 3,4, 5, 6 and my related papers [Ers12, Ers16, EG, EKS, Ers19]

respectively.

In Section 1.5, I summarize my other research on infinite groups. Our paper

[ETT] together with my collaborators M. Tota and A. Tortora is presented. This

work is not directly related to centralizers, it is on a different problem. On the
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other hand, classification of finite (minimal) simple groups by Thompson and

subgroup structure of finite minimal simple groups were used. Recall that a

minimal simple group is a finite simple group whose all proper subgroups are

solvable. The details can be found in Chapter 7 and our related paper [ETT].

1.1 Basic Information and Notation about Fi-

nite Simple Groups

Let us give some basic information and notation about finite simple groups.

By the classification theorem which was accepted to be proved in 1980’s, a

non-abelian finite simple group is either isomorphic to an alternating group of

degree greater than 4, or a “simple group of Lie type”, or one of 26 “sporadic

groups” which does not belong to any infinite family. Since basically we are

trying to extend results about finite simple groups to their infinite analogues,

the sporadic groups won’t play a role in this research outline.The alternating

groups are subgroups of the corresponding symmetric group consisting of even

permutations.

Let us define a simple group of Lie type. A (linear) algebraic group over k

is an affine algebraic variety together with a group structure in which the group

operations are morphisms of varieties. In particular we refer to linear algebraic

groups over the algebraic closure of finite fields. Throughout this section let p be

a prime and k be an algebraic closure of Fp. Let G be a simple linear algebraic

group of adjoint type over k. A linear algebraic group G is simple (as an algebraic

group) if it has no closed connected normal subgroups.

Let G,H be two simple algebraic groups. A surjective homomorphism φ :

G −→ H is called an isogeny if kerφ is finite. Two simple algebraic groups G,H

are called isogeneous if there is an isogeny between them. Among the isogeneous

groups, the one with trivial center is called adjoint type One may see [MT, p.71]

for a more technical definition.

Since G is a closed subgroup of some general linear group, we can consider
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σq :

G −→ G

(xij) −→ (xij)
q

The map σq is called a standard Frobenius map on G. If ψ : G −→ G is

an endomorphism with ψk = σq for some k, then ψ is called a Frobenius map.

For details, see [MT, Section 21.1]. By [Ste68-1, Thm 10.13] Frobenius maps

are precisely algebraic endomorphisms with finite set of fixed points of linear

algebraic groups.

Definition 1.4. Let G be a simple linear algebraic group of adjoint type, let σ

be a Frobenius map on G. Let Gσ denote the group of fixed points of σ in G. By

[Ste68-1, Thm 10.13], Gσ is finite. The groups obtained in this way are called

finite groups of Lie type. On the other hand, generally these groups are not simple.

On the other hand, the group

G = Op
′

(Gσ)

is simple where G is of adjoint type and G has order greater than or equal to 60.

The groups obtained in this way are called the finite “simple groups of Lie type”.

Here recall that Op′(G) is the normal subgroup generated by all p-elements of

G.

One can find information about finite simple groups in general in [Wil] or the

collected volumes of the Classification of Finite Simple Groups, by Gorenstein-

Solomon-Lyons, in particular volume 3 [GLS97].

1.2 Simple Locally Finite Groups

After the Classification of Finite Simple Groups was done in 1980’s, the next

goal was to investigate infinite simple groups, which share some common proper-

ties of finite simple groups. In this section we will present some general properties

of infinite simple locally finite groups.
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Let G be a group and Σ be a set of subgroups of G such that G =
⋃
S∈Σ S.

If for every pair S, T ∈ Σ there is a subgroup H ∈ Σ with S, T ≤ H (see [KW73,

p.8]) then Σ is called to be a local system of G. By [KW73, Theorem 4.4] any

infinite simple group has a local system Σ consisting of countably infinite simple

groups. This will allow us to work firstly on countable simple locally finite groups,

to investigate the structure of all simple locally finite groups.

First, let us give some examples of infinite simple locally finite groups:

Example 1.5. The group of even permutations on an infinite set N, namely

G = Alt(N) is an infinite simple locally finite group. Obviously, one can observe

that G can be written as a union of a chain of finite alternating groups, embedded

into each other naturally.

A field is called a locally finite field if every finite subset generate generates

a finite subfield. Observe that (infinite) locally finite fields are simply (infinite)

algebraic extensions of finite fields.

Example 1.6. Let us how we constructed finite simple groups of Lie type in

Definition 1.4. Now let G be a simple linear algebraic group of adjioit type, σ a

Frobenius map on G and a sequence ni ∈ N with ni|ni+1 then, by [?],

G =
⋃
i∈N

Op′(Gσni )

is an infinite locally finite simple group of Lie type over a locally finite field, and

all infinite locally finite simple groups of Lie type are obtained in this way.

Belyaev, Borovik, Hartley-Shute and Thomas proved independently that a

linear simple locally finite group is a simple groups of Lie type over locally finite

fields (see [Bel84, Bor83, HS84, Tho]).

Clearly, Example 1.5 is non-linear. Mal’cev proved that if every finitely gen-

erated subgroup of a group G is linear of degree at most n, then G is linear

of degree n (see [Har95, Theorem 2.7]). The following result will be useful to

construct Example 1.8:

Lemma 1.7. Let p be a prime, q = pm. The center of the special linear group

SLn(q) is isomorphic to the cyclic group of order (n, q − 1).
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Proof. Recall that Z(SLn(q)) consists of diagonal matrices λ.In×n where αn = 1.

Now, λ ∈ F∗q, so λq−1 = 1. Therefore, λ(n,q−1) = 1. On the other hand, all matrices

λ.In×n with λ(n,q−1) = 1 are contained in Z(SLn(q)). Hence Z(SLn(q)) ∼= C(n,q−1).

Example 1.8. Let k be a finite field of size q = pm for some p and m ∈ N and

ψn : SLn(k) −→ SLn+1(k)

A −→

[
A 0

0 1

]
.

Observe that {(SLn(k), ψn) : n ∈ N} form a direct system and the direct limit

G is called stable special linear group SL0(k). Here, infinitely many of n’s

are relatively prime with q − 1. One may simply consider SLpk(q) where k runs

through N, which all have trivial center. Therefore, infinitely many of the groups

in the direct system have trivial center, so SL0(k) is a union of a chain of finite

simple groups, so it is simple.

The following example is known as P. Hall’s universal locally finite group.

Example 1.9. Let G0 = S3, the alternating group on 3 letters. Obviously,

|S3| = 6. Embed G0 into G1 = S6, by the right regular representation of G0.

Embed G1 into G2 = S360, also by right regular representation. So, consider

the embeddings An −→ An!, with regular embeddings. The direct limit gives

us a countable locally finite groups, in which any countable locally finite group

embeds, and any isomorphic finite subgroup is conjugate (see [Har95, 1.4]).

By [Har95, 1.4], U can be written as a union of finite simple groups too.

Regarding these examples are all unions of finite simple groups, it is natural

to ask the following:

Question 1.10. Let G be an infinite simple locally finite group. Does G neces-

sarily have a local system consisting of finite simple groups?

Zalesski and Serezhkin in 1981 (see [ZS]) answered this question negatively.

They proved that the stable symplectic group over a field of odd order, which is
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constructed similarly with Example 1.8 can not be written as a union of finite

simple groups.

On the other hand, there is still a close connection between finite simple

groups and infinite simple locally finite groups, called Kegel Sequences and Kegel

covers. Here, we will define just the Kegel sequences for countable groups, but

for the general definiton of a Kegel cover, see [Har95, 2.1].

Definition 1.11. [Har95, Definition 2.1, Definition 2.2] Let G be a countable

locally finite group, {(Gi, Ni) : i ∈ N} be a set of pair of subgroups such that

1. Gi’s are finite,

2. Ni’s are maximal normal subgroups of Gi’s,

3. Gi∩Ni+1 = 1 for all i ∈ N. Then the collection {(Gi, Ni) : i ∈ N} is called

a Kegel sequence for G.

By [Har95, Lemma 2.4], every (countable) simple locally finite group has a

Kegel sequence. Moreover, by [Har95, Corollary 2.5] any countably infinite simple

locally finite group has a Kegel sequence consisting of perfect Gi’s and hence

Gi/Ni’s form a set of finite simple groups of unbounded orders. The groups

Gi/Ni’s are called the Kegel factors, and Ni’s are called Kegel kernels.

Now, since the orders of sporadic groups are bounded by the order of the

Monster, for any infinite simple locally finite group there exists a Kegel sequence

such that the factors are either all alternating groups or a simple group of Lie

type. Therefore, if G is an infinite locally finite group then G has a Kegel cover

consisting of one of the following factors:

1. Gi/Ni’s are isomorphic to alternating groups Ani , with ni < ni+1,

2. Gi/Ni’s are isomorphic to a simple group of the same classical Lie type,

bounded rank,

3. Gi/Ni’s are isomorphic to a simple group of the same classical Lie type,

unbounded rank,

4. Gi/Ni’s are isomorphic to a simple group of the same exceptional Lie type.

13



By [Har95, Theorem 2.6] in Cases 2 and 4, the group G is linear, and in the other

cases, it is non-linear.

On the other hand, we are far beyond to obtain a full classification for infinite

simple locally finite groups. By [Har95, Corollary 1.16], there exists uncountably

many non-isomorphic countable simple linear algebraic groups having Kegel fac-

tors isomorphic to alternating groups and Kegel kernels are all 1. The approach

is rather using the information about finite simple groups to prove further struc-

tural results about simple locally finite groups. The key point in this approach is

related to the centralizers.

1.3 Centralizers in simple locally finite groups

After the classification of finite simple groups was achieved by using knowledge

on the centralizers of involutions, a lot of information about centralizers in general

were obtained. Since simple locally finite groups are related to finite simple

groups, it was a good idea to work on centralizers in simple locally finite groups.

Kegel and Wehrfritz asked the following problem:

Question 1.12. ([KW73, Question II.4]) Let G be an infinite simple locally finite

group of cardinality κ. Does the centralizer of every element have cardinality κ?

This problem is still open for higher cardinals, but the answer is positive for

countable groups by the following result by Hartley and Kuzucuoğlu:

Theorem 1.13. [HK91, Theorem A2] In a simple locally finite group, the cen-

tralizer of every element is infinite.

Later Hartley also proved the following:

Theorem 1.14. [Har92] Let G be a locally finite group with a finite centralizer

of an element. Then G is almost locally solvable.

Hartley asked the following problem:

Question 1.15. Is the centralizer of every finite subgroup, in a simple non-linear

locally finite group necessarily infinite?
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This question is just about “non-linear” simple locally finite groups since for

every linear simple locally finite group, there exists a finite subgroup with finite

centralizer. This can be observed as an application of Hilbert’s Basis Theorem:

Now, linear simple locally finite groups are subgroups of simple linear algebraic

groups over algebraic closure of finite fields and centralizers are closed sets. In

particular, centralizers of finite subgroups form a descending chain of closed sets.

Let g0 be an arbitrary element in G where G is a simple linear algebraic group.

Denote C0 = CG(g0). Pick g1 ∈ G\C0 and denote C1 = CC0(g1). Inductively, in

every step, choose gn ∈ G\Cn−1 and let Cn = CCn−1(gn). Since the subgroups

Ci’s form a descending series of closed sets and the subgroup generated by finitely

many elements of G is always finite, one ends up with a finite subgroup F with

finite centralizers. Therefore, Question 1.15 is naturally just asked for non-linear

groups.

The counterpart of Question 1.15, whether the centralizer of every finite sub-

group in a simple non-linear locally finite group, involves an infinite non-linear

simple group is resolved negatively by Meierfrankenfeld in [Mei07]. He showed in

[Mei07, Corollary 7] that, for a given non-empty set Π of primes, there exists a

non-linear, locally finite simple group G such that

(a) The centralizer of every non-trivial Π-element has a locally soluble Π-

subgroup of finite index.

(b) There exists an element whose centralizer is a locally soluble Π-group.

In particular in the above groups there are elements whose centralizers can

not involve even finite non-abelian simple groups.

In my Phd thesis [Ers09] I worked on a version of the Hartley’s question, that

is the following:

Question 1.16. Determine all non-linear simple locally finite groups in which

the centralizer of every finite subgroup has an abelian subgroup isomorphic to a

direct product of cyclic groups of order pi for infinitely many distinct prime pi.

It is a well known theorem of Hall and Kulatilaka that every infinite locally

finite group contains an infinite abelian subgroup [HK64]. Observe that a stronger

version of the Hall-Kulatilaka Theorem is true here: The centralizer CG(F ) has

15



an infinite abelian subgroup which has elements of order pi for infinitely many

distinct primes pi.

Consider the set Cpn = {x ∈ C : xp
n

= 1}. Here, (Cpn , .) defines a group

isomorphic to a cyclic group of order pn. Observe that if m divides n then

Cpm ≤ Cpn , and with the inclusion maps, these sets form a direct system, where

the direct limit

lim
n∈N

Cpn

is denoted by Cp∞ , consists of all complex pn-th roots of unity, and forms a group

under complex multiplication. This group is called the quasi-cylic p-group.

Definition 1.17. A group is called a Chernikov group if it is a finite extension of

a direct product of finitely many copies of some quasi-cyclic pi-groups, for possibly

distinct primes pi.

Recall that a group G satisfies minimal condition on subgroups if every non-

empty set of subgroups of G partially ordered by inclusion has a minimal element

([KW73, Chapter 1, Section E]). Shunkov and Kegel-Wehrfritz independently

proved that a locally finite group satisfying minimal condition on subgroups is

Chernikov (see [Sun71] and [KW70] ). Clearly, a Chernikov group has elements

of order divisible by only finitely many distinct primes.

Recall that, by [KW73, Theorem 4.5] for every countably infinite locally finite

simple group there exists a Kegel sequence K = (Gi, Ni) where Gi’s form a tower

of finite subgroups of G satisfying G =
⋃∞
i=1Gi, Ni�Gi, such that Gi/Ni is a

finite simple group and Gi ∩Ni+1 = 1 for each i. By [KW73, Theorem 4.6], if G

is an infinite linear locally finite simple group one can always choose an infinite

subsequence (Gj, Nj) such that Nj = 1 for all j. By using the classification of

finite simple groups one can find that every locally finite simple group is either

linear or Gi/Ni are all alternating or a fixed type of classical linear group over

various fields with unbounded rank parameter. See [HK91], [Har95] or Section

1.3 for more details about Kegel sequences.

In [Ers09] and [EK] we answered the stronger version of Hartley’s question

for finite K-semisimple subgroups of simple non-linear locally finite groups.

First let us define a K-semisimple subgroup for a given Kegel sequence K.
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Definition 1.18. Let G be a countably infinite simple locally finite group and F

be a finite subgroup of G. The group F is called a K-semisimple subgroup of G,

if G has a Kegel sequence K = {(Gi,Mi) : i ∈ N } such that (|Mi|, |F |) = 1, Mi

are soluble for all i and if Gi/Mi is a linear group over a field of characteristic

pi, then (pi, |F |) = 1.

Theorem 1.19. [EK, Ers09] Let G be a non-linear simple locally finite group

which has a Kegel sequence K = {(Gi, 1) : i ∈ N} consisting of finite simple

subgroups. Then for any finite K-semisimple subgroup F , the centralizer CG(F )

has an infinite abelian subgroup A isomorphic to the restricted direct product of

Zpi for infinitely many distinct primes pi.

For the second question in view of the above counterexample of Meierfranken-

feld we prove that if the field is a splitting fields for the simple groups of classical

type, then the centralizer of every finite K-semisimple subgroup involves an infi-

nite simple group.

Theorem 1.20. [EK, Ers09] Let G be a non-linear simple locally finite group

which has a Kegel sequence K = {(Gi, 1) : i ∈ N} consisting of finite simple

subgroups Gi. Let F be a finite K-semisimple subgroup of G. Then CG(F ) involves

an infinite simple non-linear locally finite group provided that ki’s are splitting

field for Gi for all i ∈ N.

Then, we have extended Theorem 1.20 for K-semisimple subgroups in non-

linear simple locally finite groups with Ni are not necessarily trivial.

Corollary 1.21. [EK, Ers09] Let G be a non-linear simple locally finite group and

K = {(Gi, Ni) | i ∈ N}be a Kegel sequence of G. Then for any finite K-semisimple

subgroup F , the centralizer CG(F ) has a subgroup A containing elements of order

pi for infinitely many prime pi. In particular CG(F ) is infinite.

In the proofs of Theorem 1.19, Theorem 1.20 and Corollary 1.21 the general

method was investigating the structure of the centralizer of a finite subgroup in

the Kegel factors, by using the related information about centralizers in finite

simple groups. Then, we considered the embeddings between the centralizers.

In particular, to prove the existence of an infinite abelian subgroup containing
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infinitely many elements of distinct prime orders in CG(F ), we have chosen Kegel

factors with large enough order and we proved first that the centralizer in that

factor Gi/Ni had an element of prime pi for distinct primes at each step. The

information we used in alternating groups was counting the orbits, as well as

we used the number of representations of F in large enough rank matrix group

and by Maschke’s theorem, we concluded that for large enough rank, there is an

element of order pi in the corresponding factor.

1.4 Finite and locally finite groups with certain

restrictions on centralizers

In this section I summarize my research on finite and locally finite groups with

given conditions on centralizers.

1.4.1 Anticentral elements

First of the papers that we worked on these type of problems is [Ers12],

“Infinite groups with an anticentral element”. Let G be a non-perfect group. An

element a ∈ G\G′ is called an anticentral element if the conjugacy class of a is

equal to the coset of the commutator subgroup containing a, that is,

aG′ = aG.

If G has an anticentral element of order n, then for every x ∈ G′ the identity

x.xa.xa
2...xa

n−1

= 1

holds, which means a induces a splitting automorphism on G′. In this case, CG′(a)

has exponent dividing n, so for a group, having an anticentral element and also

having a splitting automorphism are conditions on centralizers. In particular

these elements (automorpisms resp.) have centralizers (fixed points resp.) of

bounded exponent, dividing the order of the element (resp. automorphism).

In [Lad08, Theorem 4.3], Ladisch proved that every finite group with an an-
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ticentral element is solvable. On the other hand, there are examples of infinite

groups with an anticentral element which are not solvable. In [Ers12], we worked

on infinite groups containing an anticentral element.

Chillag and Herzog asked the following question:

Question 1.22. Is every locally finite group with an anticentral element locally

solvable?

In [Ers12] I answered this question for specific types of locally finite groups,

but later, after I have proved that a finite group with a splitting automorphism of

odd order is necessarily solvable in [Ers16], as a corollary of this, I also obtained

in [Ers16] that a locally finite group with an anticentral element of odd order is

locally solvable.

In [Ers12], we also worked on Camina group, that is, non-perfect groups with

every element outside the commutator subgroup is anticentral. Finite Camina

groups were studied by many authors as A. Camina in [Cam78], MacDonald in

[Mac81, Mac86], Chillag and MacDonald in [CM], Chillag, Mann and Scoppola

in [CMS], Dark and Scoppola in [DS], Isaacs in [Isa89], Ren in [Ren], Lewis

in [Lew10]. A complete classification of finite non-abelian Camina groups was

given in [DS]. A finite non-abelian Camina group is either a Camina p-group of

nilpotency class at most 3 or a Frobenius group whose complements are either

cyclic or isomorphic to the quaternion group (see [Lew10, Theorem 1]).

In [HLM11], Herzog, Longobardi and Maj studied infinite Camina groups.

They proved in [HLM11, Theorem 7] that an infinite non-abelian Camina group

with finite commutator subgroup is a nilpotent p-group of class 2, of exponent

dividing p2 with Z(G) = G′. The classification of residually finite Camina groups

by Herzog, Longobardi and Maj is as follows:

Theorem 1.23. [HLM11, Proposition 11] (Herzog, Longobardi, Maj) If G

is a non-abelian residually finite Camina group then one of the following holds:

1. G is a finite p-group of nilpotency class at most 3,

2. G is an infinite p-group of nilpotency class 2 and exponent dividing p2, with

G′ = Z(G),
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3. G is a Frobenius group with Frobenius kernel equal to G′ and it is nilpotent

of class depending on the order |G/G′| and finite cyclic complements,

4. G is a Frobenius group with abelian kernel and complements isomorphic to

Q8.

They proved in [HLM11, Theorem 16] that a finitely generated solvable Cam-

ina group is either abelian or finite. They also proved in [HLM11, Theorem 8]

that if G is a locally finite Camina group, then either G/G′ is a p−group for a

suitable prime p, or G′ is nilpotent and either G′ is a p-group for some prime p

or G/G′ is locally cyclic.

