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Dr. Gillian Taylor: "Don’t tell me, you’re from outer space."
Captain Kirk: "No, I’m from Iowa. I only work in outer space."

The 1986 movie Star Trek IV: The Voyage Home

"Outer space is no place for a person of breeding."
Lady Violet Bonham Carter

"Interestingly, according to modern astronomers, space is finite. This is
a very comforting thought - particularly for people who cannot
remember where they left things."

Woody Allen

"Space is almost infinite. As a matter of fact, we think it is infinite."
Dan Quale
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Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex
C(S), introduced by Harvey in 1970s, has the vertex set consisting of
free homotopy classes [α] of essential simple closed curves on S.

Two distinct vertices [α], [β] are joined by an edge if there exist disjoint
representatives α, β of [α], [β]. Higher-dimensional simplices are
defined similarly.

The mapping class group Mod(S) acts on C(S) by simplicial
automorphisms.
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Curve complex for surfaces

Facts:
(1) C(S) is connected and dim C(S) <∞
(2) C(S) is locally infinite
(3) C(S) has infinite diameter
(4) [Masur-Minsky, late 1990s] ) C(S) is Gromov-hyperbolic.

The curve complex C(S) has many applications in the study of
mapping class groups and of Teichmuller space, of Kleinian groups
and of 3-manifolds.

Question: What about a free group FN? Any "nice" complexes with
natural Out(FN)-action?

Several analogs of C(S) for FN were suggested in recent years.
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Free splitting and free factor complexes

Defn. The free splitting complex FSN has as its vertex set the set of
“elementary free splittings” FN = π1(A) where A is a (minimal
nontrivial) graph of groups with a single edge (possibly a loop-edge)
and the trivial edge group.Two such splittings are considered equal if
their Bass-Serre trees are FN -equivariantly isomorphic.

E.g. FN = A ∗ B and FN = gAg−1 ∗ gBg−1 are equal in FSN .

Adjacency in FSN corresponds to two splittings FN = π1(A1) and
FN = π1(A2) admitting a common refinement, i.e. a splitting
FN = π1(B) where B has TWO edges e1,e2, both with trivial edge
groups, and where for i = 1,2 collapsing the edge ei produces the
splitting FN = π1(Ai).

E.g. if FN = A ∗ B ∗ C (with A,B,C 6= {1}) then the splittings
FN = A ∗ (B ∗ C) and FN = (A ∗ B) ∗ C are adjacent vertices in FSN .

Higher-dimensional simplices are defined similarly.
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Free splitting and free factor complexes

Defn. The free factor complex FFN has as its vertex set the set of
conjugacy classes [A] of proper free factors A of FN .

Two distinct vertices [A], [B] are adjacent in FFN if there exist
representatives A of [A] and B of [B] such that A ≤ B or B ≤ A.

Higher-dimensional simplices are defined similarly.
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Free splitting and free factor complexes

Facts. Let N ≥ 3. Then:
(1) Both FSN and FFN are connected, finite-dimensional and admit
natural co-compact Out(FN)-actions.

(2) Both FSN and FFN are locally infinite.

(3) Both FSN and FFN have infinite diameter. (Kapovich-Lustig ’09,
Behrstock-Bestvina-Clay ’10)

(4) If φ ∈ Out(FN) is fully irreducible (iwip) then φ acts on FSN and FFN
with positive asymptotic translation length (Bestvina-Feighn ’10)

(5) There is a canonical Out(FN)-equivariant coarsely Lipschitz and
coarsely surjective “multi-function” τ : FS(0)

N → FF (0)
N where τ(A) is the

set of conjugacy classes of vertex groups of A. The image τ(A) of a
vertex of FSN has diameter ≤ 2 in FFN .

E.g. τ(FN = A ∗ B) = {[A], [B]}.
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(5) There is a canonical Out(FN)-equivariant coarsely Lipschitz and
coarsely surjective “multi-function” τ : FS(0)

N → FF (0)
N where τ(A) is the

set of conjugacy classes of vertex groups of A. The image τ(A) of a
vertex of FSN has diameter ≤ 2 in FFN .

