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Scott Problem

Let Fn be the free group of finite rank n and let α ∈ Aut(Fn).
Define

Fix(α) = {x ∈ Fn |α(x) = x}.

Rang problem of P. Scott (1978): rk(Fix(α)) 6 n

M. Bestvina and M. Handel (1992): Yes



Main Theorem

Basis problem. Find an algorithm for computing a basis of
Fix(α).

It has been solved in three special cases:
– for positive automorphisms (Cohen and Lustig)
– for special irreducible automorphisms (Turner)
– for all automorphisms of F2 (Bogopolski).

Theorem (O. Bogopolski, O. Maslakova, 2004-2012).
A basis of Fix(α) is computable.

(see http://de.arxiv.org/abs/1204.6728)
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Relative train tracks

Let Γ be a finite connected graph
and f : Γ→ Γ be a homotopy equivalence s.t.
f maps vertices to vertices and edges to reduced edge-paths.

The map f is called a relative train track if ...

To define this, we first need to define
• Turns in Γ (illegal and legal)
• Transition matrix
• Filtrations
• Stratums (exponential, polynomial, zero)
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Turns

Let Γ be a finite connected graph
and f : Γ→ Γ be a homotopy equivalence s.t.
f maps vertices to vertices and edges to reduced edge-paths.

A turn: A degenerate turn:

Differential of f .
Df : Γ1 → Γ1, (Df )(E ) = the first edge of f (E ).

Tf : Turns → Turns, (Tf )(E1,E2) = ((Df )(E1), (Df )(E2)).
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An illegal turn

A turn (E1,E2) is called illegal
if ∃n > 0 such that the turn (Tf )n(E1,E2) is degenerate.



Legal turns and paths

A turn (E1,E2) is called legal
if ∀n > 0 the turn (Tf )n(E1,E2) is nondegenerate.

An edge-path p in Γ is called legal if each turn of p is legal.
Legal paths are reduced.

Claim. Suppose that f (E ) is legal for each edge E in Γ.
Then, for every legal path p in Γ, the path f k(p) is legal ∀k > 1.
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Transition matrix of the map f : Γ→ Γ
From each pair of mutually inverse edges of Γ we choose one edge.
Let {E1, . . . ,Ek} be the set of chosen edges.

The transition matrix of the map f : Γ→ Γ is the matrix M(f ) of
size k × k such that the ij th entry of M(f ) is equal to the total
number of occurrences of Ei and Ei in the path f (Ej).

Ex.:
E1 → E1E 2

E2 → E2

M(f ) =

(
1 0
1 1

)
E1 E2
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Filtration
∅ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ ΓN = Γ, where f (Γi ) ⊂ Γi

Hi := cl(Γi \ Γi−1) is called the i-th stratum.

M (f ) =



Filtration
∅ = Γ0 ⊂ Γ1 ⊂ · · · ⊂ ΓN = Γ, where f (Γi ) ⊂ Γi

Hi := cl(Γi \ Γi−1) is called the i-th stratum.
If the filtration is maximal, then the matrices M1, . . . ,MN are
irreducible.
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Strata

Frobenius: If M > 0 is a nonzero irreducible integer matrix, then
∃~v > 0 and λ > 1 such that M~v = λ~v .

If λ = 1, then M is a permutation matrix.
v is unique up to a positive factor.
λ = max of absolute values of eigenvalues of M.

M1

M2

M3

A stratum Hi := cl(Γi \ Γi−1) is called

exponential if Mi 6= 0 and λi > 1

polynomial if Mi 6= 0 and λi = 1

zero if Mi = 0
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A metric for an exponential stratum

Let Hr = cl(Γr \ Γr−1) be an exponential stratum and let
E`+1, . . . ,E`+s be the edges of Hr .

We have vMr = λr v for some v = (v1, . . . , vs) > 0 and λr > 1.

We set Lr (E`+i ) = vi for edges E`+i in Hr

and Lr (E ) = 0 for edges E in Γr−1,
and extend Lr to paths in Γr .

Claim. For any path p ⊂ Γr holds Lr (f k(p)) = λk
r (Lr (p)).



A metric for an exponential stratum

Let Hr = cl(Γr \ Γr−1) be an exponential stratum and let
E`+1, . . . ,E`+s be the edges of Hr .

We have vMr = λr v for some v = (v1, . . . , vs) > 0 and λr > 1.