There are non-solvable finitely generated infinite Camina groups constructed

by Olshanskii (see [HLM11]). In [Ers12], we gave a method to construct infinite

Camina groups which are not locally solvable. We proved the following theorem:

Theorem 1.24. [Ers12] For each connected algebraic group H over an alge-

braically closed field of characteristic p with Frobenius map σ on H, there exist

countably many non-isomorphic infinite Camina groups G with G′ ∼= H. In par-

ticular, if H is semisimple then G is not locally solvable.

By using Theorem 1.24, we constructed various non-solvable infinite Camina

groups. The key point of this construction was Lang’s Theorem (see [SS, 2.2

Theorem]). In particular I constructed examples whose commutator subgroups

are algebraic groups over algebraic closures of Fp as well as other example whose

commutator subgroups are non-linear simple locally finite groups (see Chapter 2).

These were also interesting in that area since before them only known non-solvable

examples were the finitely generated examples constructed by Olshanskii.

1.4.2 Splitting Automorphisms

The second paper of us that we would like to present in this section is about

finite groups with a splitting automorphism. Let G be a group and α be an

automorphism of G. An element x ∈ G is called a fixed-point of α if xα = x. We

denote the set of fixed points of α in G by CG(α). An automorphism α of G is

20



called fixed-point-free if the identity element is the only fixed-point of α, that is

CG(α) = 1.

Yu. M. Gorchakov defined in [Grc65] a splitting automorphism:

Definition 1.25. An automorphism α of order n is called a splitting automor-

phism if for every x ∈ G, we have

xxαxα
2

. . . xα
n−1

= 1.

By [Rob95, 10.5.1], if G is a finite group, a fixed-point-free automorphism is

a splitting automorphism.

As we recalled in this section, one can observe that if a ∈ G is an anticentral

element, then a induces a splitting automorphism of G′. Moreover, if α is a fixed-

point-free automorphism of a finite group G, then α is an anticentral element of

H = G〈α〉.
Thompson proved that in [Th59, Theorem 1] a finite group with a fixed-

point-free automorphism of prime order is nilpotent. Moreover, Kegel proved

in [Keg61, Satz 1] that a finite group with a splitting automorphism of prime

order is nilpotent. Rowley proved in [Row, Theorem] that a finite group with a

fixed-point-free automorphism is solvable. Later, Ladisch proved in [Lad08] that

a finite group with an anticentral element is solvable. We worked on the following

question:

Question 1.26. Is a finite group admitting a splitting automorphism necessarily

solvable?

The answer of this question in the full generality is negative. In Chapter 2 we

provide examples of non-solvable groups having a splitting automorphism of order

n, particularly when n is a natural number which is divisible by the exponent of

a finite simple group.

These kind of examples motivated the following question:

Question 1.27. Let n be a natural number which is not divisible by the exponent

of any finite non-abelian simple group. Is a finite group admitting a splitting

automorphism of order n necessarily solvable?
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By Kegel’s result, the answer of this question is positive for prime n. E.

Jabara proved in [Jab] that a finite group with a splitting automorphism of order

4 is solvable. In [Ers12], I also gave a partial answer to the question, indeed we

prove the following result:

Theorem 1.28. [Ers12] A finite group with a splitting automorphism of odd

order is solvable.

This result has an immediate consequence about locally finite groups:

Corollary 1.29. A locally finite group with a splitting automorphism of odd order

is locally solvable.

An immediate consequence of this result answers [Ers12, Question 1.1] par-

tially, but in a more general setting:

Corollary 1.30. A locally finite group with an anticentral element of odd order

is locally solvable.

I studied splitting automorphisms since I wanted to go on my research on an-

ticentral elements. At the time when I wrote [Ers16], the only finite non-solvable

groups I was able to construct were the ones with a splitting automorphism whose

order is divisible by the exponent of a finite simple group. Later, for every natu-

ral number n divisible by 12, we were able to construct other examples of finite

non-solvable groups with a splitting automorphisms of order n. So, we showed

also that in general the answer to Question 1.27 is negative. This result is now

unpublished, it will be part of a joint work with C.K. Gupta and E. Jabara,

about finite groups with a splitting automorphism of order 2n. We will present

this result also here.

Proposition 1.31. Let n be any natural number divisible by 12. Then there

exists a finite non-solvable group G with a splitting automorphism of order n.

Proof. Observe first that any element in S5\A5 has order either 2, 4 or 6. Then,

for any y ∈ S5\A5, one has y12 = 1. Let H be a finite abelian group with a fixed

point free automorphism of order n. In particular, let H = Z
n
2
3 and β : H −→ H

is a map sending (x1, x2, . . . , xn
2
) to (x2, x3, . . . , xn

2
,−x1). Now, β is a fixed point
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free automorphism of H of order n. Let G = A5×H. Pick an element y ∈ S5\A5

and define α : G −→ G as α(g, h) = (gy, hβ). Observe that α is a splitting

automorphism of order n of the non-solvable group G. Clearly, n need not be

divisible by the exponent of a finite simple group.

In the ongoing joint work with C.K. Gupta (started before she passed away)

and E. Jabara, we want to describe the structure of finite non-solvable groups

with a splitting automorphisms of order 2n. Our conjecture is that the only finite

non-abelian simple group having a splitting automorphism of order 2n is A6.

1.4.3 Centralizers of Finite Rank

We noted that certain conditions on centralizers and fixed points of automor-

phism give structural restrictions on the group. In the section about centralizers

in locally finite groups, we have already noted that Question 1.12, which is still

open in full generality, was answered positively for countable simple locally fi-

nite groups, by Hartley and Kuzucuoğlu. In [HK91, Theorem A2], they proved

that in an infinite simple locally finite group, every element has infinite central-

izer. Later, Hartley proved in [Har92, Corollary A1] that if G is a locally finite

group with a finite centralizer of an element, then G has a locally solvable normal

subgroup of finite index. It is natural to ask questions of following type:

Question 1.32. Describe the structure of an infinite locally finite groups G with

some conditions on the centralizer of an element of G.

Let us start with some definitions:

Definition 1.33. A group G is called a Chernikov group if it is a finite extension

of direct product of finitely many Prfer p-groups for possibly distinct primes p.

Definition 1.34. If any chain of subgroups of a group G has a minimal element,

then G satisfies minimal condition (min). If any chain of p-subgroups of a group

G has a minimal element then G satisfies min-p.

Shunkov and Kegel-Wehrfritz proved independently that a locally finite group

satisfying minimal condition (min) is a Chernikov group (see [Sun70, KW70]). In
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[Har82, Theorem B] Hartley proved that if G is a periodic locally solvable group

admitting an involutory automorphism φ with Chernikov centralizer, then [G, φ]′

and G/[G, φ] are also Chernikov. Moreover, Asar proved in [Asa82, Theorem]

that a locally finite group with a Chernikov centralizer of an involution is almost

locally solvable. Later, Belyaev and Hartley proved that if G is a simple locally

finite group with Chernikov centralizer of an element, then G is finite (see [Har95,

Theorem 3.2] and [Shu07, Theorem 5.5]). Hartley proved in [Har82, Theorem 1]

that a locally finite group with a Chernikov centralizer of an element of prime

power order is almost locally solvable.

Definition 1.35. Let G be a group. If every finitely generated subgroup of G is

generated by at most r elements, then G is called a group of finite rank r. If every

finitely generated p-subgroup of G is generated by at most rp-elements, G is called

a group of finite p-rank rp.

In particular, Chernikov groups have finite rank. However, a locally finite

group of finite rank need not be Chernikov. But, by a result of Blackburn (see

[Bla62, Theorem 4.1]), if a locally finite p-group G has a finite maximal abelian

subgroup, then G is Chernikov. Blackburn proved in [Bla62] that locally finite

p-group of finite rank is Chernikov.

In [EG], we, together with C.K. Gupta, investigated the following problem:

Question 1.36. Describe infinite locally finite groups G with an element α of

prime order such that CG(α) has finite rank.

Here, one can not expect to obtain G locally solvable, since there exists simple

locally finite groups G with an element of prime order whose centralizer has finite

rank. In particular, let PSL2(k) where k is an infinite locally finite field of odd

characteristic q 6= p. Let x ∈ G be a diagonal (hence semisimple) element of

prime order p in G. Then CG(x) is isomorphic to a split torus if p 6= 2 and

CG(x)0 is a torus if p = 2. In both cases, CG(x) has finite rank. However, any

unipotent element u in an infinite locally finite simple group of Lie type has a

centralizer of infinite rank.

In [KS04, Theorem 1.1], Kuzucuooğlu and Shumyatsky obtained a detailed

answer for Question 4.6 for the case p = 2:
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Theorem 1.37. [KS04, Theorem 1.1] Let G be an infinite locally finite group

with an involution ι such that CG(ι) has finite rank. Then G/[G, ι] has finite

rank. Moreover, [G, ι]′ has a characteristic subgroup B such that

1. B is a product of finitely subgroups isomorphic to either PSL(2, K) or

SL(2, K), which are normal in [G, ι], for some infinite locally finite fields

K of odd characteristic,

2. [G, ι]′/B has finite rank.

We first classified infinite simple locally finite groups with an automorphism α

of prime order p such that CG(α) has finite rank. We proved the following result:

Theorem 1.38. [EG] Let G be an infinite simple locally finite group with an

automorphism α such that CG(α) has finite rank. Then, G is isomorphic to one

of the following groups:

1. G ∼= PSL(l + 1, k) or PSU(l + 1, k) for some infinite locally finite field k

of characteristic q 6= p and p > l

2. G has type Bl(k), Cl(k) or 2B2 (that is l = 2) over an infinite locally finite

field k of characteristic q 6= p (and q = 2 in the case of 2B2(k)) and p >

2l − 1.

3. G ∼= Dl(k) or 2Dl(k) or 3D4(k) for some infinite locally finite field k of

characteristic q 6= p and p > 2l − 3

4. G ∼= E6(k) or 2E6(k) over an infinite locally finite field of characteristic

q 6= p, and p > 11.

5. G ∼= E7(k), F4(k) or 2F4(k) over an infinite locally finite field of character-

istic q 6= p, and p > 17.

6. G ∼= E8(k) over an infinite locally finite field of characteristic q 6= p, and

p > 29.

7. G ∼= G2(k) or 2G2(k) over an infinite locally finite field of characteristic

q 6= p, and p > 5.
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The case p = 2 is important since there is a wide literature on centralizers

of involutions, which were key tools of classification of finite simple groups. By

Feit-Thompson Theorem, for any locally finite group G, the group O2′ ≤ R(G)

where R(G) denotes the locally soluble radical of G. For other primes, the first

difficulty is the existence of non-soluble p′-groups. However, p = 3 deserves

special attention since one can list all the simple 3′-groups. It is a well-known

corollary of the classification of finite simple groups that the only finite simple

groups whose orders are relatively prime with 3 are Suzuki groups 2B2(22m+1)

(see the orders of finite simple groups in [?]).

Hence we restricted our attention to the case p = 3 and proved the following

result:

Corollary 1.39. [EG] Let G be an infinite simple locally finite group with an au-

tomorphism α of order 3 such that CG(α) has finite rank. Then G ∼= PSL(2, k), PSL(3, k)

or PSU(3, k) over an infinite locally finite field k of characteristic q 6= 3 and

α ∈ InnDiagG.

Therefore, the main result of this paper was a description of an infinite locally

finite group with an automorphism α of order 3, whose set of fixed points has

finite rank.

Theorem 1.40. [EG] Let G be an infinite locally finite group with an automor-

phism α of order 3 with CG(α) of finite rank. Then

1. If G is not almost locally soluble then [G,α] is infinite.

2. O = O3′(G) is an almost locally soluble group, with O/R(O) has all mini-

mal normal subgroups isomorphic to direct products of 2B2(q), for possibly

distinct fields Fq

3. O3′(G) has normal subgroups N ≥ M such that N/M is nilpotent and M

and G/N has finite rank

4. K = R(G)O3′(G) is a finite extension of R(G) and CG/K(α) has finite rank.

5. G/K has minimal normal subgroups, any of which is a product of finitely

many groups of the form PSL(2, k), PSL(3, k) or PSU(3, k) over some

possibly infinite locally finite fields k of characteristic q 6= 3.
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1.4.4 Centralizers of Elementary Abelian Subgroups

Another work we have done about locally finite groups with certain conditions

on centralizers is the paper “Locally finite groups and their subgroups with small

centralizers”, together with M. Kuzucuoğlu and P. Shumyatsky. In that paper

we worked on following type of problem:

Question 1.41. Let G be a locally finite group containing a finite subgroup A

such that CG(A) is small in some sense. What can be said about the structure of

G?

These type of results were obtained before, indeed imposing certain conditions

on centralizers, some significant information about G can be deduced. Hartley

and Meixner proved that if |A| = 2 and CG(A) is finite, then G has a nilpotent

subgroup of class at most two with finite index bounded by a function of |CG(A)|
[HM80]. If G contains an element of prime order p whose centralizer is finite of

order m, then G contains a nilpotent subgroup of finite (m, p)-bounded index and

p-bounded nilpotency class. This result for locally nilpotent periodic groups is

due to Khukhro [Khu90] while the reduction to the nilpotent case was obtained

combining a result of Hartley and Meixner [HM81] with that of Fong [Fon76].

uses the classification of finite simple groups. One needs to mention Hartley’s

theorem that if G has an element of order n with finite centralizer of order m, then

G contains a locally soluble subgroup with finite (m,n)-bounded index [Har92].

Recall that a group G is Chernikov if it has a subgroup of finite index that is

a direct product of finitely many groups of type Cp∞ for various primes p (quasi-

cyclic p-groups, or Prüfer p-groups). By a deep result obtained independently by

Shunkov [Sun70] and Kegel and Wehrfritz [KW70] Chernikov groups are precisely

the locally finite groups satisfying the minimal condition on subgroups, that is,

any non-empty set of subgroups possesses a minimal subgroup. In the literature

there are many results on Chernikov centralizers in locally finite groups. Hartley

proved in [Har88] that if a locally finite group contains an element of prime-power

order with Chernikov centralizer, then it is almost locally soluble. A group is said

to almost have certain property if it contains a subgroup of finite index with that

property.
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Infinite locally finite groups containing a non-cyclic subgroup with finite cen-

tralizer can be simple. One example is provided by the group PSL(2, k), where

k is an infinite locally finite field of odd characteristic. This group contains a

non-cyclic subgroup of order four with finite centralizer. In [Shu01] Shumyatsky

proved that if a locally finite group G contains a non-cyclic subgroup A of order

p2 for a prime p such that CG(A) is finite and CG(a) has finite exponent for all

a ∈ A\{1}, then G is almost locally soluble and has finite exponent.

If G and T are groups, we say that G involves T if there are subgroups

K ≤ H ≤ G, with K normal in H, such that H/K ∼= T .

In Chapter 5 we proved the following theorem:

Theorem 1.42. Let p be a prime and G a locally finite group containing an

elementary abelian p-subgroup A of rank at least 3 such that CG(A) is Chernikov

and CG(a) involves no infinite simple groups for any 1 6= a ∈ A. Then G is

almost locally soluble.

By Hartley”s result in [Har88], the theorem remains valid also in the case

where A is of prime order. On the other hand, the theorem is no longer valid if

we allow A to be of rank 2. In particular, this is illustrated by the example of

the group PSL2(k). In particular, we established the following characterization

of the groups PSLp(k).

Theorem 1.43. An infinite simple locally finite group G admits an elementary

abelian p-group of automorphisms A such that CG(A) is Chernikov and CG(a)

involves no infinite simple groups for any 1 6= a ∈ A if and only if G is isomorphic

to PSLp(k) for some locally finite field k of characteristic different from p and A

has order p2.

Here, if G is a simple locally finite group acted on by an elementary abelian

group A in such a way that A has rank greater than 2, the centralizer CG(A) is

Chernikov and for every non-identity α ∈ A the set of fixed points of α involves

no infinite simple groups, then G is finite. This result is proven in Chapter 5 by

using advanced results by Springer and Steinberg about centralizers of commuting

semisimple elements in linear algebraic groups, as well as the classification of finite

simple groups and the classification of periodic linear simple groups. Recall that,
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by the theorem proved independently by Belyaev, Borovik, Hartkey-Shute and

Thomas, (see [Bel84, Bor83, HS84, Tho]), an infinite periodic linear simple group

is a simple group of Lie type over some locally finite field (i.e., an infinite algebraic

extension of a finite field).

1.4.5 Centralizers of subgroups of exponent p

Later I extended the result proven in Chapter 5 for elementary abelian p-

groups to any subgroup of the automorphism group having exponent p. This

result which will appear in Glasgow Mathematical Journal, is presented in Chap-

ter 6. In particular we made the following progress:

Recall that in Chapter 5, we proved the following result:

Theorem 1.44. [EKS, Theorem 1.1] Let p be a prime and G a locally finite

group containing an elementary abelian p-subgroup A of rank at least 3 such that

CG(A) is Chernikov and CG(a) involves no infinite simple groups for any a ∈ A#.

Then G is almost locally soluble.

To prove Theorem 6.1, we gave the following characterization of PSLp(k)

where chark 6= p.

Theorem 1.45. [EKS, Theorem 1.2] An infinite simple locally finite group G

admits an elementary abelian p-group of automorphisms A such that CG(A) is

Chernikov and CG(a) involves no infinite simple groups for any a ∈ A# if and

only if G is isomorphic to PSLp(k) for some locally finite field k of characteristic

different from p and A has order p2.

In Chapter 6, I extended the result in Chapter 5 and I have proved a similar

result without assuming A is elementary abelian, but instead for any subgroup

of exponent p, the following result was obtained.

Theorem 1.46. [Ers19] Let G be an infinite simple locally finite group, P a

subgroup of automorphisms of exponent p such that

1. CG(P ) is Chernikov,
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2. For every α ∈ P\{1}, the set of fixed points CG(α) does not involve an

infinite simple group.

Then G ∼= PSLp(k) where k is an infinite locally finite field of characteristic p

and P has a subgroup Q of order p2 such that CG(P ) = CG(Q) = Q.

The proof of this result uses our former result with Kuzucuoğlu and Shumy-

atsky in [EKS] as well as an analysis on the structure of centralizers of p-subgroups

consisting of semisimple elements in linear algebraic groups. I have also needed

our joint result with C.K. Gupta in [EG, Theorem 4.8], since the elements in The-

orem 1.46 were first shown to be inner automorphisms of order p with centralizers

of finite rank.

1.5 More on Infinite Groups

In Chapter 7 we summarize our other work on infinite group. See [ETT]

we worked on locally graded groups whose each subgroup is either subnormal or

soluble of bounded derived length. The first thing to do was investigating finite

groups with this condition. Let G be a finite non-soluble group whose all non-

soluble subgroups are subnormal of bounded defect. Let R be the soluble radical

of this group. We first observe that a minimal normal subgroup of G/R must be

a minimal simple group, since if it involves product of at least two simple groups,

then there will be a non-soluble non-subnormal subgroup. We know that any

finite simple group contains a minimal simple group, which reduces our analysis

to minimal simple groups.

W. Möhres in [Möh90] proved that a group with all subgroups subnormal is

soluble. Also, C. Casolo ([Cas01]) and H. Smith ( [Smi01-3]) shows that such

a group is nilpotent if it is also torsion-free. Smith later proved in [Smi01-2],

that a locally (soluble-by-finite) group with all subgroups subnormal or nilpotent

is soluble, and the same holds for a locally graded group whose non-nilpotent

subgroups are subnormal of bounded defect. Also, in both cases, the nilpotence

follows if the group is torsion-free (see [S01-1]).

In our paper [ETT], we, together with A. Tortora and M. Tota, we studied

groups with all subgroups subnormal or soluble. Since the Tarski monsters con-
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structed by A. Yu. Olshanskii in [Ols91] are infinite finitely generated periodic

simple groups whose every proper subgroup is cyclic, we restricted our attention

to locally graded groups with all subgroups subnormal or soluble Recall that a

group is called locally graded if every finitely generated subgroup has a normal

subgroup of finite index. The first problem that arises in the locally graded case

is the presence of non-soluble locally graded groups in which every proper sub-

group is soluble. In fact, the finite minimal simple groups are non-abelian simple

groups with this property. Using the classification of minimal simple groups by

Thompson ([Th68]), we got all the finite non-abelian simple groups having each

proper subgroup metabelian.

Another difficulty was due to infinite locally graded groups with all proper

subgroups soluble. Such groups are both hyperabelian (see [FdGN]) and locally

soluble (see [DES]), but it is still an open question whether they are soluble.

However, there is a positive answer if we bound the derived length of subgroups

(see [DE]). Motivated by this result, we worked with groups whose subgroups are

either subnormal or soluble of bounded derived length. In our analysis, almost

minimal simple groups show up. These are groups which fit between a minimal

simple group and its automorphism group.

We proved the following main results in [ETT].

Theorem 1.47. [ETT] Let G be a locally (soluble-by-finite) group and suppose

that, for some positive integer d, every subgroup of G is either subnormal or

soluble of derived length at most d. Then either

(i) G is soluble, or

(ii) G(r) is finite for some integer r and G is an extension of a soluble group of

derived length at most d by a finite almost minimal simple group.

