

Branch groups

The class of branch groups consists of groups that act faithfully on rooted trees. It contains examples of groups with striking properties: finitely generated infinite torsion groups, groups of intermediate word growth, amenable but not elementary amenable groups, etc. (see [1]). Branch groups are just non-(virtually abelian) – they are not virtually abelian but all their proper quotients are – and have a nice subgroup structure ([6]). Many branch groups are just infinite (infinite but all proper quotients finite). The class of just infinite groups splits into three classes, just infinite branch groups being one of them.

Rooted trees

Let $(m_n)_{n>0}$ be a sequence of integers with $m_n \geq 1$ Let G act faithfully on T (in particular, G is residu-2. A spherically homogeneous rooted tree of ally finite). Define type $(m_n)_n$ is a tree T with root v_0 of degree m_0 • $St_G(v) := \{g \in G : v^g = v\}$, the stabilizer of v such that every vertex at distance $n \ge 1$ from v_0 has \bullet St_G(n) := $\bigcap_{v \in V_n} \text{St}_G(v)$, the nth level stabilizer degree $m_n + 1$.

Examples

- $\operatorname{rist}_{\operatorname{Aut}(T)}(n) = \operatorname{St}_{\operatorname{Aut}(T)}(n).$
- on V_1 and $b := (a, a^{-1}, 1, \dots, 1, b) \in \text{St}_{GS(p)}(1)$. • Aut(T): acts transitively on each V_n with kernel GS(p) is a just infinite p-group. • Gupta–Sidki p-groups, GS(p) for each prime • Variation: **Pervova groups**, $\Gamma(p)$ [5] p > 2 (|4|). $\Gamma(p) := \langle a, b, c \rangle \le \operatorname{Aut}(T)$ with T, a, b as above and $c = (c, a, a^{-1}, 1, ..., 1)$. $\Gamma(p)$ is also a just infinite *p*-group.

$$GS(p) := \langle a, b \rangle \le \operatorname{Aut}(T)$$

where T is the p-regular tree, a acts as a p-cycle

On the Congruence Subgroup Problem for Branch Groups Alejandra Garrido University of Oxford garridoangul@maths.ox.ac.uk

Branch actions

- $\operatorname{rist}_G(v) := \{g \in G : g \text{ fixes } T \setminus T_v \text{ pointwise}\}, \text{ the}$ rigid stabilizer of v
- $\operatorname{rist}_G(n) := \prod_{v \in V_n} \operatorname{rist}_G(v)$, the *n*th level rigid stabilizer.
- This faithful action is a **branch action** if for all n(i) the action is transitive on V_n
- (ii) $|G: \operatorname{rist}_G(n)|$ is finite.

A group G is a **branch group** if it has a branch action on some T as above.

Some motivation: subgroup growth For a group G with finitely many subgroups of each finite index (e.g. G finitely generated), the sub**group growth** function is given by

It is natural to ask about $s_n(G)$ when G is just infinite and, in particular, when G is branch.

Let G be a branch group. In general, it is difficult to calculate $s_n(G)$, so we focus on subgroups which are easier to control. We say that $H \leq G$ is a **con**gruence subgroup if $St(n) \leq H$ for some n. The **congruence subgroup growth** of G is $c_n(G) := |\{H \le G : |G : H| \le n, \}$

Independence of branch action

We can ask the same questions replacing $\{St_G(n)\}$ by $\{rist_G(n)\}$. The resulting kernel will also be independent of the branch action ([3]).

Ref	
[1]	L. H
[2]	L. Is
[3] [4] [5] [6]	A N E J. L

Congruence Subgroup Problem

 $s_n(G) := |\{H \le G : |G : H| \le n\}|.$

H is a congruence subgroup}|. If all finite index subgroups are congruence sub-

Examples:

- [2, 5]).

Question ([2]): Does ker φ depend on the branch action $G \hookrightarrow \operatorname{Aut}(T)$?