We set Lr (E`+i ) = vi for edges E`+i in Hr

and Lr (E ) = 0 for edges E in Γr−1,
and extend Lr to paths in Γr .

Claim. For any path p ⊂ Γr holds Lr (f k(p)) = λk
r (Lr (p)).



A metric for an exponential stratum

Let Hr = cl(Γr \ Γr−1) be an exponential stratum and let
E`+1, . . . ,E`+s be the edges of Hr .

We have vMr = λr v for some v = (v1, . . . , vs) > 0 and λr > 1.

We set Lr (E`+i ) = vi for edges E`+i in Hr

and Lr (E ) = 0 for edges E in Γr−1,
and extend Lr to paths in Γr .

Claim. For any path p ⊂ Γr holds Lr (f k(p)) = λk
r (Lr (p)).



A metric for an exponential stratum

Let Hr = cl(Γr \ Γr−1) be an exponential stratum and let
E`+1, . . . ,E`+s be the edges of Hr .

We have vMr = λr v for some v = (v1, . . . , vs) > 0 and λr > 1.

We set Lr (E`+i ) = vi for edges E`+i in Hr

and Lr (E ) = 0 for edges E in Γr−1,
and extend Lr to paths in Γr .

Claim. For any path p ⊂ Γr holds Lr (f k(p)) = λk
r (Lr (p)).



Relative train track

Let f : Γ→ Γ be a homotopy equivalence such that f (Γ0) ⊆ Γ0

and f maps edges to reduced paths.
The map f is called a relative train track if there exists a maximal
filtration in Γ such that each exponential stratum Hr of this
filtration satisfies the following conditions:

(RTT-i) Df maps the set of oriented edges of Hr to itself; in particular
all mixed turns in (Gr ,Gr−1) are legal;

(RTT-ii) If ρ ⊂ Gr−1 is a nontrivial edge-path with endpoints in
Hr ∩ Gr−1, then [f (ρ)] is a nontrivial path with endpoints in
Hr ∩ Gr−1;

(RTT-iii) For each legal edge-path ρ ⊂ Hr , the subpaths of f (ρ) which
lie in Hr are legal.
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Relative train track

Hr

Γr−1

Hr

Γr−1

↓ f



A useful fact

A path p ⊂ Γr is called r -legal
if the pieces of p lying in Hr are legal.

Claim. For any r -legal reduced path p ⊂ Γr holds

Lr ([f k(p)]) = λk
r (Lr (p)).



Theorem of Bestvina and Handel (1992)

Theorem [BH] Let F be a free group of finite rank. For every
automorphism α : F → F , one can algorithmically construct a
relative train track f : Γ→ Γ which realizes the outer class of α.



Theorem of Bestvina and Handel (1992)

Theorem [BH] Let F be a free group of finite rank. For any
automorphism α of F one can algorithmically
• construct a relative train track f : Γ→ Γ
• indicate a vertex v ∈ Γ0 and path p in Γ from v to f (v)
• indicate an isomorphism i : F → π1(Γ, v)

such that the automorphism i−1αi of the group π1(Γ, v) coincides
with the map given by the rule

[x ] 7→ [p · f (x) · p̄],

where [x ] ∈ π1(Γ, v).



First improvement

Theorem [BH] Let F be a free group of finite rank. For any
automorphism α of F one can algorithmically
• construct a relative train track f : Γ→ Γ
• indicate a vertex v ∈ Γ0 and path p in Γ from v to f (v)
• indicate an isomorphism i : F → π1(Γ, v)
• compute a natural number n,

such that the automorphism i−1αni of the group π1(Γ, v) coincides
with the map given by the rule

[x ] 7→ [p · f (x) · p̄],

where [x ] ∈ π1(Γ, v).

(Pol) Every polynomial stratum Hr consists of only two mutually
inverse edges, say E and E . Moreover, f (E ) ≡ E · a, where a is a
path in Γr−1.



Second improvement

Theorem Let F be a free group of finite rank. For any
automorphism α of F one can algorithmically
• construct a relative train track f1 : Γ1 → Γ1

• indicate a vertex v1 ∈ Γ0
1 fixed by f1

• indicate an isomorphism i : F → π1(Γ1, v1)
• compute a natural number n,

such that
i−1αni = (f1)∗

and

(Pol) Every polynomial stratum Hr consists of only two mutually
inverse edges, say E and E . Moreover, f1(E ) ≡ E · a, where a is a
path in Γr−1.