Theorem 1.48. [ETT] Let G be a locally graded group and suppose that, for

some positive integers n and d, every subgroup of G is either subnormal of defect

at most n or soluble of derived length at most d. Then either

(i) G is soluble of derived length not exceeding a function depending on n and

d, or
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(ii) G(r) is finite for some integer r = r(n) and G is an extension of a soluble

group of derived length at most d by a finite almost minimal simple group.

32



chapter 2

Infinite Groups with an

Anticentral Element

1

2.1 Introduction

Let G be a non-perfect group. An element a is called an anticentral element if

aG′ = aG. In [Lad08, Theorem 4.3], Ladisch proved that every finite group with

an anticentral element is solvable. However, there are examples of infinite groups

with an anticentral element which are not solvable. In this work our objects of

interest are infinite groups containing an anticentral element. In particular, it is

natural to ask the following question:

Question 2.1. Is every locally finite group with an anticentral element locally

solvable?

First, we will present some results on periodic linear and finitary groups con-

taining an anticentral element. Then we will show that if a locally finite group

containing an anticentral element is residually finite, then it is locally solvable.

A non-perfect group G is called a Camina group if every element outside its

commutator subgroup is anticentral. Finite Camina groups were studied by many

1This study is carried out under the supervision of Professor Patrizia Longobardi and Pro-
fessor Mercede Maj of University of Salerno. I would like to express my graditude to Professor
Longobardi and Professor Maj for their suggestions and comments. I also would like to thank
Professor David Chillag and Professor Marcel Herzog since they suggested to look at anticen-
tral elements. I would like to thank University of Salerno for hospitality and the colleagues in
University of Salerno for their kindness and hospitality. This study is supported by Scientific
and Research Council of Turkey (TBİTAK) BDEB 2219 International Post Doctoral Research
Fellowship. I would like to thank TBİTAK for the support.
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authors as A. Camina in [Cam78], MacDonald in [Mac81, Mac86], Chillag and

MacDonald in [CM], Chillag, Mann and Scoppola in [CMS], Dark and Scoppola in

[DS], Isaacs in [Isa89], Ren in [Ren], Lewis in [Lew10]. A complete classification

of finite non-abelian Camina groups was given in [DS]. Indeed, a finite non-

abelian Camina group is either a Camina p-group of nilpotency class at most 3

or a Frobenius group whose complements are either cyclic or isomorphic to the

quaternion group (see [Lew10, Theorem 1]).

In [HLM11], Herzog, Longobardi and Maj studied infinite Camina groups.

They proved in [HLM11, Theorem 7] that an infinite non-abelian Camina group

with finite commutator subgroup is a nilpotent p-group of class 2, of exponent

dividing p2 with Z(G) = G′. They classified residually finite Camina groups in

[HLM11, Proposition 11], indeed they proved that if G is a non-abelian residually

finite Camina group then one of the following holds:

1. G is a finite p-group of nilpotency class at most 3,

2. G is an infinite p-group of nilpotency class 2 and exponent dividing p2, with

G′ = Z(G),

3. G is a Frobenius group with Frobenius kernel equal to G′ and it is nilpotent

of class depending on the order |G/G′| and finite cyclic complements,

4. G is a Frobenius group with abelian kernel and complements isomorphic to

Q8.

They proved in [HLM11, Theorem 16] that a finitely generated solvable Camina

group is either abelian or finite. They also proved in [HLM11, Theorem 8] that if

G is a locally finite Camina group, then either G/G′ is a p−group for a suitable

prime p, or G′ is nilpotent and either G′ is a p-group for some prime p or G/G′

is locally cyclic.

There are non-solvable finitely generated infinite Camina groups constructed

by Olshanskii (see [HLM11]). In this work, we will also give a method to construct

infinite Camina groups which are not locally solvable. Indeed, we will prove the

following theorem:
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Theorem 2.2. For each connected algebraic group H over an algebraically closed

field of characteristic p with Frobenius map σ on H, there exist countably many

non-isomorphic infinite Camina groups G with G′ ∼= H. In particular, if H is

semisimple then G is not locally solvable.

2.2 Some properties of groups with anticentral

elements

First, observe that, if G is a group with an anticentral element a, then G′ =

{[a, g] : g ∈ G}. Indeed, for every x ∈ G′ there exists g ∈ G such that

ax = ag by the definition of an anticentral element. Hence, x = [a, g]. Moreover,

|G′| = |aG′| = |aG| = |G : CG(a)|. It is easy to see that if G has an anticentral

element a and N is a normal subgroup of G, then aN is anticentral in G/N .

Recall that the lower central series of G is defined as γn+1(G) = [γn(G), G]

where γ1(G) = G and the upper central series of G is defined as Zn+1(G)/Zn(G) =

Z(G/Zn(G)) where Z1(G) is the center of G.

The following result and Corollary 2.4 will be useful later.

Lemma 2.3. Let G be a group with an anticentral element such that γn+1(G) is

finite for some n. Then G is solvable.

Proof. Philip Hall showed that if G is a group such that γn+1(G) is finite, then

G/Z2n(G) is finite (see [Rob95, 14.5.3]). Since G contains an anticentral element,

G/Z2n is a finite group with an anticentral element, hence, it is solvable by [Lad08,

Theorem 4.3]. But Z2n(G) is also solvable since it is nilpotent, so, G is solvable.

The following result follows from Lemma 2.3 since G′ = γ2(G).

Corollary 2.4. A group with an anticentral element with finite commutator sub-

group is solvable.

The following result is a consequence of the basic properties of a group with

an anticentral element:
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Lemma 2.5. Let G be a group with an anticentral element a ∈ G. If a ∈
Zα(G) for some ordinal α (where Zα(G) denotes the α-th term of the transfinitely

extended upper central series of G), then G is hypercentral.

Proof. Since Zα(G) � G, the element aZα is anticentral in G/Zα. Assume a ∈
Zα(G). Then aZα(G) = Zα(G) is anticentral in G/Zα(G). Then G/Zα(G) is

abelian, hence, G = Zα+1(G).

Now, the following result is a consequence of a theorem of Kegel on groups

with splitting automorphisms of prime order:

Proposition 2.6. Let G be a group with an anticentral element a of prime order

p.

1. If p = 2 then G′ is abelian.

2. If p = 3 then G′ is nilpotent of class at most 3.

3. If G is locally finite, then G′ is locally nilpotent.

Proof. Let G be a group with an anticentral element a of order p. Then for every

c ∈ G′, the element ca−1 is conjugate to a−1, so |ca−1| = p. Then

1 = (ca−1)p = ca−1ca−1 . . . ca−1

= c(a−1ca)(a−2ca2) . . . (a1−pcap−1)a−p

= ccaca
2

. . . ca
p−1

.

Hence, conjugation by a is a splitting automorphism of G′.

If p = 2, then for each c ∈ G′

cca = 1 so ca = c−1.

Then G′ is abelian.

If p = 3, then G′ is a group with a splitting automorphism of order 3. By

[Zhu, Lemma 6], G′ is nilpotent of class at most 3.

Now, let p be not necessarily 2 or 3 and assume G is locally finite. Let H

be a finitely generated subgroup of G′. Then K = 〈H, a〉 is a finitely generated
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subgroup of G, so K is finite. Now, M = H〈a〉 ≤ K. Clearly, a is a splitting

automorphism of M and since M ≤ K, the group M is finite. By [?, Satz 6], a

finite group with a splitting automorphism of prime order is nilpotent, hence M

is nilpotent, so G′ is locally nilpotent.

2.3 Locally finite groups with an anticentral el-

ement

Let G be a group with an anticentral element. The cardinality of G is the

product of cardinalities of G′ and CG(a). We observed that if G′ is finite, then

G is solvable. Now, we will show that if G is a locally finite group and CG(a) is

finite, then G is locally solvable. Indeed, we have the following consequence of a

theorem of Hartley on centralizers in locally finite groups:

Proposition 2.7. Let G be a locally finite group with an anticentral element a.

If there exists x ∈ G such that CG(x) is finite, then G is locally solvable.

Proof. Assume that G is a locally finite group containing an element x with finite

centralizer. By [Har92, Corollary A1], G has a normal locally solvable subgroup

N of finite index. Then G/N is a finite group with an anticentral element,

hence, G/N is solvable by [Lad08, Theorem 4.3]. Let M be a finitely generated

subgroup of G. Here, MN/N is solvable since it is contained in G/N . Moreover,

MN/N ∼= M/(M ∩ N) where N is locally solvable and M is finite. Hence, M

is an extension of a solvable group by a solvable group, that is, M is solvable.

Therefore, G is locally solvable.

Proposition 2.8. Let G be a group with locally finite commutator subgroup.

Assume that G has an anticentral element a of finite order such that CG′(a) is

finite. Then 〈a〉G′ is locally solvable.

Proof. LetH = 〈a〉G′. SinceG′ is locally finite, H is locally finite. Let h ∈ CH(a).

Then h = g′ak for some g′ ∈ G′ and some integer k. Now, ha = ah. Then

ag′ak = g′ak+1, that is, g′ ∈ CG′(a). Hence, CH(a) = CG′(a)〈a〉 is finite.

Now, H is a locally finite group with an element with finite centralizer, by

[Har92, Corollary A1], H has a locally solvable normal subgroup N of finite index.
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Consider K = 〈N g : g ∈ G〉. Clearly K is a normal subgroup of G and since

N is locally solvable, the subgroup K is locally solvable. Now, G/K is a group

with an anticentral element. Here, (G/K)′ = G′K/K ≤ HK/K ∼= H/(H ∩K).

Since H∩K ≥ N and H/N is finite, the quotient H/(H∩K) is finite. Hence, G/K

is a group with finite commutator subgroup and G/K contains an anticentral

element. By Corollary 2.4, it is solvable.

Let M be a finitely generated subgroup of H. Since H is locally finite, M

is finite. Clearly, MK/K ≤ G/K is solvable. But MK/K ∼= M/(M ∩ K) and

M∩K is a finite solvable group since M is finite and K is locally solvable. Hence,

M is solvable, that is, H is locally solvable.

Now, we will consider linear groups with anticentral elements. Recall that a

group is called linear if it has a faithful representation in some GLn(F) where

F is any field. Schur proved that periodic linear groups are locally finite (see

[KW73, 1.L.1]).

Locally finite fields of characteristic p are exactly the subfields of the algebraic

closure of Fp. Now, if a group G is contained in GLn(F) for some locally finite

field F, then G is contained in GLn(F). So, without loss of generality, we will

consider periodic groups with anticentral elements which have a faithful linear

representation in some GLn(F) where F is the algebraic closure of Fp.

Theorem 2.9. Let G be a group with an anticentral element a of order m such

that G′ is a periodic F−linear group where F has characteristic p. Then one of

the following cases occurs:

1. CG′(a) is finite and G is solvable.

2. CG′(a) has an infinite abelian subgroup of exponent pk where pk divides m.

Proof. Since G′ is a periodic linear group, it is locally finite. Without loss of

generality, we consider the algebraic closure K of F, so we may assume G has a

faithful linear representation in GLn(K).

Consider CG′(a). If CG′(a) is finite, by Proposition 2.8, G is locally solvable.

By a result of Zassenhaus (see [Rob95, 15.1.3]), a linear locally solvable group is

solvable, that is, G is solvable.
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Assume that CG′(a) is infinite.

Now, let x ∈ CG′(a). Since ax is conjugate to a, the order of ax is m.

Hence, 1 = (ax)m = amxm = xm. So, CG′(a) has exponent dividing m. By

Hall-Kulatilaka Theorem (see [Rob95, 14.3.7]), CG′(a) has an infinite abelian

subgroup. So, CG′(a) has an infinite abelian subgroup of exponent dividing m.

Since m is divisible by at most finitely many primes, there exists a prime q such

that A = Dr∞i=1Zqk is contained in CG′(a) where qk divides m. Assume q 6= p.

Then, since A is a set of commuting semisimple elements of GLn(F), by [SS, 5.8

Theorem (c)], A is contained in a maximal torus T of GLn(F). But T is a direct

product of n copies of F∗ and F∗ is locally cyclic. Hence, A can not be contained

in T . Therefore, q = p, that is, CG′(a) has an infinite abelian unipotent subgroup

of exponent pk for some k such that pk divides m.

The following result is a consequence of Theorem 2.9.

Corollary 2.10. If G is a group with an anticentral element a of finite order

such that G′ is periodic F−linear group and (|a|, p) = 1 where charF = p. Then

G is solvable.

In particular, periodic linear groups over fields of characteristic p with semisim-

ple anticentral elements are solvable.

Proof. Assume that CG′(a) is infinite. Then by Theorem 2.9, CG′(a) has an

infinite abelian subgroup of exponent pk where pk divides |a|. But (|a|, p) = 1.

Therefore, CG′(a) is finite and G is solvable.

The following result is on periodic groups with an anticentral element which

have a faithful representation in GLn(C) for some n.

Proposition 2.11. If G is a periodic subgroup of GLn(C) and G has an anti-

central element of order n, then G is solvable.

Proof. By Schur’s Theorem, G is locally finite since it is a periodic linear group.

Since |a| = n, the group CG′(a) has exponent dividing n. Burnside showed that

if chark = 0, a k-linear group of finite exponent is finite (see [Rob95, 8.1.11.ii]).

So, CG′(a) is finite and by Proposition 2.8, G is locally solvable. But since G is

linear, by Zassenhaus’ Theorem [Rob95, 15.1.3], it is solvable.
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Theorem 2.12. Let G ≤ Sym(Ω) be a group with an anticentral element a such

that supp(a) is finite. Then G′ is locally finite and locally solvable.

Proof. Let G ≤ Sym(Ω) and a ∈ G be anticentral in G. Since supp(a) is finite, a

has finite order and a ∈ FSym(Ω). Then, every conjugate of a in G is contained

in FSym(Ω), since FSym(Ω) is a normal subgroup of SymΩ. Hence,

aG = aG′ ⊆ FSym(Ω).

Since a ∈ FSymΩ, we have G′ ≤ FSymΩ. Hence, G′ is locally finite.

Now,

CG′(a) = G′ ∩ CFSymΩ(a) and CFSymΩ(a) = HK

where H = CSym(supp(a))(a) and K = FSym(Ω\supp(a)). Hence,

CG′(a) = G′ ∩HK.

Let x ∈ G′ ∩ K. Then x and a have disjoint supports and ax = ag for some

g ∈ G. Since ax and a are conjugate finitary permutations, they have the same

cycle type, that is, both of them are products of nl cycles of lenght l for each

natural number l. But, since a and x have disjoint supports, we have x = 1.

Hence, G′ ∩K = 1.

Let hk1, hk2 ∈ G′ ∩ HK. Then (hk1)−1(hk2) = k−1
1 k2 ∈ G′ ∩ K = 1, so

k1 = k2. Therefore, for each h ∈ H there exists unique a k ∈ K such that hk ∈
G′ ∩ HK = CG′(a). But since H is finite, CG′(a) is finite. Now, G′ ≤ FSymΩ,

so it is a locally finite group.

Since CG′(a) is finite, by Proposition 2.8, 〈a〉G′ is locally solvable.

If G is locally finite, we can say more:

Corollary 2.13. Let G be a locally finite subgroup of Sym(Ω). If G contains an

anticentral element a with supp(a) finite, then G is locally solvable.

Proof. By Theorem 2.12, G′ is locally solvable. Let H be a finitely generated

subgroup of G. Since G is locally finite, H is finite. Then

HG′/G′ ∼= H/(H ∩G′).
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Now, HG′/G′ is abelian. Since H is finite and G′ is locally solvable, the intersec-

tion H ∩G′ is solvable. Hence, H is solvable, that is, G is locally solvable.

Corollary 2.14. If a group G with an anticentral element has a faithful finitary

permutation representation, then it is solvable.

Proof. Since G has a finitary permutation representation, that is G ≤ FSymΩ for

some infinite set Ω, then G acts on the infinite set Ω such that every element has

finite support. Since the finitary symmetric group is locally finite, G is locally

finite. By Corollary 2.13, since supp(a) is finite, G is locally solvable. Then

the normal closure 〈aG〉 is locally solvable. Since FSymΩ can be embedded in

FGL(V ) for some V , the group G has faithful a finitary linear representation.

By [MPP, Proposition 1], if G has a faithful finitary linear representation and x

is an element of G such that 〈xG〉 is locally solvable, then 〈xG〉 is solvable. Hence,

A = 〈aG〉 is solvable. But aG = aG′. For each g′ ∈ G′, we have ag′ = ag for some

g ∈ G, hence ag′ ∈ A. Since a ∈ A, the commutator subgroup G′ is contained in

A. Since A is solvable, G′ is solvable, that is G is solvable.

The following observation shows that if a locally finite group with an anticen-

tral element is residually finite, then it is locally solvable.

Proposition 2.15. Let G be a residually finite and locally finite group with an

anticentral element a. Then G is locally solvable.

Proof. Since G is residually finite, there exists a descending chain of normal

subgroups Ni of finite index in G with
⋂
Ni = 1. Since G/Ni is a finite group

with an anticentral element, by [Lad08, Theorem 4.3], G/Ni is solvable for each

i.

Assume that Ni is locally solvable for some i. If T is a finitely generated

subgroup of G, then T is finite. TNi/Ni is solvable since it is contained in G/Ni.

But TNi/Ni
∼= T/(T ∩Ni), so, T is solvable. Hence, G is locally solvable.

Then assume each Ni is a non-(locally solvable) group. Then Ni’s are locally

finite groups which are not locally solvable and

N1 ≥ N2 ≥ . . . .
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Since N1 is a locally finite group which is not locally solvable, N1 has a finite

non-solvable subgroup K. Now, since KNi/Ni is solvable for each i, the group Ni

has a finite non-solvable subgroup K ∩Ni, say Ki. Then Ki’s form a descending

chain of finite non-solvable subgroups. This chain must stabilize, so, there exists

some n such that Kn = Kn+i for each i. Therefore, Kn ≤
⋂
Ni = 1, which is a

contradiction. Hence, G is locally solvable.

2.4 Infinite non-solvable Camina groups

In this section, we will construct some examples of infinite Camina groups

which are not locally solvable. In these examples the commutator subgroups are

periodic linear groups. Our main tool in constructing these examples is Lang-

Steinberg Theorem. To state Lang-Steinberg Theorem, we need some definitions:

Definition 2.16. Let G be a linear algebraic group over an algebraically closed

field F of characteristic p for some prime p. Let q = pm with m ≥ 1 and σq be

the map given by

σq : GLn(F) −→ GLn(F)

(aij) −→ (aqij).

Now, σq is a group automorphism of GLn(F ). A homomorphism σ : G → G is

called a standard Frobenius map if for some n the embedding i : G→ GLn(F)

satisfies i(σ(g)) = σq(i(g)) for some q = pk and for all g ∈ G.

A homomorphism α from G to G is called a Frobenius map if some positive

power of α is a standard Frobenius map.

Now, by [Car93, page 31], Frobenius maps are algebraic endomorphisms with

finite fixed point group. Let G be a connected linear algebraic group over an

algebraically closed field F of characteristic p. Let σ be a Frobenius map on

G and CG(σ) = Gσ its fixed point group. The following result by Lang and

Steinberg will be useful in our construction.
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Theorem 2.17. [SS, Theorem 2.2] (Lang-Steinberg) Let G be a connected

algebraic group over an algebraically closed field of characteristic p and let σ be

a Frobenius map on G. Then the map L defined as

L : G −→ G

x −→ x−1xσ

is surjective.

Now, we will prove the following result:

Theorem 2.18. Let G be any connected (linear) algebraic group over an alge-

braically closed field of characteristic p and σ be a Frobenius map on G. Then the

group H = Go〈σ〉 is an infinite Camina group with a periodic linear commutator

subgroup. Moreover, if G is semisimple, then H is not locally solvable.

Proof. Let G be any connected linear algebraic group over an algebraically closed

field of characteristic p. Consider G as a subgroup of GLm(F) for some m. Now,

for each n ∈ N let σn : (xij) −→ (xp
n

ij ) be a standard Frobenius map from G

to G. Now, σn is a group automorphism of the abstract group G, which is also

an algebraic endomorphism of the algebraic group G. Observe that σ−1
n is also

a group automorphism, but it is not a morphism of varieties, i.e., σn is not an

algebraic automorphism. For each k ∈ N, σkn = σnk is also a Frobenius map. So,

without loss of generality, take σ = σn which sends each matrix entry to its q−th

power where q = pn. Now, consider the group H = Go 〈σ〉.
Let (g, σk1), (h, σk2) be any two elements of H. Their product

(g, σk1)(h, σk2) = ((g)σ
k2h, σk1+k2).

Then, one can observe that (g, σk)−1 = ((g−1)σ
−k
, σ−k).