Theorem ([3]). Let $\rho: G \hookrightarrow \operatorname{Aut}(T_{\rho})$ and $\sigma: G \hookrightarrow \operatorname{Aut}(T_{\sigma})$ be two branch actions of G. Let $\overline{G_{\rho}}$ (resp. $\overline{G_{\sigma}}$) denote the completions of G with respect to the topologies induced by taking $\{St_G(n)\}$ with respect to ρ (resp. σ) as a neighbourhood basis of the identity. Then $\ker(\widehat{G} \to \overline{G_{\rho}}) = \ker(\widehat{G} \to \overline{G_{\sigma}})$.

Proof sketch

Observation: For every branch action of G on T, and every $v \in T$, we have • $\operatorname{rist}_G(v^g) = g^{-1} \operatorname{rist}_G(v)g$ for every $g \in G$, • if $\operatorname{rist}_G(v^g) \cap \operatorname{rist}_G(v) \neq 1$ then $\operatorname{rist}_G(v^g) = \operatorname{rist}_G(v)$.

Lemma. For every $u \in T_{\rho}$ there exists $v \in T_{\sigma}$ such that $\operatorname{rist}_{\rho}(u) \geq \operatorname{rist}_{\sigma}(v)$.

We show that for every n there exists m such that $\operatorname{St}_{\rho}(n) \geq \operatorname{St}_{\sigma}(m)$ (and vice-versa by the same argument). Let $u \in V_n \subset T_\rho$. By the lemma, there exists $v \in V_m \subset T_\sigma$ such that $\operatorname{rist}_{\rho}(u) \geq \operatorname{rist}_{\sigma}(v)$. For any $g \in \operatorname{St}_{\sigma}(m)$, we have $1 \neq \operatorname{rist}_{\sigma}(v^g) = \operatorname{rist}_{\sigma}(v) \leq \operatorname{rist}_{\rho}(u^g) \cap \operatorname{rist}_{\rho}(u)$, so $\operatorname{rist}_{\rho}(u^g) = \operatorname{rist}_{\rho}(u)$ and $g \in \operatorname{St}_{\rho}(u)$. Claim follows by transitive action of G on V_n and V_m .

erences

. Bartholdi, R. I. Grigorchuk and Z. Sunik. Branch groups. In Handbook of Algebra, vol. 3 (North-[olland, Amsterdam, 2003) pp. 989–1112.

. Bartholdi, O. Siegenthaler and P. Zalesskii. The congruence subgroup problem for branch groups, sr. J. Math. **187** (2012), 419–450.

. Garrido. On the congruence subgroup problem for branch groups. Pre-print arXiv:1405.3237. D. Gupta and S. Sidki. On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385–388. Pervova. Profinite completions of some groups acting on trees, J. Algebra **310** (2007), 858–879. .S. Wilson. Structure theory for branch groups. In Geometric and Homological Topics in Group Theory, ondon Math. Soc. Lecture Note Ser. 358 (Cambridge University Press, 2009), 306–320.

groups $(c_n(G) = s_n(G))$ we say that G has the **con**gruence subgroup property (CSP).

How much can $s_n(G)$ and $c_n(G)$ differ? Note: $G \hookrightarrow \widehat{G}$ (profinite completion of G), $G \hookrightarrow \overline{G}$ (completion with respect to $\{St_G(n)\}$) and there is a homomorphism $\varphi \colon \widehat{G} \twoheadrightarrow \overline{G}$. We have $s_n(G) = s_n(\widehat{G})$ (open finite index subgroups of \widehat{G}) and $c_n(G) =$ $s_n(\overline{G})$. Thus $s_n(G) = c_n(G)$ iff φ is injective.

Congruence subgroup problem: calculate the congruence kernel ker φ • GS(p) has CSP ([1]). • $\Gamma(p)$ does not have CSP $(\ker \varphi = (\mathbb{Z}/p\mathbb{Z})[[\partial T]],$