Setting

Claim. Let α be an automorphism of a free group F of finite rank.
If we know a basis of Fix(αn), we can compute a basis of Fix(α).

Proof. H = Fix(α) is a subgroup of G = Fix(αn).
The restriction α|G is an automorphism of finite order of G .
Let

G = G o 〈α|G 〉.

Kalajdzevski: one can compute a finite generator set of CG (α|G ).
Reidemeister-Schreier: one can compute a finite generator set of
H = CG (α|G ) ∩ G .



Setting

Passing from α to appropriate αn, we can

• construct a relative train track f : (Γ, v)→ (Γ, v)
• indicate an isomorphism i : F → π1(Γ, v)

such that
i−1αi = f∗

and

(Pol) Every polynomial stratum Hr consists of only two mutually
inverse edges, say E and E . Moreover, f (E ) ≡ E · a, where a is a
path in Gr−1.

Claim. To construct a basis of Fix(α), it suffices to construct a
basis of

Fix(f ) = {[p] ∈ π1(Γ, v) | f (p) = p}.



Setting

Passing from α to appropriate αn, we can

• construct a relative train track f : (Γ, v)→ (Γ, v)
• indicate an isomorphism i : F → π1(Γ, v)

such that
i−1αi = f∗

and

(Pol) Every polynomial stratum Hr consists of only two mutually
inverse edges, say E and E . Moreover, f (E ) ≡ E · a, where a is a
path in Gr−1.

Claim. To construct a basis of Fix(α), it suffices to construct a
basis of

Fix(f ) = {[p] ∈ π1(Γ, v) | f (p) = p}.



Graph Df for the relative train track f : Γ→ Γ

1. Definition of f -paths in Γ

2. Definition of Df

3. Proof that π1(Df (1v ), 1v ) ∼= Fix(f ) ∼= Fix(α)

4. Preferable directions in Df

5. Repelling edges, dead vertices in Df

6. A procedure to construct a core of Df

7. How to convert this procedure into an algorithm



1. f -paths in Γ

An edge-path µ in Γ is called an f -path if ω(µ) = α(f (µ)):

µ

f (µ)

µ = 1u

f (u) = u

If µ is an f -path and E is an edge in Γ such that α(E ) = α(µ),
then Eµf (E ) is also an f -path:

E µ

f (E)



1. f -paths in Γ

An edge-path µ in Γ is called an f -path if ω(µ) = α(f (µ)):

µ

f (µ)

µ = 1u

f (u) = u

If µ is an f -path and E is an edge in Γ such that α(E ) = α(µ),
then Eµf (E ) is also an f -path:

E µ

f (E)



Definition of Df

Vertices of Df are reduced f -paths in Γ.

Two vertices µ and τ in Df are connected by an edge with label E
if E is an edge in Γ satisfying α(E ) = α(µ) and τ = [Eµf (E )].

µ E µ

f (E)

Eµ [Eµf (E)]



Proof that π1(Df (1v ), 1v ) ∼= Fix(f )

1v

E1

E2

Ek

Ek−1

Df :

1v



Proof that π1(Df (1v ), 1v ) ∼= Fix(f )

1v

E1

E2

Ek

Ek−1

Df :

[E 11vf (E1)]



Proof that π1(Df (1v ), 1v ) ∼= Fix(f )

1v

E1

E2

Ek

Ek−1

Df :

[E 2[E 11vf (E1)]f (E2)]



Proof that π1(Df (1v ), 1v ) ∼= Fix(f )

1v

E1

E2

Ek

Ek−1

Df :

[E k . . . [E 2[E 11vf (E1)]f (E2)] . . . f (Ek)] = 1v

[E1E2 . . .Ek ] = [f (E1E2 . . . f (Ek))] ∈ Fix(f )



Proof that π1(Df (1v ), 1v ) ∼= Fix(f )

1v

E1

E2

Ek

Ek−1

Df :

[E k . . . [E 2[E 11vf (E1)]f (E2)] . . . f (Ek)] = 1v

[E1E2 . . .Ek ] = [f (E1E2 . . . f (Ek))] ∈ Fix(f )



Preferable directions in Df

Let µ be an f -path in Γ.
Suppose E1, . . . ,Ek are all edges outgoing from α(µ).
Then the vertex µ is connected with the vertices [E iµf (Ei )] of Df .
We set f̂ (µ) := [Eµf (E )] if E is the first edge of the f -path µ.