We first prove the following:

Claim For every s 6= 0, the element (1, σs) is an anticentral element of H.

Proof of the Claim First, consider the conjugacy class of (1, σs) ∈ H where
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s < 0. Any conjugate of (1, σs) is of the form

((g−1)σ
−k
, σ−k)(1, σs)(g, σk) = ((g−1)σ

−k
, σ−k)(g, σk+s)

= ((g−1)σ
s

g, σs).

Now, let x = gσ
s ∈ G. Then (g−1)σ

s
g = x−1xσ

−s
. Since s is a negative integer,

σ−s is also a Frobenius map. Therefore, by Lang-Steinberg Theorem (Theorem

??), the map x −→ x−1xσ
−s

is onto G. Hence, (1, σs)H = {(g, σs) : g ∈ G} for

each s < 0.

Now, let

G̃ = {(x, 1) : x ∈ G} ≤ H

and, consider H ′. Since H/G̃ is cyclic, G̃ ≥ H ′. Now, consider

[(g, 1), (1, σ)] = (g−1, 1)(1, σ−1)(g, 1)(1.σ)

= ((g−1)σ
−1

, σ−1)(gσ, σ)

= (g−1gσ, 1)

Clearly, the set A = {[(g, 1), (1, σ)] : g ∈ G} is a subset of H ′. But, by Theorem

??, since the map g −→ g−1gσ is surjective from G to G, the sets A and G̃

coincide. Hence, H ′ = G̃.

Then, we have

(1, σs)H ′ = {(1, σs)(x, 1) : x ∈ G} = {(x, σs) : x ∈ G}.

Therefore, for each s < 0, the element (1, σs) is anticentral in H. But the inverse

of an anticentral element is also anticentral, so for each s 6= 0, the element (1, σs)

is anticentral. This proves our claim.

Now, we observed also that for each s < 0 the conjugacy class of (1, σs) in H

consists of the elements of the set {(g, σs) : g ∈ G}. Then, each element in these

conjugacy classes and their inverses are also anticentral. Therefore (g, σk) is an

anticentral element of H for all g ∈ G, for all k 6= 0. This shows that H is a

Camina group. Clearly, H ′ ∼= G is a linear algebraic group over an algebraically
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closed field of characteristic p, hence it is locally finite.

Corollary 2.19. For any connected linear algebraic group G defined over an

algebraically closed field F of characteristic p, there exist countably many non-

isomorphic copies of infinite Camina groups whose commutator subgroups are

isomorphic to G.

Proof. Let σ be the Frobenius map on G defined by

σ : G −→ G

(xij) −→ (xpij)

Define Hn = Go 〈σn〉. By Theorem 2.18, Hn is an infinite Camina group whose

commutator subgroup is isomorphic to G. Now, we have to show that one can

construct countably many non-isomorphic infinite Camina groups in this way.

Now, F is the algebraic closure of Fp, hence it is a locally finite field. Then,

there exists a sequence of integers ni|ni+1 such that one can write k as a union of

finite fields such as

F =
⋃

ni|ni+1

Fpni .

Define Gi = G(Fpni ), the Fpni -rational points of G. Similarly, one can write

G as a union of finite groups, that is, G has a local system consisting of G(Fpni ).
Indeed, G =

⋃
Gi. Here Gi’s are fixed points of σni in G. Since ni|ni+1, the

subgroups Gi form an increasing chain. Since Gi’s are finite and G is infinite, we

can choose ni’s so that Gi < Gi+1 for each i, that is, each element of the chain is

a proper subgroup of the other one.

Now, for each ni, consider the Camina group Hni constructed as in Theorem

??. Now, for each i, j with i 6= j we will show that Hni is not isomorphic to Hnj .

Without loss of generality, assume i < j. Now, consider an anticentral element

of Hnj ,

(g, σknj) ∈ Hnj .

The centralizer CHnj ((g, σ
k
nj

)) is isomorphic to ∼= Gnjk, so an element of Hnj

whose centralizer has minimal order is in the conjugacy class of (1, σnj). But,

CHi ((1, σni))
∼= Gni has smaller order, so, Hni is not isomorphic toHnj . Therefore,

45



we have countably many non-isomorphic Camina groups Hni such that H ′ni =

G.

Now, we can construct some examples of infinite Camina groups:

Example 2.20. Let T be a torus in GLn(F) where F is an algebraically closed

field of characteristic p and let σ be a standard Frobenius map. Then, G = To〈σ〉
is an infinite solvable Camina group by Theorem 2.18. Here, G′ is abelian and

CG′(σ) is finite. By [HLM11, Theorem 16], a finitely generated solvable Camina

group is either abelian or finite. Now, G is infinite and non-abelian, so, G is not

finitely generated.

Example 2.21. Let H = SLn(F), where F is an algebraically closed field of

characteristic p. Then H is a simple linear algebraic group. Let

σk : H −→ H

(xij) −→ (xp
k

ij )

Then for each k ∈ N, the group Gk = H o 〈σk〉 is an infinite Camina group

which is not locally solvable. Here, if k1 6= k2 the group Gk1 is not isomorphic

to Gk2 . To see this, assume without loss of generality that k1 < k2. We have

CGk2 ((g, σk2))
∼= SLn(pk2) and CGk2 ((g, σsk2))

∼= SLn(psk2) for each s ≥ 0. Hence,

the minimal size of a centralizer in Gk2 is the order of SLn(pk2). But, in G1, the

order of the centralizer of (1, σk1) is smaller. Therefore, Gk1 is not isomorphic to

Gk2 .

Remark 2.22. In Theorem 2.9, we showed that ifG is a group with an anticentral

element a of order n such that G′ is a periodic F−linear group where F has

characteristic p then either G is solvable or CG′(a) has an infinite elementary

abelian p−subgroup. Now, observe that by Theorem 2.18, there are infinite

Camina groups G, whose anticentral elements have infinite order such that G is

neither solvable nor locally solvable and the centralizer of any anticentral element

is finite.

The following example is a Camina group whose commutator subgroup is a
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non-linear simple locally finite group, hence, the commutator subgroup contains

every finite group.

Example 2.23. Let F be the algebraic closure of Fp. Let

φn : SLn(F) −→ SLn+1(F)

A −→

(
A 0

0 1

)

be the embedding of SLn(F) into SLn+1(F). Consider the direct limit G of

SLn(F)’s via these embeddings φn’s. Here, G is a non-linear simple locally finite

group. Let α be the automorphism of G defined as α|SLn(F) : (xij) −→ (xqij) where

q = pk. Hence, α|SLn(F) is a standard Frobenius map σn,q for SLn(F). Consider

the map

L : G −→ G

x −→ x−1xα.

Since for each x ∈ G the map α sends x ∈ SLn(F) to an element in SLn(F),

the map L|SLn(F) is equal to the Lang map x −→ x−1xσn,q , so it is surjective.

Therefore, by the same argument as in Theorem 2.18, Go〈α〉 is a Camina group,

whose commutator subgroup is isomorphic to G, a non-linear simple locally finite

group. Moreover, for each k where q = pk we obtain a non-isomorphic infinite

non-linear Camina group whose commutator subgroup is isomorphic to G. Also,

since every finitely generated subgroup of Go 〈α〉 is contained in an extension of

SLn(F) by 〈σ〉, the group Go 〈α〉 is not finitely generated.
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chapter 3

Finite Groups with a Splitting

Automorphism of Odd Order

3.1 Introduction

Let G be a group and α be an automorphism of G. An element x ∈ G is

called a fixed-point of α if xα = x. We denote the set of fixed points of α in G

by CG(α). An automorphism α of G is called fixed-point-free if the identity

element is the only fixed-point of α, namely CG(α) = 1.

Yu. M. Gorchakov defined in [Grc65] the following:

Definition 3.1. An automorphism α of order n is called a splitting automorphism

if for every x ∈ G, we have

xxαxα
2

. . . xα
n−1

= 1.

By [?, 10.5.1], if G is a finite group, a fixed-point-free automorphism is a

splitting automorphism.

An element a ∈ G is called an anticentral element of G if aG′ = aG (see

[Lad08] or [Ers12]). One can observe that if a ∈ G is an anticentral element, then

a induces a splitting automorphism of G′. Moreover, if α is a fixed-point-free

automorphism of a finite group G, then α is an anticentral element of H = G〈α〉.
Indeed, one can observe the following implications:

Remark 3.2. Let G be a group.

1. If G is finite and α is a fixed point free automorphism of G then α is

anticentral in G〈α〉
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2. If a is an anticentral element of G then a induce a splitting automorphism

of G′

Thompson proved that in [Th59, Theorem 1] a finite group with a fixed-

point-free automorphism of prime order is nilpotent. Moreover, Kegel proved in

[Keg61, Satz 1] that a finite group with a splitting automorphism of prime order

is nilpotent.

Rowley proved in [Row, Theorem] that a finite group with a fixed-point-free

automorphism is solvable. Later, Ladisch proved in [Lad08] that a finite group

with an anticentral element is solvable. It is natural to ask the following question:

Question 3.3. Is a finite group admitting a splitting automorphism necessarily

solvable?

The answer of this question in the full generality is negative. In particular,

let H be a cyclic group of order 31. Consider the map

β : H −→ H

x −→ 11x.

One can observe easily that β is a fixed-point-free automorphism of H, and |β| =
30. Now, consider the direct product of H with the alternating group of degree

5. Now, α : H × A5 −→ H × A5 with

α(x, y) = (xβ, y)

is a splitting automorphism of H × A5, and |α| = 30.

These kind of examples motivate the following question:

Question 3.4. Let n be a natural number which is not divisible by the exponent

of any finite non-abelian simple group. Is a finite group admitting a splitting

automorphism of order n necessarily solvable?

By Kegel’s result, the answer of Question 3.4 is positive for prime n. E. Jabara

proved in [Jab] that a finite group with a splitting automorphism of order 4 is

solvable. In this paper, we also give a partial answer to Question 3.4, indeed we

prove the following result:
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Theorem 3.5. A finite group with a splitting automorphism of odd order is solv-

able.

This result has an immediate consequence about locally finite groups:

Corollary 3.6. A locally finite group with a splitting automorphism of odd order

is locally solvable.

Proof. Let G be a locally finite group with a splitting automorphism α of odd

order n and let H be a finitely generated subgroup of G. Observe that K =

〈H,Hα, Hα2
, . . . Hαn−1〉 is a finite group with a splitting automorhism of odd

order. Hence, by Theorem 3.5, K and H are solvable.

An immediate consequence of Corollary 3.6 answers [Ers12, Question 1.1]

partially, but in a more general setting:

Corollary 3.7. A locally finite group with an anticentral element of odd order is

locally solvable.

3.2 Preliminaries

Let us give some properties of splitting automorphisms. The following easy

observation will be useful in the proof of Theorem ??:

Proposition 3.8. Let n be a natural number, let G be group and α be an auto-

morphism of G such that

1. |α| divides n, and,

2. xxαxα
2
. . . xα

n−1
= 1 for every x in G.

Then CG(α) has exponent dividing n and for every x ∈ G, the element xα−1 ∈
G〈α〉 has order dividing n.

Proof. Let x ∈ CG(α). Then 1 = x.xαxα
2
. . . xα

n−1
= xn. Therefore, CG(α) has

exponent dividing n.
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Moreover,

(xα−1)n = x(α−1xα)(α−2xα2) . . . (α−(n−1)xαn−1)αn

= xxαxα
2

. . . xα
n−1

= 1.

Lemma 3.9. Let n be an odd natural number and let S be a finite non-abelian

simple group with an automorphism α such that

1. |α| divides n, and,

2. xxαxα
2
. . . xα

n−1
= 1 for every x in S.

Then α ∈ AutS\InnS and S is a simple group of Lie type.

Proof. Assume that α ∈ InnS ∼= S. In particular, let g ∈ S be the element of S

inducing α, that is, xα = g−1xg. Then, by Proposition ??, the element xg−1 has

order dividing n. Then, the image of the map

πg : S −→ S

x −→ xg−1

has exponent dividing n. But πg is a bijection of S, since g ∈ S. But by the

Feit-Thompson theorem, the finite non-abelian simple group S can not have odd

exponent, hence α can not be an inner automorphism.

Then, α induces an outer automorphism of S. It is well known that if S ∼=
Alt(Ω) where Ω is a finite set with |Ω| ≥ 5, then |Out(S)| = 2 if |Ω| 6= 6 and

|OutS| = 4 if |Ω| = 6. Therefore, if S is an alternating group, S can not have an

outer automorphism of odd order. One can observe the same result for sporadic

groups in [ATLAS, Table 1], in particular, the outer automorphism group of any

sporadic group has order dividing 2. Hence, S must be a simple group of Lie

type.

Let us give some notation about simple groups of Lie type. Let S be a finite

simple group of Lie type. Then, by [Car93], there exists a simple linear algebraic
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group S of adjoint type over the algebraic closure of a finite field of characteristic

p, and a Frobenius map σ on S such that S = Op′(Sσ) where Sσ denotes the set

of fixed points of σ on S.

By [Ste68-2], automorphisms of a finite simple group of Lie type are well

known. In particular, [Ste68-2, Theorem 30], if α is an automorphism of S where

S = Op′(Sσ) is a finite simple group of Lie type then

α = gφδ

where g is an element of InnDiagS = Sσ (an inner-diagonal automorphism),

φ is induced by an automorphism of the underlying field k, and δ is a graph

automorphism. Indeed φ is induced by a Frobenius map ϕ on S such that ϕk = σ,

hence ϕ|S = φ. We will denote Sσ/S by OutDiagS.

3.3 Main result

First we will prove the following result about finite simple groups to prove

Theorem 3.5:

Theorem 3.10. Let S be a non-abelian finite simple group with an automorphism

α of order dividing n with

x.xα.xα
2

. . . .xα
n−1

= 1

for every x ∈ G. Then n is even.

Proof. Assume that n is odd. Then by Lemma 3.9, S is of Lie type and α is

not an inner automorphism. Then, α = gθ where 1 6= θ = φδ where φ is a field

automorphism of S and δ is a graph automorphism.

By [GLS97, Theorem 2.5.12, (a) and (e)], subgroup of inner diagonal automor-

phisms is normal in Aut(S) and field automorphisms and graph automorphisms

commute with each other. Therefore, |α| must be divisible by |θ| and |θ| must

be divisible by |δ|. Since n is odd by assumption, |δ| 6= 2, hence, either δ = 1

and θ = φ or S ∼= D4(q) for the prime power q and δ is a graph automorphism of

order 3.

52



1. First assume that S = D4(q) and α = gφδ where δ is a graph automorphism

of order dividing 3 (in particular δ maybe be equal to 1). Observe that

H = CS(φ) ∼= D4(q1) where q1|q and H is δ-invariant. By [Har92, Lemma

3.1], CH(δ) involves a finite simple group, so fix an involution ι ∈ CH(δ) =

CS(φ, δ). Now, ι is fixed by θ. Clearly, α = gφδ = gθ = θgθ. Denote

gθ = g1. Definitely, g1 has odd order, and one has ια = ιg1 . But by [?,

Theorem 2.5.12 (h)] OutDiagD4 is either 1 or an elementary abelian group

of order 4, so g1 must be an element of S.

Then x = ιg1 ∈ S, so, by Proposition 3.8

xα−1 = ιg1g
−1
1 θ−1 = ιδ−1φ−1

has order dividing n.

Since ι commutes with φ and δ, one has ιn = ι = φnδn = 1, which is a

contradiction.

Hence, S is not isomorphic to D4(q).

2. Then, α = gφ where g ∈ InnDiagS = Sσ and φ is a field automorphism.

Assume g ∈ S. Observe that Sφ ≤ Sσ is a finite group of Lie type (and

simple except PSL2(2), PSL2(3) and 2B2(2)), so it has even order. Choose

an involution in ι ∈ Sφ. Necessarily, ιφ = ι and gι ∈ S. So, (gια−1)n = 1.

But gια−1 = gιφ−1g−1 is conjugate to ιφ−1, which has even order since ι

and φ commute.

3. Then suppose g /∈ S. Since g has odd order, this is possible only if Sσ/S

is not a 2-group. By [GLS97, Theorem 2.5.12 (c)], in this case S has type

Al or E6(q) with 3|q − 1 . Assume that S has type E6(q) where 3|(q − 1).

Let α = gφ = xyφ where x ∈ Sσ\S, the map φ is a field automorphism of

order k and y ∈ S. Clearly, k|n. Since g /∈ S, we know x 6= 1.

By [GLS97, Theorem 2.5.12 (b)], we may assume |x| = 3. Now since

(3, q) = 1, we conclude that x is a semisimple element of S fixed by σ.

By [GLS97, Theorem 2.5.12 (b)] Sσ/S is normalized by the group of field

automorphisms, hence xφ = x or xφ = x2 = x−1. If xφ = x−1, one has
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x = xφ
k

= (x−1)φ
k−1

where |φ| = k. Since k is odd, x must have order 2,

which is a contradiction. Therefore, x is fixed by φ. Hence, x is an inner-

diagonal automorphism of S0 = Op′(Sφ) where S0
∼= E6(q0) with q0|q. By

[?, Lemma 3.4], since x is a semisimple element of S fixed by φ, the group

CS0(x) contains a simple group of rank greater than 6−3
3+[ 4

3
]
, which is necessar-

ily positive. Hence, there exists an involution ι ∈ S fixed by x and φ. Take

yx
−1
ι ∈ S. By Proposition 3.8, (yx

−1
ια−1)n = 1. Now, α = xyφ = yx

−1
xφ,

hence

yx
−1

ια−1 = yx
−1

ιφ−1x−1(y−1)x
−1

has order t dividing n. But this element is conjugate to ιφ−1x−1 which has

even order.

4. Therefore, we end up with the case S is a simple linear algebraic group

of adjoint type Al. Let S = Op′(Sσ) with α = gφ. Still, |α| = n is odd,

g ∈ Sσ and φ is a field automorphism of order k. Again, k|n. Indeed,

φ is induced by a Frobenius map ψ on S with ψk = σ. Observe that

S0 = Op′(Sψ) ≤ Op′(Sσ) is a finite group of Lie type over, hence it has even

order. Fix an involution ι ∈ S0. Write α = gφ = xyφ where x ∈ Sσ\S and

y ∈ S. By Case 2 we may assume x 6= 1.

(a) Let gs and gu be the semisimple and the unipotent parts of the Jordan

decomposition of g. Since x 6= 1, we get gs 6= 1. Clearly gS = gsguS =

gsS since gu ∈ S. On the other hand, gS = xS, so without loss of

generality, one may assume that x is semisimple. By the choice of the

coset representative, one may also assume that xφ = x (indeed x is

Fp-rational).

If x is not a regular semisimple element, CS(x) involves a ψ invariant

simple linear algebraic group, hence, there exist an involution ι ∈ S

with ιφ = ι and [ι, x] = 1. Choose w = (ιy)φ ∈ S such that wα−1 =

φ−1ιyφφ−1y−1x = φ−1ιx. This element has even order.

(b) Next, consider the case α = gφ = xyφ where y ∈ S and x ∈ OutDiagS
a regular semisimple element where S is of type Al. Hence, by [GLS97,

Theorem 2.5.1 (b), Definition 2.5.13 (a)] x is a diagonal automorphism,
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without loss of generality, x = diag(λ1, . . . , λl+1) where λi’s are distinct

eigenvalues fixed by σ. Now, there exists x1 = diag(
∏l+1

i=1 λi, 1, 1, . . . 1)

and y1 ∈ S such that xy = x1y1. If l ≥ 2, x1 is not regular and we are

done as in Case 4a.

(c) Finally, S is of type A1, the map α = xyφ where x ∈ OutDiagS and

y ∈ S and φ is a field automorphism. In this case x has order 2 and

xy = gsgu. Since (xy)2 ∈ S one has g2
s ∈ S which contradicts with |gs|

dividing |g| and |g| odd.

Hence, if a finite non-abelian simple group S admits an automorphism

α of order k dividing n with

x.xα.xα
2...xα

n−1

= 1

for every x ∈ S then n must be even.

Now, we can prove the main result of this paper, namely Theorem 3.5:

Proof of Theorem 3.5. Let G be a finite non-solvable group with a splitting au-

tomorphism α of odd order n. Let R be the solvable radical of G. Then Rα is a

solvable normal subgroup, so R = Rα. Consider G/R. Define α : G/R −→ G/R

as (xR)α = xαR for all x in G. Now, for every xR ∈ G/R, one has

(xR).(xR)α.(xR)α
2

. . . (xR)α
n−1

= x.xα.xα
2

. . . xα
n−1

R = R. (3.3.1)

Therefore, α is an automorphism of G/R, satisfying (3.3.1) for every xR ∈
G/R and |α| divides n. We may assume that R = 1 and hence α = α. Now,

let G be a finite group having trivial solvable radical, with an automorphism α

satisfying

x.xα.xα
2

. . . xα
n−1

= 1

for every x ∈ G and α is of order dividing n, where n is an odd natural number.