E.g. τ(FN = A ∗ B) = {[A], [B]}.
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Free splitting and free factor complexes

Two big results proved last year:

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308]
For any N ≥ 3 the free factor complex FFN is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994]
For any N ≥ 3 the free splitting complex FSN is Gromov-hyperbolic.

The proofs are rather different, although both are long and
complicated. However, it appears that the Handel-Mosher proof admits
significant simplification.
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Statement of the main result

In a new paper with Kasra Rafi (June 2012, arxiv:1206.3626) we
derive Theorem 1 from the Handel-Mosher proof of Theorem 2.
Specifically, we only use the fact that FSN is hyperbolic and the
conclusion of one of the propositions in the Handel-Mosher paper.

Thus we obtain:
Theorem 3. Let N ≥ 3. Then:
(1) The free factor complex FFN is Gromov-hyperbolic.

(2) There exists C = C(N) such that for any vertices x , y ∈ FSN the
path τ([x , y ]) is C-Hausdorff close to any geodesic [τ(x), τ(y)] in FFN .

Here τ : FSN → FFN is the canonical "multi-function" described earlier.
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Bowditch’s criterion of hyperbolicity and its
consequences

Defn.[Thin structure] Let X be a connected graph with simplicial metric
dX .Let G = {gx ,y |x , y ∈ V (X )} be a family of edge-paths in X such that
for any vertices x , y of X βx ,y is a path from x to y in X .
Let Φ : V (X )× V (X )× V (X )→ V (X ) be a function such that for any
a,b, c ∈ V (X ),

Φ(a,b, c) = Φ(b, c,a) = Φ(c,a,b).

Assume, for constant B1 and B2 that G and Φ have the following
properties:
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Bowditch’s criterion of hyperbolicity and its
consequences

1 For x , y ∈ V (X ), the Hausdorff distance between βx ,y and βy ,x is
at most B2.

2 For, x , y ∈ V (X ), βx ,y : [0, l]→ X , s, t ∈ [0, l] and a,b ∈ V (X ),
assume that

dX (a, βx ,y (s)) ≤ B1 and dX (b, βx ,y (t)) ≤ B1.

Then, the Hausdorff distance between βa,b and βx ,y
∣∣
[s,t] is at most

B2.
3 For any a,b, c ∈ V (X ), the vertex Φ(a,b, c) is contained in a

B2–neighborhood of βa,b.

Then, we say that the pair (G,Φ) is a (B1,B2)–thin triangles structure
on X .
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Bowditch’s criterion of hyperbolicity and its
consequences

The following statement is a direct corollary of a more general
hyperbolicity criterion due to Bowditch (2006)

Proposition. Let X be a connected graph. For every B1 > 0 and
B2 > 0, there exist δ > 0 and H > 0 so that if (G,Φ) is a (B1,B2)–thin
triangles structure on X then X is δ–hyperbolic.
Moreover, every path βx ,y in G is H–Hausdorff-close to any geodesic
segment [x , y ].
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Bowditch’s criterion of hyperbolicity and its
consequences

From here we derive the following useful corollary:

Corollary A For every δ0 ≥ 0, L ≥ 0, M ≥ 0 there exist δ1 ≥ 0 and
H ≥ 0 so that the following holds.
Let X , Y be connected graphs, such that X is δ0–hyperbolic.
Let f : X → Y be an L–Lipschitz graph map. Suppose that:

1 f (V (X )) = V (Y ).
2 For x , y ∈ V (X ), if dY (f (x), f (y)) ≤ 1 then for any geodesic [x , y ]

in X we have
diamY (f ([x , y ])) ≤ M.

Then Y is δ1–hyperbolic and, for any x , y ∈ V (X ) and any geodesic
[x , y ] in X , the path f ([x , y ]) is H–Hausdorff close to any geodesic
[f (x), f (y)] in Y .
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Free bases graph

We introduce the following useful object that is q.i. to FFN :
Defn The free bases graph FBN has as its vertex set the set of
equivalence classes [A] of free bases A of FN .
Two free bases A and B are equivalent if the Cayley graphs
Cay(FN ,A) and Cay(FN ,B) are FN -equivariantly isometric.
(E.g A ∼ gAg−1. Also, permuting elements of A and possibly inverting
some of them preserves the equivalence class [A].)