in Γ: in Df :

E1
µ

f (E1)

E2 f (E)

E

f (E2)

Eµ [Eµf (E)] = f̂ (µ)

E1

[E1µf (E1)]

E2

[E2µf (E2)]



Preferable directions in Df

Let µ be an f -path in Γ.
Suppose E1, . . . ,Ek are all edges outgoing from α(µ).
Then the vertex µ is connected with the vertices [E iµf (Ei )] of Df .
We set f̂ (µ) := [Eµf (E )] if E is the first edge of the f -path µ.

in Γ: in Df :

E1
µ

f (E1)

E2 f (E)

E

f (E2)

Eµ [Eµf (E)] =
̂

f (µ)

E1

[E1µf (E1)]

E2

[E2µf (E2)]

The preferable direction at the vertex µ ∈ Df is the direction of
the edge from µ to f̂ (µ) with label E .



Graph Df : example
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Graph Df : example



Definition of repelling edges in Df

repelling edges not repelling edges

Let e be an edge of Df with α(e) = u, ω(e) = v , and Lab(e) = E .
The edge e is called repelling in Df if E is not the first edge of the
f -path u in Γ and E is not the first edge of the f -path v in Γ.



How to find repelling edges
Proposition (Cohen, Lustig). The repelling edges of Df are in 1-1
correspondence with the occurrences of edges E in f (E ), where
E ∈ Γ1. More precisely, there exists a bijection of the type:

f (E ) ≡ u ·E ·v ⇐⇒



-u uE

u
@@
�� v

BC if u and v are nonempty,

-u uE

1α(E)

@@
�� v

B if u is empty and v not,

-u uE

u
@@
�� 1ω(E)

C if v is empty and u not,

-u uE

1α(E)

@@
�� 1ω(E)

if u and v are empty.

There is only finitely many repelling edges and they can be
algorithmically found.



µ-subgraphs in Df

Recall that if µ = E1E2 . . .Em is a vertex in Df with m > 1, then

f̂ (µ) = [E2 . . .Emf (E1)].

We define µ1 := µ and µi+1 := f̂ (µi ) if µi is nondegenerate.
The µ-subgraph consists of the vertices µ1, µ2, . . . and the edges
which connect µi with µi+1 and carry the preferable direction at µi .

Types of µ-subgraphs:

r r r r · · ·
µ

a ray. . .

r r r r r r
µ &%

'$r
r

... a segment with a cycle

r
. . . . /

.

.

· · ·r r r r r u a segment ending at a dead vertex
µ

. . . .
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An important claim

Claim. If 1v lies in a non-contractible component C of Df ,
then C contains a repelling vertex µ such that 1v belongs to the
µ-subgraph.



Inverse preferred direction

Let f be a homotopy equivalence Γ→ Γ s.t. f maps vertices to
vertices and edges to reduced edge-paths.

We have algorithmically defined preferred directions at almost all
vertices of Df . There exists finitely many repelling edges in Df and
they can be algorithmically found.

Turner: One can algorithmically define the so called inverse
preferred direction at almost all vertices of Df . It has the following
properties.
1) There exists finitely many inv-repelling edges in Df and they
can be algorithmically found.



Inverse preferred direction

Let f be a homotopy equivalence Γ→ Γ s.t. f maps vertices to
vertices and edges to reduced edge-paths.

We have algorithmically defined preferred directions at almost all
vertices of Df . There exists finitely many repelling edges in Df and
they can be algorithmically found.

Turner: One can algorithmically define the so called inverse
preferred direction at almost all vertices of Df . It has the following
properties.
1) There exists finitely many inv-repelling edges in Df and they
can be algorithmically found.



Inverse preferred direction

2) Suppose that R is a µ-ray in Df . Then the preferred direction
on all but finitely many edges in R is opposite to the inverse
preferred direction.

∞

In particular R contains a normal vertex, i.e. a vertex where the
red and the blue directions exist and different.



Inverse preferred direction
3) Let R1 be a µ1-ray and R2 be a µ2-ray, both don’t contain
inv-repelling edges and suppose that their initial vertices µ1 and µ2

are normal. Then R1 and R2 are either disjoint or one is contained
in the other.

∞
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A procedure for construction of CoRe(Df )

(1) Compute repelling edges.

(2) For each repelling vertex µ determine, whether the
µ-subgraph is finite or not.