Let M be a minimal normal subgroup of G. Since R = 1, the group M is not

solvable. By [Rob95, 3.3.15], M is isomorphic to the direct product of finitely
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many copies of a finite non-abelian simple group S.

Fix S ≤M and consider the action of 〈α〉 on the group

K = S × Sα × . . .× Sαt−1

where t is the length of an orbit of α. Clearly, t divides |α| = n. If (s1, s
α
2 , . . . , s

αt−1

t ) ∈
CK(α), then,

(s1, s
α
2 , . . . , s

αt−1

t )α = (sα
t

t , s
α
1 , . . . , s

αt−1

t−1 ) = (s1, s
α
2 , . . . , s

αt−1

t )

hence

s1 = s2 = . . . = st = sα
t

t .

Therefore, CK(α) ∼= CS(αt). Since CK(α) must have odd order, αt 6= 1.

Consider H = {(s, 1, . . . , 1) ∈ K} ∼= S. Since H ≤ G, the map α satisfies

(s, 1, . . . , 1).(s, 1, . . . , 1)α . . . (s, 1, . . . , 1)α
n−1

= (1, 1, . . . , 1).

In particular, (s.sα
t
.sα

2t
. . . . sα

t(m−1)) = 1 for all s ∈ S where mt = n. There-

fore, β = αt is a splitting automorphism of H and |β| is odd.

Since H is isomorphic to S, we conclude that S is a finite simple group with

a splitting automorphism β of odd order. By Lemma 3.9, S is a simple group of

Lie type and β ∈ AutS\InnS, is a splitting automorphism of odd order. This

contradicts with Theorem 3.10.

Hence, a finite group with a splitting automorphism of odd order is solvable.
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chapter 4

Locally Finite Groups with

Centralizers of Finite Rank,

with C.K. Gupta

4.1 Introduction

Centralizers and fixed points of automorphisms carry a lot structural infor-

mation in finite and locally finite groups. For finite groups, two famous results of

this kind are Brauer-Fowler Theorem and Thompson’s theorem on finite groups

with a fixed point free automorphism of prime order. The following question of

Kegel and Wehrfritz motivated the study of centralizers in (simple) locally finite

groups:

Question 4.1. [KW73, Question II.4] Let G be an infinite simple locally finite

group of cardinality κ. Is the cardinality of the centralizer of every element of G

equal to κ?

This question, which is still open in full generality, was answered positively for

countable simple locally finite groups, by Hartley and Kuzucuoğlu. Namely, in

[HK91, Theorem A2], they proved that in an infinite simple locally finite group,

every element has infinite centralizer. Later, Hartley proved in [Har92, Corollary

A1] that if G is a locally finite group with a finite centralizer of an element,

then G has a locally soluble normal subgroup of finite index. It is natural to ask

questions of the following type:

Question 4.2. Describe the structure of an infinite locally finite groups G with

given conditions on the centralizer of an element of G.
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Many authors studied locally finite groups imposing conditions on centralizers.

Before mentioning results about structure of locally finite groups with restricted

structure of centralizers, we need some definitions:

Definition 4.3. A group G is called a Chernikov group if it is a finite extension

of direct product of finitely many Prfer p-groups for possibly distinct primes p.

Definition 4.4. If any chain of subgroups of a group G has a minimal element,

then G satisfies minimal condition (min). If any chain of p-subgroups of a

group G has a minimal element then G satisfies min-p.

Shunkov and Kegel-Wehrfritz proved independently that a locally finite group

satisfying minimal condition (min) is a Chernikov group (see [?, KW70]). In

[Har82, Theorem B] Hartley proved that if G is a periodic locally soluble group

admitting an involutory automorphism φ with Chernikov centralizer, then [G, φ]′

and G/[G, φ] are also Chernikov. Moreover, Asar proved in [?, Theorem] that a

locally finite group with a Chernikov centralizer of an involution is almost locally

soluble. Later, Belyaev and Hartley proved that if G is a simple locally finite

group with Chernikov centralizer of an element, then G is finite (see [Har95,

Theorem 3.2] and [Shu07, Theorem 5.5]). Hartley proved in [Har88, Theorem 1]

that a locally finite group with a Chernikov centralizer of an element of prime

power order is almost locally soluble.

Definition 4.5. Let G be a group. If every finitely generated subgroup of G is

generated by at most r elements, then G is called a group of finite rank r. If

every finitely generated p-subgroup of G is generated by at most rp-elements, G

is called a group of finite p-rank rp.

In particular, Chernikov groups have finite rank. However, a locally finite

group of finite rank need not be Chernikov. But, by a result of Blackburn (see

[Bla62, Theorem 4.1]), if a locally finite p-group G has a finite maximal abelian

subgroup, then G is Chernikov. Indeed, Blackburn proved in [Bla62] that a locally

finite p-group of finite rank is Chernikov.

In this paper, we will investigate the following problem:

Question 4.6. Describe infinite locally finite groups G with an element α of

prime order p such that CG(α) has finite rank.
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Here, one can not prove that G is locally soluble, since there exists simple

locally finite groups G with an element of prime order p whose centralizer has

finite rank. In particular let G = PSL2(k) where k is an infinite locally finite

field of odd characteristic q 6= p. Let x ∈ G be a diagonal (hence semisimple)

element of prime order p in G. Then CG(x) is isomorphic to a split torus if p 6= 2,

and CG(x)0 is a torus if p = 2. In both cases, CG(x) has finite rank. However,

any unipotent element u in an infinite locally finite simple group of Lie type has

a centralizer of infinite rank.

In [KS04, Theorem 1.1], Kuzucuooğlu and Shumyatsky obtained a detailed

answer for Question 4.6 for the case p = 2:

Theorem 4.7. [KS04, Theorem 1.1] Let G be an infinite locally finite group with

an involution ι such that CG(ι) has finite rank. Then G/[G, ι] has finite rank.

Moreover, [G, ι]′ has a characteristic subgroup B such that

1. B is a product of finitely subgroups isomorphic to either PSL(2, K) or

SL(2, K), which are normal in [G, ι], for some infinite locally finite fields

K of odd characteristic,

2. [G, ι]′/B has finite rank.

We will first classify infinite simple locally finite groups with an automorphism

α of prime order p such that CG(α) has finite rank. Indeed, we will prove the

following result:

Theorem 4.8. Let G be an infinite simple locally finite group with an automor-

phism α of order p such that CG(α) has finite rank. Then, G is isomorphic to

one of the following groups:

1. G ∼= PSL(l + 1, k) or PSU(l + 1, k) for some infinite locally finite field k

of characteristic q 6= p and p > l

2. G has type Bl(k), Cl(k) or 2B2 (that is l = 2) over an infinite locally finite

field k of characteristic q 6= p (and q = 2 in the case of 2B2(k)) and p >

2l − 1.

59



3. G ∼= Dl(k) or 2Dl(k) or 3D4(k) for some infinite locally finite field k of

characteristic q 6= p and p > 2l − 3

4. G ∼= E6(k) or 2E6(k) over an infinite locally finite field of characteristic

q 6= p, and p > 11.

5. G ∼= E7(k), F4(k) or 2F4(k) over an infinite locally finite field of character-

istic q 6= p, and p > 17.

6. G ∼= E8(k) over an infinite locally finite field of characteristic q 6= p, and

p > 29.

7. G ∼= G2(k) or 2G2(k) over an infinite locally finite field of characteristic

q 6= p, and p > 5.

The case p = 2 is important since there is a wide literature on centralizers of

involutions, which were key tools of classification of finite simple groups. By Feit-

Thompson Theorem, for any locally finite group G, the group O2′(G) ≤ R(G)

where R(G) denotes the locally soluble radical of G. For other primes, the first

difficulty is the existence of non-soluble p′-groups. However, p = 3 deserves

special attention since one can list all the simple 3′-groups. Indeed, Lemma ??

indicates that only simple 3′-groups are exactly Suzuki groups 2B2(q). Hence, in

this paper, we will investigate the structure of locally finite groups G with an

automorphism α of order 3 such that CG(α) has finite rank. First, let us observe

the following consequence of Theorem 4.8 for p = 3:

Corollary 4.9. Let G be an infinite simple locally finite group with an automor-

phism α of order 3 such that CG(α) has finite rank. Then G ∼= PSL(2, k), PSL(3, k)

or PSU(3, k) over an infinite locally finite field k of characteristic q 6= 3 and

α ∈ InnDiagG.

By using Corollary 4.9 we will prove the following the following result on

locally finite groups with an automorphism of order 3 whose centralizer has finite

rank:

Theorem 4.10. Let G be an infinite locally finite group with an automorphism

α of order 3 with CG(α) of finite rank. Then
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1. If G is not almost locally soluble then [G,α] is infinite.

2. O = O3′(G) is an almost locally soluble group, with O/R(O) has all mini-

mal normal subgroups isomorphic to direct products of 2B2(q), for possibly

distinct fields Fq

3. O3′(G) has normal subgroups N ≥ M such that N/M is nilpotent and M

and G/N has finite rank

4. K = R(G)O3′(G) is a finite extension of R(G) and CG/K(α) has finite rank.

5. G/K has minimal normal subgroups, any of which is a product of finitely

many groups of the form PSL(2, k), PSL(3, k) or PSU(3, k) over some

possibly infinite locally finite fields k of characteristic q 6= 3.

4.2 Preliminaries

The following result of Shunkov helps us understand the structure of locally

finite groups of finite rank:

Theorem 4.11. [Sun71, Corollary 2] A locally finite group of finite rank is almost

locally soluble.

Therefore, if G is a locally finite group with an automorphism α such that

CG(α) has finite rank, by Theorem 4.11 CG(α) is almost locally soluble.

We also observe that a locally finite group of finite rank satisfies min-p for

every prime p.

Lemma 4.12. A locally finite group of finite rank satisfies min-p for each prime

p.

Proof. Let G be a locally finite group of finite rank. Then G has finite p-rank

for each prime p. By [?, Theorem 4.1], since G has maximal elementary abelian

p-subgroups, any Sylow p-subgroup of G is Chernikov. Hence, G satisfies min-p

for each prime p.

The following well-known result of Kegel and Wehrfritz will be useful in our

proofs:
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Theorem 4.13. [KW73, 3.2 Corollary] Let G be a locally finite group containing

an elements of order p. Then the following are equivalent:

1. There exists x ∈ G such that |x| = p and CG(x) satisfies min-p.

2. G satisfies min-p.

Remark 4.14. Therefore, if G is a locally finite group with an element of order

p such that CG(x) has finite rank, then by Lemma 4.12, CG(x) satisfies min-p,

hence, by Theorem 4.13, G satisfies min-p. Infinite simple locally finite groups

satisfying min-p are classified independently by Belyaev, Borovik, Hartley-Shute

and Thomas. In particular, simple locally finite groups satisfying min-p are

precisely simple groups of Lie type over infinite locally finite fields of characteristic

q 6= p (see [Bel84, Bor83, HS84, Tho]).

The following result is used to deal with coprime automorphisms:

Lemma 4.15. [KS04, Lemma 2.1] Let A be a finite group of automophisms

of a locally finite group G. If N is an A-invariant normal subgroup of G with

(|A|, |N |) = 1 then CG/N(AN/N) = CG(A)N/N .

Remark 4.16. By Lemma 4.15, we deduce that if G is a locally finite group with

an automorphism α of order p with CG(α) has finite rank, then CG/Op′ (G)(α) has

also finite rank.

Lemma 4.17. Let G be a periodic almost locally soluble group with an element

x of order p such that CG(x) satisfies min-p. Then G/Op′(G) is Chernikov.

Proof. By [KW73, 3.17 Theorem], if a periodic almost locally soluble group G

satisfies min-p, then [G : Op′p(G)] is finite where Op′p(G) denotes the preimage

of Op(G/Op′(G)). Now, since CG(x) satisfies min-p, by Theorem 4.13, G satisfies

min-p, hence Op(G/Op′(G)) is a locally finite p-group satisfying min-p. Then, it

is Chernikov by [Sun71, KW70], hence G/Op′(G) is Chernikov.

Here, we need some background information on simple groups of Lie type. Let

G be a simple linear algebraic group of adjoint type over an algebraically closure

of Fq. An algebraic group is an algebraic variety which has a group structure, such
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that group operations are variety morphisms. In particular, if this variety is affine,

or equivalently if G ≤ GL(n,K) for some n ∈ N and an algebraically closed field

K, then G is called a linear algebraic group. There are classical and exceptional

types of linear algebraic groups, arising from Lie theory, namely, types Al, Bl, Cl

and Dl are classical types, where E6, E7, E8, F4, G2 are the exceptional types. For

each Lie type, there are several groups, all of which is a perfect central extension

of the one called adjoint type, and the universal central extension is called the

simply connected group. For example, for type Al, the simply connected group

is SL(l + 1, K) and the adjoint group is PGL(l + 1, K). For more information,

see [Hum75] or [?].

Now, let G be a simple locally finite group of Lie type over a locally finite

field K of characteristic q.

By [Tur], there exist a simple linear algebraic group G of adjoint type over

the algebraic closure of K, a Frobenius map σ on G and a sequence of integers

ni|ni+1 such that

G =
⋃
i∈N

Op′(Gσni )

where Gσk denotes the set of fixed points of the Frobenius map σk on G and

Op′(H) denotes the subgroup generated by p-elements of H (see [HK91, Lemma

4.3] ). Hence, a locally finite, simple group of Lie type has a local system con-

sisting of finite simple groups of same type.

Automorphisms of simple groups of Lie type over perfect fields are classified by

Steinberg in [Ste68-2, Theorem 30]. Indeed, if α is an automorphism of a simple

group G of Lie type over a locally finite field K, then there exists an element g

of
⋃
Gσni = InnDiagG, an automorphism φ induced by an automorphism of K

and an automorphism δ induced by the symmetries of the Dynkin diagram such

that

α = gφδ.

These are called inner-diagonal, field and graph automorphisms.

Let G be a simple group of Lie type defined over a locally finite field of

characteristic q. Recall that an automorphism α of G, is called a semisimple

automorphism if (|α|, q) = 1. An element x ∈ G is called a semisimple
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element if (x, q) = 1.

We need the following result by B. Hartley:

Lemma 4.18. [Har92, Lemma 3.1] Let G be an adjoint type simple linear al-

gebraic group over the algebraic closure of Fq. Let G = Oq′(Gσ) where σ is a

Frobenius map on G. If α is an automorphism of G of prime order p 6= q with

α ∈ AutG\InnDiagG, then CG(α) involves a finite non-abelian simple group H

such that |G| is bounded by a function of |H| and p.

We will use this result of Hartley to show that if G is an infinite locally finite

group with an automorphism α of prime order whose centralizer has finite rank,

then G is of Lie type and α is an inner-diagonal automorphism.

Lemma 4.19. Let G be an infinite simple locally finite group with an automor-

phism α of prime order p such that CG(α) is of finite rank. Then G is a simple

group of Lie type over an infinite locally finite field of characteristic q 6= p and

α ∈ InnDiagG.

Proof. Let G be an infinite simple locally finite group with an automorphism α of

order p such that CG(α) has finite rank. By Lemma 4.12, CG(α) satisfies min-p.

Then, by Theorem 4.13, G itself satisfies min-p. By Remark 4.14, G is an infinite

simple group of Lie type over a locally finite field of characteristic q 6= p. Then,

by [HK91, Theorem 4.3], G is a union of finite simple groups Gi = Oq′(Gσni ), each

of which is invariant under α, that is, G =
⋃
i∈NGi. Now, α is an automorphism

of Gi, of order p. If α ∈ AutGi\InnDiagGi, then by Lemma ??, there exists

a finite simple group Hi which is involved in CGi(α) such that |Gi| is bounded

in terms of |Hi| and p. Since p is constant, if |Hi|’s are bounded, then |Gi|’s
must be bounded, hence G should be finite, which is not the case. So, if α is

not an inner-diagonal automorphism, then CG(α) involves finite simple groups of

arbitrarily large orders. Hence, CG(α) can not be almost locally soluble, and can

not be of finite rank.

Hence, if G is a simple locally finite group with an automorphism α of prime

order such that CG(α) has finite rank, then G is linear and α is a semisimple

inner-diagonal automorphism. The following result is a direct consequence of

this fact and [Har92, Theorem C].
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Proposition 4.20. Let G be an infinite simple locally finite group with an au-

tomorphism α of prime order such that CG(α) has finite rank. Then CG(α) has

infinitely many elements of distinct prime orders.

One can observe that [G,α] = 〈g−1gα : g ∈ G〉 is the intersection of all

normal subgroups N of G such that α acts trivially on G/N .

Lemma 4.21. Let G be a locally finite group with an automorphism α such that

CG(α) has finite rank. If G is not almost locally soluble, then [G,α] is infinite.

Proof. By Theorem 4.11, CG(α) is almost locally soluble. Since G is not almost

locally soluble by assumption, [G : CG(α)] is infinite. Assume [G,α] is finite, that

is, let |[G,α]| = n. Let x1, x2, . . . xn+1 ∈ G. Clearly, there exists i, j ∈ {1, 2, . . . n}
such that x−1

i xαi = [xi, α] = [xj, α] = x−1
j xαj .

Hence, xix
−1
j ∈ CG(α). Then

xiCG(α) = xjCG(α).

So, [G : CG(α)] must be finite, which contradicts our assumption G not being

almost locally soluble.

The following two observations might be easy but interesting. The first one

is a consequence of the solution of Restricted Burnside Problem:

Proposition 4.22. Let G be a locally finite group of finite rank and bounded

exponent. Then G is finite.

Proof. Let G be a locally finite group of finite rank r and bounded exponent

m. By the solution of Restricted Burnside Problem (see [ZV]), for each r and

m, there are only finitely many finite groups generated by r elements and have

exponent m. Then, since any finite subgroup of G are generated by at most r-

elements and have exponent m, it has order less than some constant C. Assume

that H ≤ G is a finite subgroup of maximal order. If G is infinite, then there

exists g ∈ G\H, but then 〈H, g〉 is a finite subgroup of G, whose order exceeds

|H|, which is a contradiction. Hence, G must be finite.

So, the following easy result follows from Proposition 4.22:
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Proposition 4.23. Let G be a locally finite group with an automorphism α of

finite order such that CG(α) has finite rank. If CG(α) has bounded exponent, then

G is almost locally soluble.

Proof. Assume that CG(α) has finite rank r and bounded exponent m. By Propo-

sition 4.22, CG(α) must be finite. Then H = G〈α〉 is a locally finite group with

an element α such that CH(α) is finite. By [Har92, Corollary A1], H is almost

locally soluble, and hence, G is almost locally soluble.

The following observation is a consequence of the classification of finite simple

groups:

Lemma 4.24. A non-abelian finite simple group of order coprime with 3′ order

is 2B2(22k+1).

Proof. Clearly the order of any alternating group is divisible by 3. By [?, Table

1, p.vii], the same holds for sporadic groups. By [?, Table 5, p. xvi] the order of

any finite simple group G of Lie type over a finite field of size q is divisible by

q(q2− 1) unless G ∼=2 B2(22k+1). If q is not a power of 3, one gets 3|q2− 1, so the

result follows.

The next result is related to the case p = 3, which we will mainly deal with:

Lemma 4.25. Let G be an infinite locally finite 3′-group with an automorphism

α of order 3 and CG(α) has rank r. Then G is almost locally soluble. If R denotes

the locally soluble radical of G, then soc(G/R) is generated by k-copies of 2B2(qi),

where qi’s and k are bounded by r.

Proof. Khukhro and Mazurov proved in [KM] that a locally finite p′-group H

having an automorphism β of order p such that CH(β) has finite rank r has a

locally soluble normal subgroup of {p, r}-bounded index. Hence, in our case, a

locally finite 3′-group G with an automorphism α of order 3 with CG(α) of rank

r is almost locally soluble and G/R is bounded by r. Hence |soc(G/R)| is also

bounded by r. Since G/R has no soluble normal subgroups, all of its minimal

normal subgroups are isomorphic to products of 2B2(qi)’s since the only simple

3′-group is 2B2(qi) for some qi = 22mi+1, by Lemma ??.
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Lemma 4.26. Let G be an infinite locally finite group with an automorphism α

of order 3 and CG(α) has rank r. Let R be the locally soluble radical of G and

K = O3′(G)R. Then

1. K/R = O3′(G)R/R is a finite group, any of whose minimal normal sub-

groups is generated by k-copies of 2B2(q), where q and k are bounded by

r.

2. O3′(G) has normal subgroups N ≥ M such that N/M is nilpotent and M

and G/N has finite rank.

3. G/K has a minimal normal subgroup.

Proof. We will prove the first and third step, since the second follows from a

result of Khukhro:

1. By Lemma 4.25, O3′(G) is almost locally soluble, hence O3′(G)/R(O3′(G))

is a finite non-soluble 3′-group. By Lemma 4.24, O3′(G)/R(O3′(G)) has

m minimal normal subgroups, any of which is generated by ki-copies of
2B2(qi), where qi and ki are bounded by r, i = 1, . . .m. Since, K is a

product of an almost locally soluble group and R, which is the locally soluble

radical of G, one can conclude easily that K is almost locally soluble. But

R(K) = R(O3′(G))R. Since R(O3′(G))charO3′(G) and O3′(G) �G, we get

R(O3′(G))�G, hence R(K) = R. Hence, K/R = K/R(K) is finite and any

of its minimal normal subgroups is generated by k-copies of 2B2(q), where

q and k are bounded by r.

2. Follows from [Khu07, Corollary 3].

3. Observe that G/K has no normal locally soluble subgroups and G/K has

no normal 3′-subgroups. Denote G0 = G/K. Since CG/K(α) is a quotient of

CG/O3′ (G)(α) by a finite group and the later has finite rank by Lemma 4.15,

CG/K(α) has finite rank, in particular it satisfies min-3. By Theorem 4.13,

G0 satisfies min-3. Let S be a Sylow 3-subgroup of G0. Since G0 satisfies

min-3, one gets S is Chernikov. Let Γ = {T ≤ S : there exists N E

G0 with N ∩ S = T}. Since S is Chernikov, Γ has a minimal element
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Q. If Q = 1, any normal subgroup of G0 must be 3′-group, but since G0

has no normal 3′-subgroups by assumption, G0 must be simple, hence it

is the minimal normal subgroup of itself. Otherwise, if Q 6= 1, let M be

the intersection of all normal subgroups in Γ whose intersections with S

contains T . Then M is a minimal normal subgroup of G0.

4.3 Main results

The following result presents the main idea of our proofs.

Lemma 4.27. Let G = PSL(n, k) where k is an infinite locally finite field of

characteristic q. Let g ∈ PGL(n, k) be an inner-diagonal automorphism of G

such that CG(g) has finite rank. Then g is a regular semisimple element of G =

PGL(n, k) and n ≤ |g|.

Proof. Let g ∈ PGL(n, k) ≤ G be an inner-diagonal automorphism of G. Now,

CG(g) has finite rank and PGL(n, k)/PSL(n, k) has finite rank. Then

CPGL(n,k)(g)/CG(g) = CPGL(n,k)(g)/(CPGL(n,k)(g) ∩G)

∼= CPGL(n,k)(g)G/G ≤ PGL(n, k)/PSL(n, k),

so, CPGL(n,k)(g)/CG(g) and CPGL(n,k)(g) has finite rank. Since CPGL(n,k)(g) =⋃
i∈NCGi(g) where Gi = Gσni for some ni|ni+1, in our case CG(g) has finite rank,

so it must be almost locally soluble.

Consider the Jordan decomposition of g ∈ G. Namely, there exists s, u ∈ G,

with su = us = g and |s| is coprime with chark = q and |u| is a power of q.

Moreover, CG(g) = CG(s) ∩ CG(u).

If s = 1, then g = u and CG(u) can not be of finite rank for any unipotent

element since the center of a Sylow q-subgroup of G contains an infinite elemen-

tary abelian q-subgroup. Then s 6= 1. Now, assume g = su = us with u 6= 1

and s 6= 1. In this case, neither of s or u can be regular. Since g is conjugate to
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its Jordan form, there exist a matrix of the form x =

(
Js 0

0 Ju

)
Z ∈ G which

is conjugate to g, where Js is a semisimple k × k block and Ju is a unipotent

m×m block with k+m = n. Hence CG(g) ∼= CG(x). Since s 6= 1 and u 6= 1, the

unipotent block Ju 6= 1 and m ≥ 2. Therefore, there exists a unipotent subgroup

consisting of matrices of the form

{

(
Ik 0

0 Uλ

)
}

which is contained in CG(x) and can not be of finite rank. Hence, u = 1. Now,

CG(g) has finite rank, then CG(g) must be almost locally soluble by Shunkov’s

result. Here g = s is semisimple, so it is a diagonalizable element in PGL(n, k)

with all distinct eigenvalues, that is s is a regular semisimple element (see [SS,

E50, 1.7 Corollary]) . Indeed, if two eigenvalues of g are equal, then CG(g)

involves PSL(2, k).Then, since all eigenvaules of g are distinct roots of x|g| = 1,

the size of the matrix g must be less than or equal to |g|. Hence, n ≤ |g|.

Proof of Theorem 4.8. Let G be a simple locally finite group with an automor-

phism α of prime order such that CG(α) has finite rank. Then CG(α) satisfies

min-p. By Remark 4.14 ( [Bel84, Bor83, HS84, Tho]), if G is an infinite simple

locally finite group satisfying min-p, then G is a simple group of Lie type over

an infinite locally finite field of characteristic q 6= p.

Moreover, by Lemma 4.19, α is an inner-diagonal automorphism of G. Since G

is a simple group of Lie type over an infinite locally finite field of characteristic q,

by [Tur], there exist a simple linear algebraic group G of adjoint type, a Frobenius

map σ on G and a sequence of integers ni|ni+1 such that

G =
⋃
i∈N

Op′(Gσni )

where Gσk denotes the set of fixed points of the Frobenius map σk on G and

Op′(H) denotes the subgroup of a group H generated by p-elements of H (see

[HK91, Lemma 4.3] ). Since α ∈ InnDiagG, in fact α = g ∈
⋃
i∈NGσni .
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Denote Hi = Gσni . Since ni|ni+1, the groups Hi = Gσni ’s and Gi = Op′(Gσni )’s

form increasing chains of subgroups. Hence, G is a union of finite simple groups

Gi’s of Lie type. Since α = g ∈
⋃
Hi, by passing a subsequence of ni’s, one may

assume that each of Gi’s is invariant under g. Since Hi/Gi is finite, and CG(α)

has finite rank, so does CH(α) where H =
⋃

ı∈NGσni .

Now, CH(g) =
⋃
CG(g)σni . Since g is a semisimple element of G, by [SS], the

identity component CG(g)0 is a connected reductive linear algebraic group, that

is, CG(g)0 = TS1S2 . . . Sk where T is a central torus and Si’s are simple linear

algebraic groups by [SS, E3 1.4 ].

By passing a subsequence of ni’s, one can assume that α ∈ Gσni for every i.

Now, g ∈ InndiagG =
⋃
Gσni . The endomorphisms σni ’s are Frobenius maps on

G, by [SS, E10, 3.2], CG(α) is σni-invariant for each i ∈ N.

Now, we need to analyse the cases where CG(g) has finite rank, hence, almost

locally soluble. Indeed CG(g) is almost locally soluble if and only if CG(g) is

almost locally soluble. But, since CG(g) has its identity component which is a

reductive normal subgroup of finite index, the only possible case is CG(g)0 is a

torus. In particular, if G is a simple linear algebraic group and CG(g) is almost

locally soluble, then CG(g) must be abelian by finite. Indeed, by [SS, E50, 1.7

Corollary], this is equivalent to say that g is a regular semisimple element of the

simple algebraic group G.

Hence, we end up with q ∈ G, a regular semisimple element of order p. If

G has type Al, namely, if G ∼= PGL(n, k) for some infinite locally finite field of

characteristic q, then by Lemma ??, n ≤ p.

Assume that G has Lie type other than Al. Let H be the universal central

extension of G. Then H is simply connected simple algebraic group of the same

type with G. Let ḡ be a preimage of g ∈ H under the canonical map. Then

CH(ḡ) ∼= CG(g)0 and ḡp ∈ Z(H).

Now, H is a simply connected simple linear algebraic group and ḡ is a semisim-

ple element whose order modulo Z(H) is p. Let r =
∑
miri be the highest root

of the corresponding root system. By [HK91, Theorem D (i)], if p ≤
∑
mi, then

CH(G) ∼= CG(g)0 involves an infinite simple group, hence it can not have finite

rank.
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Now, we need the list sums of coefficients of highest roots of root systems.

For the details about root systems of simple linear algebraic groups, see [Car93]:

For type Al, the sum of the coefficients of the highest root is
∑l

imi = l.

For classical types Bl, Cl, and Dl the sums of the coefficients of the highest

root are 2l − 1, 2l − 1 and 2l − 3 respectively.

For exceptional types E6, E7, E8, F4 and G2, the sums
∑
mi are 11, 17, 29, 11

and 5 respectively.

Hence, if G is an infinite locally finite simple group with an automorphism α

of order p such that CG(α) has finite rank, then one of the following cases about

the underlying simple algebraic group G holds:

• G has type Al, namely G ∼= PSL(l+1, k) or PSU(l+1, k) for some infinite

locally finite field k of characteristic q 6= p and p > l (by Lemma ??).

• G has type Bl or Cl, namely G has type Bl(k), Cl(k) or 2B2 (that is l = 2)

over an infinite locally finite field k of characteristic q 6= p (and q = 2 in

the case of 2B2(k)) and p > 2l − 1.

• G has type Dl, namely G ∼= Dl(k) or 2Dl(k) or 3D4(k) for some infinite

locally finite field k of characteristic q 6= p and p > 2l − 3

• G is an exceptional simple linear algebraic group of type E6, namely G ∼=
E6(k) or 2E6(k) over an infinite locally finite field of characteristic q 6= p,

and p > 11.

• G is an exceptional simple linear algebraic group of type E7 of F4, namely

G ∼= E7(k), F4(k) or 2F4(k) over an infinite locally finite field of character-

istic q 6= p, and p > 17.

• G is an exceptional simple linear algebraic group of type E8, namely G ∼=
E8(k) over an infinite locally finite field of characteristic q 6= p, and p > 29.

• G is an exceptional simple linear algebraic group of type G2, namely G ∼=
G2(k) or 2G2(k) over an infinite locally finite field of characteristic q 6= p,

and p > 5.
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The next result will give restrictions of minimal normal subgroups of a locally

finite group with an element of order p whose centralizer has finite rank.

Theorem 4.28. Let M be a commuting product of infinite simple locally finite

groups G1, G2, . . . Gm and α be an automorphism of order p such that CM(α)

has finite rank r. Then each Gi is α-invariant, Gi’s belong to the list given in

Theorem 4.8. Moreover, Out(M) is soluble by finite.

Proof. Consider M =
∏
Gi. The automorphism α acts on the product of simple

groups, so, consider an orbit of α on M , and consider the product of the groups

in this orbit, namely M ≥ K = Gi × Gα
i × . . . Gαt−1

i , where t is the length of

the orbit. Clearly t divides p. But, if t = p then, CK(α) ∼= CGi(α
p) ∼= Gi. But,

since CM(α) has finite rank, it should be almost locally soluble by Theorem 4.11.

Therefore, t = 1, that is, each simple factor in M are α-invariant. Hence, each

Gi belongs to the list given in Theorem 4.8 for each p. Hence, for each p, there

are finitely many possible simple factors Gi.

Let A = AutM and I = InnM . Clearly, A permutes the isomorphic factors

in the product G = G1 . . . Gm. So, there exists a homomorphism ψ from A to

the product Sn1 × . . . × Snk where ni denotes the numbers of isomophic simple

groups in G, and k is the number of isomorphism types. Then, K = kerψ has

finite index in G. Since each Gi is normal in G, the kernel K contains I. Let Ki

be the subgroup of K which consists of all automorphisms β of G that restricts

as an inner automorphism of Gi. Now, I = InnG = ∩Ki and the map

f :K/ ∩Ki −→
m∏
i=1

K/Ki

x(∩Ki) −→ (xK1, . . . , xKm)

is an isomorphism. Now, we need to show that K/Ki is soluble. But K/Ki

embeds in OutGi, which is soluble by the Classification of finite simple groups.

Hence, K/I is soluble and A/I is soluble by finite.

For p = 3, we will have a special case of this result:

Corollary 4.29. Let M = G1×. . .×Gm be a direct product of simple locally finite

groups Gi. Assume that M has an automorphism α of order 3, such that CM(α)
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has finite rank. Then Gi’s are isomorphic to PSL(2, k), PSL(3, k) or PSU(3, k)

for some infinite locally finite field of characteristic different from 3. Moreover,

OutM is abelian by finite.

Proof. The first part follows from Corollary 4.9 and Theorem 4.28. Now, OutM

embeds in the direct product of finitely many copies of outer automorphism

groups of PSL(2, k), PSL(3, k) or PSU(3, k) with chark 6= 3 by the proof of

Theorem 4.28. Now, Out(PSL(2, k)) is an extension of Aut(k) by degree 2. For

PSL(3, k) and PSU(3, k), the group of outer automorphisms is isomorphic to an

extension of Aut(k) by degree 6 and 3 respectively.

Proof of Theorem 4.10. The first, second and fourth steps are consequences of

some results that was proved in this paper:

1. Follows from Lemma 4.21.

2. Follows from Lemma 4.25.

3. Follows from [Khu07, Corollary 3].

4. Follows from Lemma 4.26.

5. G/K has minimal normal subgroups by Lemma 4.26. Any minimal normal

subgroupMK/K ofG/K has an automorphism α of order 3 with CMK/K(α)

has finite rank.

Denote G/K by G0 and MK/K by M0. Since M0 is a minimal normal

subgroup of a locally finite group, by [?, 3.3.15 (ii)] it is isomorphic to a

product of the same simple locally finite groups H, that is, M0 is isomorphic

to
∏

i∈I H. If I is infinite, CM0(α) contains an infinite product of the group

H, which has infinite rank. Hence, M0
∼=
∏m

i=1H for some m ∈ N. By

Corollary ??, H is isomorphic to one of PSL2(k), PSL3(k) or PSU3(k)

where k is a locally finite field of characteristic q 6= 3.
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chapter 5

Locally Finite Groups with

Abelian Subgroups Whose

Centralizers Are Small, with M.

Kuzucuoğlu and P. Shumyatsky

5.1 Introduction

A group is locally finite if every finite subset of the group generates a finite

subgroup. In the theory of locally finite groups centralizers play an important

role. In particular the following family of problems has attracted great deal of

attention in the past. Let G be a locally finite group containing a finite subgroup

A such that CG(A) is small in some sense. What can be said about the structure

of G? In some situations quite significant information about G can be deduced.

For example if |A| = 2 and CG(A) is finite, then G has a nilpotent subgroup of

class at most two with finite index bounded by a function of |CG(A)| [HM80].

If G contains an element of prime order p whose centralizer is finite of order

m, then G contains a nilpotent subgroup of finite (m, p)-bounded index and p-

bounded nilpotency class. This result for locally nilpotent periodic groups is

due to Khukhro [Khu90] while the reduction to the nilpotent case was obtained

combining a result of Hartley and Meixner [HM81] with that of Fong [Fon76].

The latter uses the classification of finite simple groups. Another important

result in this direction is Hartley’s theorem that if G has an element of order

n with finite centralizer of order m, then G contains a locally soluble subgroup

with finite (m,n)-bounded index [Har92]. The interested reader should consult
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two excellent survey articles due to Hartley [Har95, ?] and the paper [BH] due

to Belyaev and Hartley for the comprehensive description of the developments in

this area in the twentieth century.

Recall that a group G is Chernikov if it has a subgroup of finite index that is

a direct product of finitely many groups of type Cp∞ for various primes p (quasi-

cyclic p-groups, or Prüfer p-groups). By a deep result obtained independently by

Shunkov [Sun70] and Kegel and Wehrfritz [KW70] Chernikov groups are precisely

the locally finite groups satisfying the minimal condition on subgroups, that is,

any non-empty set of subgroups possesses a minimal subgroup. In the literature

there are many results on Chernikov centralizers in locally finite groups. By and

large, they resemble the corresponding results on finite centralizers. In particu-

lar, Hartley proved in [Har88] that if a locally finite group contains an element of

prime-power order with Chernikov centralizer, then it is almost locally soluble.

A group is said to almost have certain property if it contains a subgroup of finite

index with that property.

Infinite locally finite groups containing a non-cyclic subgroup with finite cen-

tralizer can be simple. One example is provided by the group PSL(2, k), where

k is an infinite locally finite field of odd characteristic. This group contains a

non-cyclic subgroup of order four with finite centralizer. In [Shu01] the third

author proved that if a locally finite group G contains a non-cyclic subgroup A

of order p2 for a prime p such that CG(A) is finite and CG(a) has finite exponent

for all a ∈ A#, then G is almost locally soluble and has finite exponent. Here the

symbol A# stands for the set of the nontrivial elements of A.

If G and T are groups, we say that G involves T if there are subgroups

K ≤ H ≤ G, with K normal in H, such that H/K ∼= T . The main purpose of

the present article is to prove the following theorem.

Theorem 5.1. Let p be a prime and G a locally finite group containing an el-

ementary abelian p-subgroup A of rank at least 3 such that CG(A) is Chernikov

and CG(a) involves no infinite simple groups for any a ∈ A#. Then G is almost

locally soluble.

In view of the aforementioned result of Hartley the theorem remains valid

also in the case where A is of prime order. On the other hand, the theorem is no
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longer valid if we allow A to be of rank 2. In particular, this is illustrated by the

example of the group PSL2(k). More precisely, we will establish the following

characterization of the groups PSLp(k).

Theorem 5.2. An infinite simple locally finite group G admits an elementary

abelian p-group of automorphisms A such that CG(A) is Chernikov and CG(a)

involves no infinite simple groups for any a ∈ A# if and only if G is isomorphic

to PSLp(k) for some locally finite field k of characteristic different from p and A

has order p2.

Of course, this implies that if G is a simple locally finite group acted on by

an elementary abelian group A in such a way that GA satisfies the hypothesis

of Theorem 5.1, then G is finite. This provides the main tool for the proof of

Theorem 5.1. In turn, the proof of Theorem 5.2 uses a number of sophisticated

tools. In particular, it depends on the classification of finite simple groups and

the classification of periodic linear simple groups. The latter was obtained inde-

pendently in [Bel84, Bor83, HS84, Tho]. The result says that an infinite periodic

linear simple group is of Lie type over some locally finite field. It seems unlikely

that one could prove Theorem 5.1 without using this.

5.2 Proof of Theorem 5.2

If π is a set of primes, we denote by Oπ(G) the maximal normal π-subgroup of

a group G and by Oπ′(G) the subgroup generated by all π-elements. Recall that

a group satisfies min-p if every descending chain of p-subgroups has only finitely

many members.

The next lemma is well-known, see for example [Shu07, Proposition 3.6].

Lemma 5.3. Let G be a locally finite group and let A be a finite p-group of

automorphisms of G such that CG(A) satisfies min-p. Then G satisfies min-p,

too.

The following short lemma reduces the study of simple locally finite groups

satisfying our assumptions to the simple groups of Lie type over locally finite

fields.
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Lemma 5.4. Let G be an infinite simple locally finite group admitting an elemen-

tary abelian p-group A of automorphisms such that CG(A) is a Chernikov group.

Then G is simple of Lie type over a locally finite field of characteristic q 6= p.

Proof. Since CG(A) is Chernikov, it satisfies min-p. Thus by Lemma ??, G

satisfies min-p too. Theorem B of [HS84] tells us that a locally finite simple

group satisfying min-p is a group of Lie type over an infinite locally finite field of

characteristic q 6= p.

Let G be a simple locally finite group of Lie type. By [HK91, Lemma 4.3],

there exists a simple linear algebraic group G of adjoint type, a Frobenius map

σ on G and a sequence of natural numbers ni|ni+1 such that

G =
∞⋃
i=1

Oq′(Gσni ) (∗)

Here Gσ denotes the subgroup of fixed points of σ in G. By [?, Theorem 30],

if α is an automorphism of a simple group G of Lie type over a locally finite field

k, then

α = gφδ,

where g is an element of
∞⋃
i=1

Gσni = InndiagG (an inner-diagonal automorphism),

φ is induced by an automorphism of the field k, and δ is a graph automorphism.

Lemma 5.5. Let G be a simple group of Lie type over an infinite locally finite

field of characteristic q and let a be an automorphism of G of prime order p 6=
q. Assume that CG(a) involves no infinite simple groups. Then a is an inner-

diagonal automorphism.

Proof. By (*), we have G =
⋃
i∈NGi where Gi = Oq′(Gσni ) and G is a simple

linear algebraic group of adjoint type, σ is a Frobenius map on G and ni|ni+1 are

natural numbers. Observe that each Gi is a finite simple group of Lie type.

Hartley’s argument in the proof of Theorem C of [Har92] shows that if neces-

sary by passing to a subsequence of Gi, one may assume each Gi is a-invariant.

Assume that a is not an inner-diagonal automorphism. By [Har92, Lemma 3.1],

each CGi(a) involves a non-abelian simple group. Therefore, their union CG(a)
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is nonsoluble. By [Har92, Theorem 4.4], there exists an infinite reductive alge-

braic group H and a Frobenius map ψ of G which leaves H invariant, such that,

CGσ(a) = Hψ, and hence CG(a) =
⋃
i∈NHψni .