(3) Compute all elements of all finite µ-subgraphs from (2).

(4) For each two repelling vertices µ and τ with infinite µ-and
τ -subgraphs determine, whether these subgraphs intersect.

(5) If the µ-subgraph and the τ -subgraph from (4) intersect, find
their first intersection point and compute their initial
segments up to this point.



How to convert this procedure into an algorithm?

It suffices to solve the following problems:

Problem 1. Given a vertex µ of the graph Df , determine whether
the µ-subgraph is finite or not.

Problem 2. Given two vertices µ and τ of the graph Df , verify
whether τ is contained in the µ-subgraph.

We solve these problems in:

http://de.arxiv.org/abs/1204.6728
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r -cancelation points in paths

A path µ ⊂ Γ has height r if µ ⊂ Γr and µ has at least one edge in Hr .

Let µ ⊂ Γ be a path of height r , where Hr is exponential.

A vertex v in µ is called an r -cancelation point in µ
if the turn (A,B) at v is an illegal r -turn:

vA B

f
. . .

f

v1A1 B1



r -cancelation points in paths

A path µ ⊂ Γ has height r if µ ⊂ Γr and µ has at least one edge in Hr .

Let µ ⊂ Γ be a path of height r , where Hr is exponential.

A vertex v in µ is called an r -cancelation point in µ
if the turn (A,B) at v is an illegal r -turn:

vA B

f
. . .

f

v1A1 B1



Non-deletable r -cancelation points

Let µ ⊂ Γ be a path of height r , where Hr is an exponential stratum.

vA B

f
. . .

f

v1A1 B1

f
. . .

f

v2A2 B2

f
. . .

f

vkAk Bk

Suppose
• v divides µ into two r -legal subpaths
• v is an r -cancelation point in µ

Then
• v is called a nondeletable r -cancelation point in µ

if ∃ ∞ illegal r -turns (Ak ,Bk).



Nondeletability of r -cancelation points in paths is verifiable

Theorem. Let f : Γ→ Γ be a relative train track. Let µ be a path
in Γ of height r , where Hr is exponential. Suppose that a vertex v
divides µ into two r -legal paths and v is an r -cancelation point.

v

Then:
1) One can (effectively and uniformly) decide, whether v is
deletable in µ or not.
2) If v is non-deletable in µ, one can compute the so called
cancelation area A(v , µ) and the cancelation radius a(v , µ).

v
( )

a(v , µ) = Lr (Aleft(v , µ)) = Lr (Aright(v , µ)).
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r -cancelation areas in iterates of µ

( )
v

f
. . .

f
( )

v1

f
. . .

f
( )

v2

f
. . .

f
( )

vk

Let
• Hr be exp
• Height(µ) = r
• µ is not r -legal
• v divides µ into two r -legal subpaths
• v is a nondeletable r -cancelation point in µ



Different r -cancelation areas can interact
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r -stability of paths

Def. Let µ ⊂ Γr be a path of height r , where Hr is exponential.
µ is called r -stable if the number of r -cancelation points in

µ, [f (µ)], [f 2(µ)], . . .

is the same. Hence these points are non-deletable.



Several r -cancelation points in one path

Let µ be a path in Γ of height r , where Hr is exponential. Suppose:
• vertices v1, . . . , vn divide µ into r -legal paths µ0, . . . , µn.
• vi is a nondeletable r -cancelation point in µi−1µi for all i .

v1 v2 v3

µ0 µ1 µ2 µ3

Let a(vi ) be the cancelation radius of vi in µi−1µi .
Theorem. µ is stable iff a(vi ) + a(vi+1) > Lr (µi ) for all i .

v1 v2 v3
( ) ( ) ( )



Stability theorem

Theorem. One can check, whether µ is r -stable.
If µ is not r -stable, one can compute n such that [f n(µ)] is
r -stable.



Finiteness and computability of the r -cancelation areas

Theorem.
1) There exists only finitely many r -cancelation areas in the infinite
set of paths of height r . All r -cancelation areas A1, . . . ,Ak can be
computed.
2) After appropriate subdivision of f : Γ→ Γ the following holds:
One can compute a natural P = P(f ) such that for every
exponential stratum Hr and every r -cancelation area A, the
r -cancelation area [f P(A)] is an edge-path.