Since H is a reductive group, by [Hum75, p. 168], H0 is isomorphic to a

commuting product of a torus and finitely many simple linear algebraic groups.

We write H0 = TS1S2 . . . Sm for some m ≥ 1. Here, the group T is a central

torus and each Si is a simple linear algebraic group. Now, ψ acts on this product.

Let S = S1.

Take an orbit S, Sψ, Sψ
2
. . . Sψ

k−1
. Let M = S × Sψ × Sψ2

. . .× Sψk−1
in H0.

Observe that Hψ ≥Mψ
∼= Sψk .

Therefore, Sψk embeds in Hψ = CGσ(a). In particular, for every ni one may

assume Sσkni ≤ CGσni (a) and since ni|ni+1, we have

⋃
i∈N

Sψkni ≤
⋃
i∈N

CGσni (a) ≤ CQ(a)

where Q =
⋃
i∈NGσni . Recall that G = Oq′(Q). Consider the union K =⋃

i∈N Sψkni and set K0 = Oq′(K). Since K ≤ Q, it follows that K0 ≤ Oq′(Q) = G.

Hence K0 ≤ G ∩CQ(a), and so K0/Z(K0) is an infinite simple group involved in

CG(a). This contradiction shows that a is inner diagonal.

Hence, we restrict our attention to inner-diagonal automorphisms. Recall that

an element x ∈ G is called a semisimple element if (|x|, q) = 1. An automorphism

α ∈ Aut(G) is called a semisimple automorphism if (|α|, q) = 1. Observe that un-

der hypothesis of Lemma 5.4 the elements of A induce semisimple, inner-diagonal

automorphisms on G.

Lemma 5.6. Let G be a simple linear algebraic group over an algebraically closed

field of positive characteristic and let x be a semisimple element of G. Then

CG(x) involves no infinite simple linear algebraic groups if and only if CG(x) is

metabelian.

Proof. Assume that CG(x) involves no simple linear algebraic groups, By [SS, II,

Theorem 4.1] the connected component H = (CG(x))0 is reductive. A connected

reductive group is isomorphic to a commuting product of a torus with finitely
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many simple linear algebraic groups (see for example [Hum75, p. 168]). Next,

we deduce from [MT, Corollary 8.22] that H ′ is perfect. Therefore, either H ′ is a

product of simple linear algebraic groups or H ′ = 1. If H ′ is a product of simple

linear algebraic groups, then CG(x) involves a simple linear algebraic group by

the argument in Lemma 5.5. Hence H ′ = 1 and H is a torus. On the other hand,

by [SS, 4.4 Corollary], CG(x)/H is abelian. So CG(x) is metabelian.

Clearly, if CG(x) is metabelian, it does not involve a non-abelian simple group.

Recall that torsion primes of linear algebraic groups are defined as follows.

For type Al, these are the primes that divide l + 1. For types Bl, Cl, Dl, G2 the

prime is 2. For types E6, E7, F4 the primes are 2 and 3, and for type E8 the

primes are 2, 3, 5 (see [Ste75]).

Proposition 5.7. Let G be a simple group of Lie type over an infinite locally

finite field k of characteristic q and let A be an elementary abelian p-group of

inner-diagonal automorphisms where p 6= q. Then the following are equivalent:

1. CG(A) is finite.

2. CG(A) is Chernikov

3. CG(A) does not contain a torus of G.

Proof. Obviously (1) implies (2). Let us show that (2) implies (3). Assume that

CG(A) contains a torus T . By Hartley’s argument in [Har92, Theorem C], T

contains elements of infinitely many distinct prime orders, hence T cannot be

Chernikov. Finally, assume that CG(A) is infinite. Let G be the corresponding

simple linear algebraic group, where G is written as in (*). Clearly CG(A) is

infinite. By [Ste75, 2.18 Corollary] the identity component CG(A)0 is an infinite

connected reductive group. By definition, it contains a torus T of G, hence CG(A)

contains T = T ∩G, which is a torus of G.

We are now ready to embark on the proof of the main result of this section.

Proof of Theorem 5.2 Suppose that G admits an elementary abelian p-

group A of automorphisms such that the hypotheses are satisfied. By Lemma 5.4

G is of Lie type.
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Write

G =
∞⋃
i=1

Oq′(Gσni )

where G is the corresponding simple linear algebraic group of adjoint type and σ

is a Frobenius map on G. By Lemma 5.5 A is an elementary abelian p-subgroup

of semisimple, inner-diagonal automorphisms of G.

Assume that for some a ∈ A# the centralizer CG(a) involves an infinite simple

linear algebraic group H. By definition of a Frobenius map, some power of σ is

a standard Frobenius map. Therefore, there exists k ∈ N such that H is σk-

invariant. Let σk = ψ.

Now, one can show as in Lemma 5.5 that CG(a) involves an infinite simple

locally finite group. Hence we get a contradiction. In view of Lemma ??, we

conclude that CG(a) is metabelian.

Obviously, A ≤ CG(A). Since CG(A) is a Chernikov group, it does not contain

an infinite elemantary abelian subgroup, so A is finite, say |A| = pr. By [Har92,

Theorem C], if A is cyclic, then CG(A) is not Chernikov. Hence, r ≥ 2.

If p is not a torsion prime, then by [Ste75, Theorem 2.28] A is contained in

a maximal torus and by [SS, Lemma 5.9], indeed A is contained in a σ-invariant

maximal torus, say T of G. In that case, T0 =
⋃
Tσni is a maximal torus of G

which is contained in CG(A). By Proposition 5.7, CG(A) is not Chernikov.

Hence, p must be a torsion prime.

Case 1. Suppose that G is of type Al. Then the torsion primes are the primes

dividing l+1. Consider a ∈ A#. If a is not a regular semisimple element, then by

[SS, Theorem 4.1] CG(a) involves an infinite simple group. By [Har92, Theorem

4.4], there exists an infinite reductive algebraic group H and a Frobenius map ψ

on H such that CGσ(a) = Hψ. Hence, CG(a) =
⋃∞
i=1O

q′(Hψki ) for some ki|ki+1.

Since CG(a) involves no infinite simple groups, H, being reductive, must be a

torus. Since A ≤ CG(a), one has A ≤ H, so CG(A) contains
∞⋃
i=1

Oq′(Hψki ) which

is a torus. In view of Proposition 5.7, this contradicts the hypothesis that CG(A)

is Chernikov.

Consequently a must be a regular semisimple element. Hence, the character-

istic polynomial and the minimal polynomials of a are equal, and all eigenvalues
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of a are distinct.

Since |a| = p, we conclude that p = l + 1. Hence, G ∼= PGLp(k) and G ∼=
PSLp(k) or PSUp(k) depending on the Frobenius map σ, where k is a locally

finite field of characteristic q 6= p. Here, as usual, k is the algebraic closure of k.

Since a is a regular semisimple element, by [SS, Chapter III, Corollary 1.7] a

is contained in a unique maximal torus T of G and CG(a)0 is a torus. Therefore,

CG(a)0 = T . We have A ≤ CG(a) ≤ NG(T ). Since G is simple, it is connected

and so, by [?, p.28], we have CG(T ) = T . If A ≤ T , then CG(A) contains the

torus T . In this case,
⋃∞
i=1 Tσni ≤ CG(A). Again, in view of Proposition 5.7,

this is a contradiction with the hypothesis that CG(A) is Chernikov. Therefore,

A\T must be non-empty. Recall that NḠ(T )/T is isomorphic to the Weyl group

of PGLp(k), which is isomorphic to the symmetric group Sp. Since a Sylow p-

subgroup of Sp is cyclic, A/(A ∩ T ) is cyclic. Let y ∈ A\T . If we prove that

CT (y) is also of order p, then we conclude that |A| = p2.

Recall that, G = PGLp(k) ∼= PSLp(k). It is sufficient to show that if S is a

Sylow p-subgroup of the Weyl group W , then |CT (S)| = p.

Since all maximal tori are conjugate, we may assume without loss of generality

that T consists of the matrices

λ1

λ2

.

.

λp


Z

where Z = Z(SLp(k)) (scalar matrices) and λi are elements of k such that∏p
k=1 λk = 1. Choose a generator w of S which corresponds to the cycle (1 2 3 . . . p) ∈

Sp.

Let s ∈ CT (w). Then s can be chosen of the form s =



s1

s2

.

.

sp


Z
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with sp = 1.

We have

s = sw = (



s1

s2

.

.

sp


Z)w =



s2

s3

.

sp

s1


Z.

Hence, 1 = sp = s1z = s2z
2 = . . . = sp−1z

p−1 for some z ∈ Z. So, to each

z ∈ Z corresponds a unique element in CT (w). Therefore |CT (w)| = |Z| = p, as

required. So |CG(A)| ≤ p2. Hence |A| = p2.

Now, G has type Ap−1 and G is either PSLp(k) or PSUp(k), depending on

the Frobenius map σ. Let us show that G is necessarily isomorphic to PSLp(k).

Suppose first that the simple locally finite group G is twisted of type 2Ap−1

with p a prime greater than 3. Write p− 1 = 2m for some m ≥ 2. By [?, 13.3.8]

the Dynkin diagram has type Bm and by [?, 3.6] the Weyl group has order 2mm!.

Therefore the Weyl group has no elements of order p. It follows that A cannot

be embedded in the group of inner-diagonal automorphisms of PSUp(k).

Suppose p = 3. By [?, 13.3.1] the Weyl group of PSU3(k) is cyclic of order 2,

and so it has no elements of order 3.

Finally, assume that p = 2. Remark that for any prime power q, the group

PSU2(q2) is isomorphic to PSL2(q). Therefore, PSU2(k) ∼= PSL2(k0) for some

locally finite field k0 with [k : k0] = 2. Thus, we have shown that G ∼= PSLp(k)

whenever G is of type Al.

Case 2. Let G be a simple group of Lie type different from Al. Since p is a

torsion prime, p is either 2 or 3 or 5.

Assume that p = 2. Recall that G has a local system consisting of finite simple

groups Gi of the same type with G, defined over finite fields Fqni where ni|ni+1.

Any element a ∈ A# is an involutory automorphism of G and one can pass to an

a-invariant subsequence of Gi, so that a becomes an involutory automorphism of

each of them. Table 4.3.1 of [GLS97] shows that the centralizer of any involutory

automorphism of a finite simple group of Lie type different from type A1 involves
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a simple group of Lie type. More precisely, arguing as in the proof of Lemma ??,

each of CGi(a) involves a finite non-abelian simple group Hi such that Hi ≤ Hi+1.

Again
⋃
Hi is an infinite simple group involved in CG(a). Thus, p 6= 2.

Assume that p = 3. Then G is of type F4, E6, E7 or E8. The finite simple

groups of these types have Schur multipliers whose orders are relatively prime with

3, so A ≤ G. In [Aza79] Azad classified the centralizers of semisimple elements of

order 3 in finite Chevalley groups. According to his work, the centralizer of the

element of order 3 of a group of type F4, E6, E7 or E8 or possible twisted versions

of these groups always contains a finite simple group. Recall that G =
⋃∞
i=1Gi

and we can assume that all subgroups Gi are all of the same type in one of the

above families. As above, one can observe that the centralizer CGi(a) contains a

simple subgroup Hi with Hi ≤ Hi+1. The union
⋃
Hi is an infinite simple group

involved in CG(a) and we obtain a contradiction.

Finally, assume that p = 5. Then G has type E8. There is just one conjugacy

class of elements of order 5 in E8, and if a ∈ E8 has order 5 then CG(a) is a

reductive group of type A4A4 (see [Lie94, Theorem 1.17] and the example in

[Lie94, Section 1.5]). Hence, CG(a) involves an infinite simple group. This shows

that under our hypothesis G ∼= PSLp(k) and |A| = p2.

On the other hand, the proof shows that the group PSLp(k) really contains

the subgroup A with required properties.

5.3 The main theorem

The first Lemma of this section is immediate from [KW73, Theorem 3.17].

Lemma 5.8. Let G be a periodic almost locally soluble group satisfying min-p.

Then G/Op′(G) is Chernikov.

The following lemma is taken from Hartley [Har82].

Lemma 5.9. Let A be a finite π-group of automorphisms of a locally finite group

G and let N be a normal A-invariant subgroup of G.

1. If N is a π′-subgroup, then CG/N(A) = CG(A)N/N .
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2. If N/Oπ′(N) is Chernikov, then |CG/N(A) : CG(A)N/N | <∞.

The following theorem can be obtained without using the classification of

finite simple groups. The case where A is cyclic of course follows from the famous

theorem of J. Thompson [?]) and the case where A has order p2 is due to P.

Martineau [Mar72]. Finally, the case where |A| ≥ p3 can be easily deduced from

results on soluble signalizer functors (see [Gla76], [Gold72], [Ben75]). Deduction

of Theorem 5.10 from the classification of finite simple groups is easy in view of

the well-known fact that a coprime group of automorphisms of a finite simple

group is cyclic (cf. [GS01, Lemma 2.7]).

Theorem 5.10. Let G be a finite group admitting an elementary abelian p-group

of automorphisms A such that CG(A) = 1. Then G is soluble.

The minimal subgroup of finite index of a Chernikov group T is called the

radicable part of T . Suppose the radicable part of T has index i and is a direct

product of precisely j groups of type Cp∞ (for various primes p). The ordered

pair (j, i) is called the size of T . The set of all pairs (j, i) is endowed with the

lexicographic order. It is easy to check that if H is a proper subgroup of T , the

size of H is necessarily strictly less than that of T . This observation will enable

us to use induction on the size of a Chernikov subgroup.

We are now ready to prove the main result of the article.

Proof of Theorem 5.1. Recall that G is a locally finite group containing an ele-

mentary abelian p-subgroup A of rank at least 3 such that CG(A) is Chernikov

and CG(a) involves no infinite simple groups for any a ∈ A#. We wish to prove

that G is almost locally soluble. Let R be the product of all normal locally sol-

uble subgroups in G. Combining Lemmas 5.3 and 5.8 we deduce that R/Op′(R)

is Chernikov. Lemma 5.9 now implies that the quotient-group G/R satisfies the

hypothesis of the theorem. Thus, without loss of generality we can additionally

assume that R = 1. By induction on the size of CG(A) we will show that with

this additional assumption G is finite.

It follows from Theorem 5.10 that CX(A) 6= 1 for every normal subgroup

X ≤ G. Since CG(A) is Chernikov, we deduce that G possesses minimal normal

subgroups. Let N be a minimal normal subgroup. Thus, N is a direct product of
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isomorphic simple groups (see [Rob95, 3.3.15]). Write N = S1 × S2 × . . ., where

each Si is simple. The subgroup A permutes the simple factors in N .

Suppose that S1 is infinite. If a ∈ A does not normalize some Si, then a

centralizes the diagonal of the direct product Si × Sai × . . .× Sa
p−1

i . Since CG(a)

does not contain infinite simple subgroups, we obtain a contradiction. Therefore

A normalizes each of the subgroups Si. This however leads to a contradiction of

Theorem ??.

Hence, S1 is finite. It follows that N has finite exponent and, taking into

account that R = 1, we invoke Theorem 1.2 of [Shu01] and deduce that N is

finite. It follows that CG(N) has finite index. Let C = CN(A) and observe that

because of Theorem ?? C 6= 1. We further observe that C ∩ CG(N) = 1 because

R = 1. It follows that CG(N) ∩ CG(A) is a proper subgroup in CG(A). Thus, by

induction, CG(N) is finite and so is G. The proof is now complete.
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chapter 6

Centralizers of p-Subgroups in

Simple Locally Finite Groups

6.1 Introduction

In [EKS] we have proved the following result:

Theorem 6.1. [EKS, Theorem 1.1] Let p be a prime and G a locally finite group

containing an elementary abelian p-subgroup A of rank at least 3 such that CG(A)

is Chernikov and CG(a) involves no infinite simple groups for any a ∈ A#. Then

G is almost locally soluble.

To prove Theorem 6.1, we gave the following characterization of PSLp(k)

where chark 6= p.

Theorem 6.2. [EKS, Theorem 1.2] An infinite simple locally finite group G

admits an elementary abelian p-group of automorphisms A such that CG(A) is

Chernikov and CG(a) involves no infinite simple groups for any a ∈ A# if and

only if G is isomorphic to PSLp(k) for some locally finite field k of characteristic

different from p and A has order p2.

In this paper, we will improve Theorem 6.2. Indeed, we will prove a similar

result without assuming A is elementary abelian, but instead we prove for any

subgroup of exponent p.

Theorem 6.3. Let G be an infinite simple locally finite group, P a subgroup of

automorphisms of exponent p such that

1. CG(P ) is Chernikov,

86



2. For every α ∈ P\{1}, the set of fixed points CG(α) does not involve an

infinite simple group.

Then G ∼= PSLp(k) where k is an infinite locally finite field of characteristic p

and P has a subgroup Q of order p2 such that CG(P ) = CG(Q) = Q.

6.2 Preliminaries

Let us recall some definitions of the concepts mentioned in the theorems. First,

consider Cpn = {x ∈ C : xp
n

= 1}. Here (Cpn , .) defines a group isomorphic to

a cyclic group of order pn. Observe that if m|n then Cpm ≤ Cpn , and with the

inclusion maps these sets form a direct system, where the direct limit

lim
n∈N

Cpn

is denoted by Cp∞ , consists of all complex pn-th roots of unity, and forms a group

under complex multiplication. This group is called the quasi-cylic p-group.

Definition 6.4. A group is called a Chernikov group if it is a finite extension of

a direct product of finitely many copies of some quasi-cyclic pi-groups, for possibly

distinct primes pi.

Definition 6.5. Let χ be a group-theoretical property. If a group G has a normal

subgroup of finite index satisfying χ, then G is called almost χ.

Definition 6.6. Let G and H be two groups. If G has a normal subgroup K such

that G/K has a subgroup isomorphic to H then G is said to involve a subgroup

isomorphic to H.

Definition 6.7. A group satisfies the minimal condition, namely min, if any

non-empty set of subgroups has a minimal subgroup. A group satisfies min-p if

any non-empty set of p-subgroups, has a minimal subgroup.

Kegel-Wehrfritz and Sunkov proved independently that a locally finite group

satisfying minimal condition is a Chernikov group (see [KW70] and [?]). For

detailed discussion of groups satisfying min and min-p, see [KW73].
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6.3 Main Results

First, we need the following proposition:

Proposition 6.8. Let G be a simple linear algebraic group of adjoint type over

the algebraic closure of Fq, let g ∈ G be an element of prime order p 6= q such that

CG(g) is a non-abelian group which does not involve any infinite simple groups.

Then

(i) The identity component CG(g)0 of the centralizer of g in G is a maximal

torus of G,

(ii) G ∼= PGLp(Fq).

Proof. Since G is a simple linear algebraic group of adjoint type over the algebraic

closure of Fq and g ∈ G a semisimple element, g is contained in a maximal

torus T of G. By [MT, Proposition 14.1, 14.2], CG(g)0 is connected reductive,

containing a maximal torus T , and involving no infinite simple groups. Hence,

CG(g)0 = T . By [MT, Proposition 14.20], the exponent of CG(g)/CG(g)0 divides

p, hence either CG(g) is connected, and hence a torus, or CG(g)/CG(g)0 is a finite

group of exponent p.

Since CG(g) is not abelian, one has CG(g) a finite extension of an abelian

group T , so it has finite rank. Recall that an infinite group G is said to have

finite rank r if every finitely generated subgroup is r-generated. In [EG, Theorem

1.8] we have shown that when a simple linear algebraic group G over the algebraic

closure of Fq has an element g of order p with CG(z) has finite rank, then one of

the following cases occur:

1. G is of type Al and p > l

2. G is of type Bl, Cl and p > 2l − 1

3. G has type Dl and p > 2l − 3

4. G is isomorphic to one of E6, E7, E8, F4 or G2 and p > 11, 17, 29, 17 or 5

respectively.
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On the other hand, since CG(g)/CG(g)0 has exponent p, by [SS, 4.4. Corollary]

and [MT, Proposition 14.20], we get p is a torsion prime. The list of torsion primes

of linear algebraic groups are defined as follows: For type Al, these are the primes

that divide l+ 1. For types Bl, Cl, Dl, G2 the prime is 2.EKS For types E6, E7, F4

the primes are 2 and 3, and for type E8 the primes are 2, 3, 5 (see [Ste75]).

Hence, one deduce that the only possible case that may occur is G has type

Ap−1, indeed G ∼= PGLp(Fq). EG

Theorem 6.9. Let G be an infinite simple locally finite group with a finite non-

abelian p-group of automorphisms P such that

1. CG(P ) is Chernikov,

2. For every α ∈ P\{1} the set of fixed points CG(α) does not involve an

infinite simple group

Then G is isomorphic to PSLp(k) where k is a locally finite field of characteristic

q 6= p and P is metabelian.