µ-subgraphs in details (no cancelations)

Let µ = E1E2 . . .En be an f -path.
Below is an ideal situation (no cancelations):

µ ≡ E1E2 . . .En ,

f̂ (µ) ≡ E2E3 . . .En · f (E1) ,

f̂ 2(µ) ≡ E3E4 . . .En · f (E1) · f (E2) ,
...

f̂ n(µ) ≡ f (E1) · f (E2) · . . . · f (En),
...

Then Problems 1 and 2 can be reduced to:
Problem 1’. Do there exist p > q such that f p(µ) ≡ f q(µ)?
Problem 2’. Does there exist p such that f p(µ) ≡ τ?

Solution. In this special case we have `(f̂ i+1(µ)) > `(f̂ i (µ)).
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µ-subgraphs in details (there are cancelations)

We define 3 types of perfect f -paths:
- r -perfect
- A-perfect
- E -perfect



Definition of an r -perfect path

Let Hr be an exponential stratum. An edge-path µ ⊂ Γr is
called r -perfect if the following conditions are satisfied:
• µ is a reduced f -path and its first edge belongs to Hr ,
• µ is r -legal,
• [µf (µ)] ≡ µ · [f (µ)] and the turn of this path at the point

between µ and [f (µ)] is legal.



Definition of an A-perfect path

Let Hr be an exponential stratum. A reduced f -path µ ⊂ Γr

containing edges from Hr is called A-perfect if

• all r -cancelation points in µ are non-deletable,
the corresponding r -cancelation areas are edge-paths,
• the A-decomposition of µ starts on an A-area, i.e. it has

the form µ ≡ A1b1 . . .Akbk ,
• [µf (µ)] ≡ µ · [f (µ)] and the turn at the point between µ

and [f (µ)] is legal.



Definition of an E -perfect path

We may assume that f : Γ→ Γ satisfies the condition (Pol):
Each polynomial stratum Hr has a the unique (up to inversion)
edge E and f (E ) ≡ E · σ, where σ is a path in Γr−1.

Let µ be an f -path of height r , where Hr is a polynomial stratum.
µ is called E -perfect if

• the first edge of µ is E or E ,
• every path f̂ i (µ), i > 1 contains the same number of

E -edges as µ.



µ-subgraphs in details (there are cancelations)

We define 3 types of perfect f -paths:
- r -perfect
- A-perfect
- E -perfect

Property. If σ is an r -perfect or A-perfect f -path,
then there is no cancelation in passing from σ to f̂ (σ):

σ ≡ E1E2 . . .En,

f̂ (σ) ≡ E2E3 . . .En · f (E1),

f̂ (σ) may be not perfect, but ...

Theorem.
1) If a µ-subgraph is infinite, it contains ∞ many perfect vertices:

f̂ n1(µ), f̂ n2(µ), f̂ n3(µ) . . . .

2) Perfectness is verifiable.
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µ-subgraphs in details (there are cancelations)

Weak alternative. Moving along the µ-subgraph, we can detect
one of:
• the µ-subgraph is finite,
• the µ-subgraph contains a perfect vertex v0.

In the second case we still have to decide, whether the µ-subgraph
is finite or not.

Case 1. If v0 is r -perfect, then

(1) Lr (f̂ i+1(v0)) > Lr (f̂ i (v0)) > 0 for all i > 0.

(2) There exist computable natural numbers m1 < m2 < . . . ,
such that
Lr (f̂ mi (v0)) = λi

r Lr (v0) for all i > 1.

⇒ In this case the µ-subgraph is ∞ and
the membership problem in it is solvable.
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µ-subgraphs in details (there are cancelations)
Case 2. If v0 is A-perfect, then we can find a finite set
{v0, v1, . . . , vk} of A-perfect vertices in the v0-subgraph such that
all A-perfect vertices in the v0-subgraph are:

v0, v1, . . . , vk ,
[f (v0)], [f (v1)], . . . , [f (vk)],
[f 2(v0)], [f 2(v1)], . . . , [f 2(vk)],
. . .

Moreover, given a vertex u in the v0-subgraph, we can find a
number `, such that f̂ `(u) is an A-vertex.

So the finiteness and the membership problems for the v0-subgraph
can be reduced to:
Problem FIN. Does there exist m > n > 0 such that

[f n(v0)] = [f m(v0)]?
Problem MEM. Given an f -path τ , does there exist n > 0 s.t.

[f n(v0)] = τ?

Both can be answered with the help of a theorem of Brinkmann.
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THANK YOU!
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