Proof. Since P is a finite p-group and CG(P ) satisfies min-p, by [EKS, Lemma

2.1], G satisfies min-p. Then, by [?, Theorem B], G is a simple group of Lie type

over a locally finite field k of characteristic q. Now assume that q = p. Clearly

G contains a root subgroup, which is an infinite elementary abelian p-subgroup.

Hence G can not satisfy min-p. Hence, q 6= p, that is, G is isomorphic to a simple

group of Lie type over an infinite locally finite field of characteristic q 6= p.

Now, by [HK91, Lemma 4.3], there exists a simple linear algebraic group G of

adjoint type, a Frobenius map σ on G and a sequence of natural numbers ni|ni+1

such that

G =
⋃
i∈N

Op′(Gσni ).

By assumption, the centralizer of any non-identity element does not involve an

infinite simple group, so [?, Lemma 2.3] implies that P consists of inner-diagonal

automorphisms of G. Hence, P ≤
⋃
i∈NGσni . Therefore, P ≤ Gσnj for some

j ∈ N.

Choose 1 6= z ∈ Z(P ). Clearly, P ≤ CG(z). Now, CG(z) =
⋃
i∈NO

p′(CG(z)σni ).

89



By assumption, CG(z) does not involve an infinite simple group. Now, suppose

that CG(z) involves an simple linear group algebraic group H. Consider the union

of fixed points of σni on H, denote Hi = Hσni . Clearly Hi ≤ Hi+1 and infinitely

many of H involves finite simple groups such that their union form an infinite

locally finite simple group. Hence, we get a contradiction and we deduce CG(z)

does not involve a simple linear algebraic group. By [EKS, Lemma 2.4], CG(z) is

metabelian. Hence, P is metabelian. On the other hand, since P is not abelian,

CG(z) is not abelian.

By Proposition 6.8, G is isomorphic to PGLp(Fq). Hence G is isomorphic to

either PSLp(k) or PSUp(k). Following the argument in the proof of Theorem

6.2 in [EKS], since the Weyl group of PSUp(k) has no elements of order p, and

PT/T embeds in the Weyl group, PSUp(k) has no such non-abelian subgroup P .

Therefore, G ∼= PSLp(k) where k is an infinite locally finite field of characteristic

q 6= p.

Then, we prove the main result of the paper:EKS-testermanmalle

Proof of Theorem 6.3. Assume first that P is abelian. Then by Theorem 6.2, the

result follows with |P | = p2.

Now, assume P is non-abelian. By Theorem ??, G ∼= PSLp(k) where k is

a locally finite field of characteristic q 6= p. Let 1 6= z ∈ Z(P ), observe that

P ≤ CG(z) ≤ CG(z) where G is the corresponding simple linear algebraic group

and σ is the Frobenius map such that G =
⋃
i∈NO

p′(Gσni ), which exist by [HK91,

Lemma 4.3]. Denote the maximal torus of G containing z by T . By Proposition

6.8(i), CG(z)0 = T . Indeed, by [SS, 1.7.Corollary], T is the unique maximal torus

containing z. Since P is not abelian CG(z)/CG(z)0 can not be 1, hence by [MT,

Proposition 14.20], it has exponent p. Let y be any element of CG(z)\CG(z)0.

Then Q = 〈y, z〉 has order p2. Indeed, CG(z)0 = T , and y ∈ NG(T ). Hence,

y induces an element w of order p in the Weyl group. Now, z ∈ CT (w). The

computation in the proof of Theorem 6.2 in [EKS] shows that indeed CT (w) has

order p, hence CG(Q) = Q. This Q is the required subgroup.
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chapter 7

On Groups with All Subgroups

Subnormal or Soluble of

Bounded Derived Length, with

A. Tortora and M. Tota

7.1 Introduction

A well known result, due to W. Möhres (see [Möh90]), states that a group

with all subgroups subnormal is soluble, while a result proved, separately, by

C. Casolo (see [Cas01]) and H. Smith (see [Smi01-3]) shows that such a group

is nilpotent if it is also torsion-free. Later, Smith generalized these results to

groups in which every subgroup is either subnormal or nilpotent. More precisely,

he proved, in [Smi01-2], that a locally (soluble-by-finite) group with all subgroups

subnormal or nilpotent is soluble, and the same holds for a locally graded group

whose non-nilpotent subgroups are subnormal of bounded defect. Also, in both

cases, the nilpotence follows if the group is torsion-free (see [S01-1]).

In this paper, we are interested in studying groups with all subgroups sub-

normal or soluble. We need to restrict out attention to locally graded groups

with all subgroups subnormal or soluble, because of the existence of Tarski mon-

sters, constructed by A. Yu. Olshanskii, namely, finitely generated infinite simple

groups, whose every proper subgroup is cyclic of prime order (see [Ols91]). The

first problem that arises in the locally graded case is the presence of non-soluble

locally graded groups in which every proper subgroup is soluble. In fact, the

finite minimal simple groups are non-abelian simple groups with this property.
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They have been completely classified by J. G. Thompson ([Th68]). Using this

classification, in Section 2, we get all the finite non-abelian simple groups having

each proper subgroup metabelian.

Another difficulty is due to infinite locally graded groups with all proper

subgroups soluble. Such groups are both hyperabelian (see [FdGN]) and locally

soluble (see [DES]), but it is still an open question whether they are soluble.

However, there is a positive answer if we bound the derived length of subgroups

(see [DE]). Motivated by this result, we deal with groups whose subgroups are

either subnormal or soluble of bounded derived length. In our analysis, almost

minimal simple groups show up. These are groups which fit between a minimal

simple group and its automorphism group.

In line with the Smith’s results ([S01-1, Smi01-2]), our main theorems follow.

They will be proved in Section 3.

Theorem 7.1. Let G be a locally (soluble-by-finite) group and suppose that, for

some positive integer d, every subgroup of G is either subnormal or soluble of

derived length at most d. Then either

(i) G is soluble, or

(ii) G(r) is finite for some integer r and G is an extension of a soluble group of

derived length at most d by a finite almost minimal simple group.

Theorem 7.2. Let G be a locally graded group and suppose that, for some positive

integers n and d, every subgroup of G is either subnormal of defect at most n or

soluble of derived length at most d. Then either

(i) G is soluble of derived length not exceeding a function depending on n and

d, or

(ii) G(r) is finite for some integer r = r(n) and G is an extension of a soluble

group of derived length at most d by a finite almost minimal simple group.

7.2 Minimal simple groups

In this section we focus on locally graded minimal simple groups. By [FdGN,

Lemma 2.4] such groups are necessarily finite and they are known:
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Theorem 7.3. [Th68, Corollary 1] Every finite minimal simple group is isomor-

phic to one of the following groups:

(i) PSL(2, 2p), where p is any prime;

(ii) PSL(2, 3p), where p is any odd prime;

(iii) PSL(2, p), where p > 3 is any prime such that p2 + 1 ≡ 0 (mod 5);

(iv) PSL(3, 3);

(v) Sz(2p), where p is any odd prime.

The table below, that will be useful later, shows the outer automorphisms of

a finite minimal simple group M . By [ATLAS, p. xv], |Out (M)| = d ·f ·g where,

d is the order of the group of diagonal automorphisms, f is the order of the group

of field automorphisms and g is the order of the group of graph automorphisms

(modulo field automorphisms). For more details, see [ATLAS, Table 5, p. xvi].

M d f g |Out(M)|
PSL(2, 2p) 1 p 1 p
PSL(2, 3p), p ≥ 3 2 p 1 2p
PSL(2, p), p > 3 and 5|(p2 + 1) 2 1 1 2
PSL(3, 3) 1 1 2 2
Sz(2p), p ≥ 3 1 p 1 p

Table 7.1: [ATLAS] Outer automorphisms of a finite minimal simple group

In light of Theorem 7.3, we now classify all the finite non-abelian simple groups
whose proper subgroups are metabelian.

Proposition 7.4. Let G be a finite non-abelian simple group with every proper
subgroup metabelian. Then G is isomorphic to one of the following groups:

(i) PSL(2, 2p), where p is any prime;

(ii) PSL(2, 3p), where p is any odd prime;

(iii) PSL(2, p), where p > 3 is any prime such that p2 + 1 ≡ 0 (mod 5) and
p2 − 1 6≡ 0 (mod 16).
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Proof. It is enough to analyze each case of Theorem 7.3.
Let q be a power of any prime. By [Suz82, Theorem 6.25], PSL(2, q) contains

a non-metabelian soluble subgroup if and only if it has a subgroup isomorphic
to S4, the symmetric group of degree 4. Also, by [?, Theorem 6.26], this is
equivalent to the condition q2 ≡ 1 (mod 16). Hence, if q = 2p, then all subgroups
of PSL(2, 2p) are metabelian. Suppose q = 3p, with p = 2k + 1. Since 92k ≡ 1
(mod 16), S4 is never contained in PSL(2, 3p) and therefore all subgroups of
PSL(2, 3p) are metabelian. Let q = p > 3 with p2 + 1 ≡ 0 (mod 5). If p2 − 1 6≡ 0
(mod 16), all subgroups of PSL(2, p) are metabelian.

Now, we have to consider PSL(3, 3) and Sz(2p), p ≥ 3. But PSL(3, 3) has
a subgroup isomorphic to SL(2, 3), which has derived length 3; so we finish with
Sz(q) where q = 2p. By [?, Theorem 9], Sz(q) contains a Frobenius group F of
order q2(q− 1). Moreover, Sz(q) has only one abelian subgroup of order dividing
q2(q − 1), that is cyclic of order q − 1, and its normalizer is a dihedral group of
order 2(q − 1) (see [Suz62], p. 137). Hence, F is not metabelian.

Remark 7.5. We can observe that every proper subgroup of a minimal simple
group has derived length at most 5. By Theorem 7.3 and Proposition 7.4, we
need to consider the following cases:

Let G = PSL(2, p), p > 3, p2 +1 ≡ 0 (mod 5) and p2−1 ≡ 0 (mod 16). Then,
by [Suz82, Theorems 6.25, 6.26], G has a subgroup isomorphic to S4 and hence
soluble of derived length 3. This is also the unique non-metabelian subgroup of G.

Let G = PSL(3, 3) and H be a proper subgroup of G. Since H is soluble, it
contains a non-trivial normal elementary abelian subgroup. Thus, by [?, Theorem
7.1], one of the following holds:

(1) H has a cyclic normal subgroup of index at most 3;

(2) H has an abelian normal subgroup K such that H/K can be embedded
into the symmetric group S3;

(3) H has a normal elementary abelian 3-subgroup K such that H/K can be
embedded into GL(2, 3). Now, the derived length of GL(2, 3) is 4 and so
H has derived length at most 5. Indeed, let Z = Z(SL(3, 3)) and H be the
subgroup of G given by

{

 a b c
d e f
0 0 g

Z | a, b, c, d, e, f, g ∈ F3, (ae− bd)g = 1}.
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Then

K = {

 1 0 c
0 1 f
0 0 1

Z | c, f ∈ F3}

is an elementary abelian 3-subgroup of H such that H/K ∼= GL(2, 3).

Therefore, every proper subgroup of PSL(3, 3) has derived length at most 5 and
PSL(3, 3) contains a subgroup of derived length 5.

Let G = Sz(2p) for p ≥ 3. Then, by [Wil, Theorem 4.1], any maximal
subgroup of G has derived length at most 3.

7.3 Main results

We start with some preliminary lemmas.

Lemma 7.6. Let H be a subgroup of a group G. If every subgroup containing H
is subnormal in G, then G(r) ≤ H for some r ≥ 0. In particular, r = 0 if and
only if H = G.

Proof. We may assume H < G. Then there exists a series from H to G, and
by [Möh90, Theorem 7], each factor is soluble. Hence, we have an abelian series
from H to G, say H = H0 �H1 � . . .�Hr = G. As G(i) ≤ Hr−i, for all i ≥ 0, we
get G(r) ≤ H.

Remark 7.7. In the previous lemma, if we also assume that the subgroups
containing H are subnormal of defect at most n in G, then by [LR, 12.2.8], r
depends on n. See also [Cas86].

Lemma 7.8. Let G be a locally graded group with all subgroups subnormal or
soluble, and suppose that N is a minimal non-soluble normal subgroup of G.

(i) If N is infinite, then G is hyperabelian.

(ii) If N is finite, then G is an extension of a soluble group by a finite almost
minimal simple group.

Proof. First, notice that every subgroup of G/N is subnormal, so that G/N is
soluble, by [Möh90, Theorem 7].

(i) By [?, Lemma 2.4], N is hyperabelian. Let K = 〈Ki : Ki < N , Ki � G〉.
If K = N , since each Ki is soluble, N has a G-invariant ascending abelian series.
Hence G is hyperabelian, being G/N a soluble group. Now, consider K < N and
assume by a contradiction thatG is not hyperabelian. ThenK is soluble and so by
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[LMS, Corollary] G/K is locally graded. Moreover, G/K is not hyperabelian and
its normal subgroup N/K is minimal non-soluble. However, N/K is hyperabelian
and thus N/K is also infinite. We can therefore restrict to the case K = 1.

Let A be a non-trivial normal abelian subgroup of N . Then N = AG, so that
N is the product of normal abelian subgroups. Then, by [LR, 12.2.2] N is locally
nilpotent. If T is its torsion subgroup, we have either T = 1 or T = N . Let T = 1.
As solubility is a countably recognizable property, we have that N is countable.
It is also locally nilpotent and torsion-free. Then, by [Möh89, Lemma 2], there
exists M < N such that the isolator IN(M) equals N . Also, IN(M)(i) ≤ IN(M (i))
for all i ≥ 0 (see, for instance, [LR, 2.3.9]). As M is soluble, so is N , a contra-
diction. Assume T = N . Then N is a locally finite, p-group. Clearly Z(N) = 1
and so we may apply [ASS, Lemma 2.1] to N . It follows that, there exists m > 0,
such that R = 〈Z(H) : H�N, d(H) > m〉 is a proper subgroup of N , where d(H)
denotes the derived length of H. On the other hand, N has a finitely generated
soluble subgroup of length greater than m. This means that there is a subgroup
L of N generated by finitely many abelian normal subgroups that is necessarily
nilpotent but of derived length > m. The set J of all such subgroups L is in-
variant under Aut (N). So the subgroup R̄ = 〈Z(L) : L ∈ J〉 is characteristic
in N and normal in G. Furthermore, R̄ ≤ R < N . Thus R̄ = 1 and this is a
contradiction.

(ii) Let S be the soluble radical of N and let SG be its normal closure in G.
Of course SG is a normal locally soluble subgroup of N and so SG = S. Without
loss of generality, assume S = 1. Then N is a finite non-abelian simple group,
hence CG(N) ∩ N is trivial. This gives that CG(N) is soluble. Since G/CG(N)
embeds in Aut(N), we get that G is soluble-by-finite. This also implies that the
soluble radical of G is soluble. Suppose it is trivial, so that G is finite.

Let M be a minimal normal subgroup of G. Then M is the direct product of
copies of a non-abelian simple group A. Obviously, A is subnormal in G and so,
by Lemma 7.6, we have G(r) ≤ A for some r > 0. Thus A = M . It follows that
M is a minimal simple group and, by [?, (1) Lemma], G/M is soluble. Moreover
CG(M) ∩ M = 1, so that CG(M) is a normal soluble subgroup of G. By our
assumption, CG(M) = 1 and this gives G . Aut (M).

Lemma 7.9. Let G be a locally (soluble-by-finite) group with all subgroups sub-
normal or soluble. Then either

(i) G is locally soluble, or

(ii) G(r) is finite for some integer r and G is an extension of a soluble group by
a finite almost minimal simple group.

Proof. We have G(α) = G(α+1) for some ordinal α. Let H be a proper subgroup
of G(α) and suppose that H is not soluble. Then H is subnormal in G and, by
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[Möh90], G(α) has a non-trivial abelian factor. But this is impossible. Hence,
either G(α) is soluble or G(α) is a minimal non-soluble group. Furthermore, in
this latter case, G/G(α) is soluble by [?, (1) Lemma] and therefore α is a finite
ordinal. If G(α) is soluble, then G has a descending normal series with abelian
factors. So that G is locally soluble, being locally (soluble-by-finite). In the other
case, G(α) is a minimal non-soluble group for some integer α = r. The claim
immediately follows by Lemma 7.8.

Notice that, proving (ii) of Lemma 7.9, we have that the derived series of G
ends in finitely many steps. The next lemma, which follows from [Smi, Proposi-
tion 1] together with [?, 12.2.6], shows that this also happens when G is locally
soluble. One may see also [Cas86].

Lemma 7.10. Let X =
⋃
i∈N Xi be a class of groups, where each class Xi is closed

under taking subgroups and direct limits, and Xi ⊆ Xi+1 for all i. Let G be a group
with all subgroups subnormal or in X, and suppose that G /∈ X. If G is locally
soluble, then G(r) = G(r+1) for some integer r.

Now, we can prove Theorem 7.1.

Proof of Theorem 7.1. By Lemma 7.9, G is either locally soluble, or G(r) is
finite for some integer r and G is an extension of a soluble group S by a finite
almost minimal simple group. Clearly, S must be soluble of length ≤ d, by
[Möh90]. Let G be locally soluble and suppose that it is not soluble. By Lemma
7.10 with X the class of soluble groups, we have G(s) = G(s+1) for some s ≥ 0.
Moreover, G(s) is not soluble. It follows, as in the proof of Lemma 7.9, that every
proper subgroup of G(s) is soluble of length at most d. Thus G(s) is finite by [DE,
Lemma 2.1], a contradiction.

By a theorem of J. E. Roseblade (see [Ros] and [?, 12.2.3]), a group in which
every subgroup is subnormal of defect at most n ≥ 1 is nilpotent of class not
exceeding a function depending only on n. Using this, we can generalize Lemma
7.9 to the locally graded case, provided that the subnormal defect is bounded.

Lemma 7.11. Let G be a locally graded group and suppose that, for some positive
integer n, every non-soluble subgroup of G is subnormal of defect at most n. Then
G is locally (soluble-by-finite).

Proof. We may assume that G is finitely generated. Suppose that it is not soluble-
by-finite and denote by R its finite residual. As G is locally graded, we have
R < G. Let N be a normal subgroup of G with finite index. Then every sub-
group of G/N is subnormal of defect ≤ n and so, by Roseblade’s Theorem ([Ros]),
G/N is nilpotent of bounded class depending on n. It follows that G/R is nilpo-
tent and R is not soluble. Let S be a proper subgroup of R and suppose that S
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is not soluble. Then every subgroup of R/SR is subnormal of defect ≤ n, in par-
ticular R/SR is soluble, by [Ros]. This implies that R′ < R. So G/R′ is finitely
generated and abelian-by-nilpotent. We get that G/R′ is residually finite (see,
for instance, [Rob72, Theorem 9.51]) and R′ = R, a contradiction. Hence every
proper subgroup of R is soluble and R cannot be finite: otherwise, G would be
finite-by-nilpotent and, consequently, also nilpotent-by-finite. By Lemma 7.8, we
obtain that G is hyperabelian. Then G has a finite non-nilpotent homomorphic
image G/M (see, for instance, [Rob72, Theorem 10.51]) which is also soluble,
being G/M finite and hyperabelian. Therefore M is not soluble and every sub-
group of G/M is subnormal of defect ≤ n. Thus G/M is nilpotent by [Ros], a
contradiction.

Proof of Theorem 7.2. By Lemma 7.11, jointly with Theorem 7.1, we have
that G is either soluble, or G(r) is finite for some r ≥ 0 and G is an extension
of a soluble group of derived length at most d by a finite almost minimal simple
group. Let G be soluble and denote by e its derived length. We may assume
d < e. Then H = G(e−(d+1)) is soluble of length d + 1 and every subgroup of G
containing H is subnormal of defect ≤ n. It follows that G(s) ≤ H for some s
depending on n (see [Cas86] and Remark 7.7). Thus, G is soluble of length at
most s+ d+ 1. Suppose now that there exists r ≥ 0 such that K = G(r) is finite
and non-soluble. Since every subgroup of G containing K is subnormal of defect
≤ n, we get, as before, G(t) ≤ K for some t depending on n.

As a final remark we point out that, in (ii) of Theorems 7.1 and 7.2, one
cannot expect that G is an extension of a soluble group S by a finite minimal
simple group: it suffices to consider the direct product of any abelian group
by the symmetric group of degree 5. However, if M/S is a finite minimal simple
subgroup of G/S such that G/S . Aut (M/S), then M�G by Lemma 7.6 and we
can compute the order of G/M . In fact, G/M . Out (M/S) where |Out (M/S)|
divides 2p, with p odd prime, by Table 7.1.

Acknowledgements. The authors would like to thank Professor H. Smith for
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[EK] K. Ersoy, M. Kuzucuoğlu, “Centralizers of subgroups in simple locally
finite groups”, J. Group Theory, 15, Issue 1, January 2012, pages 9-22.
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