Two distinct vertices [A] and [B] are adjacent in FBN if there exist
representatives A of [A] and B of [B] such that A ∩ B 6= ∅.
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Free bases graph

Prop. 1 Define a multi-finction q : V (FBN)→ V (FFN) as follows.
For a free basis A = {a1, . . . ,aN} of FN put

f ([A]) = {[〈ai〉] : i = 1, . . . ,N.}

Then q is a quasi-isometry between FBN and FFN .

Prop. 2 The set S := V (FBN) = {[A] : A is a free basis of FN}, when
appropriately interpreted, is a C-dense subset of the barycentric
subdivision FS′N of FSN .

Prop. 3 There is a natural coarsely L-Lipschitz map f : FS′N → FBN
such that f |S = Id |S.
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Sketch of the proof of the main result

Recall that FS′N is Gromov-hyperbolic by Handel-Mosher.
We will prove that FBN is Gromov-hyperbolic by applying Corollary A’
to the map f : FS′N → FBN . Then hyperbolicity of FFN will follow from
Prop 1, since FBN is q.i. to FFN .
Main thing to verify: that if x = [B], y = [A] ∈ S are such that
dFBN (x , y) ≤ 1 then f ([x , y ]) has diameter ≤ M in FBN .

Instead of a geodesic [x , y ] in FS′N can use a quasi-geodesic from x to
y .
Handel-Mosher, given any vertices x , y ∈ FSN , construct a "folding
line" gx ,y from x to y in FS′N and show that gx ,y is a (reparameterized)
uniform quasigeodesic in FS′N .
The general construction of gx ,y is rather hard, but for
x , y ∈ S = V (FBN) it is fairly easy and can be interpreted in terms of
the standard Stallings folds.
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Sketch of the proof of the main result

Let x = [B], y = [A] ∈ S be such that dFBN (x , y) ≤ 1. Thus may
assume that A = {a1, . . . ,aN}, B = {b1, . . . ,bN} and that a1 = b1.

Form a labelled graph Γ0 which is a wedge of N loop-edges at a vertex
v0 with the i-th loop-edge being labelled by the freely reduced word wi
over A such that wi = bi in FN .Thus the 1-st loop-edge is labelled by
a1.

By conjugating A by at
1 if necessary may achieve the following

important technical condition, needed by the Handel-Mosher
construction:
among the 2N oriented edges outgoing from v0 in Γ0, there exist some
three edges with their labels beginning with three distinct letters from
A±1.
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Sketch of the proof of the main result

Now construct a sequence of labelled graphs Γ0, Γ1, Γ2, . . . where each
Γi+1 is obtained from Γi by a "maximal fold":

There is a vertex v in Γi and two outgoing edges e1,e2 from v with
labels w1,w2 such that the freely words w1,w2 ∈ F (A) have the same
first letter. The graph Γi+1 is obtained from Γi by "folding" together into
a single edge the initial segments of e1,e2 corresponding to the
maximal common initial segment of the word w1,w2.

Since B and A are free bases of FN , the sequence is guaranteed to
terminate in a finite number of steps with Γm = RA, the graph with a
single vertex and N loop-edges labelled a1, . . . ,aN .

Key feature: Each Γi has a loop-edge, based at its base-vertex vi ,
labeled by a1.
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Sketch of the proof of the main result

Handel-Mosher’s general results imply: the sequence Γ0, Γ1, . . . , Γm
determines a uniform quasigeodesic gx ,y from x = [B] to y = [A] in
FS′N .
The "Key feature" implies that f (gx ,y ) has diameter ≤ M in FBN for
some constant M ≥ 1 independent of x , y .
Therefore FBN is Gromov-Hyperbolic by Corollary A’. Hence FFN is
also Gromov-hyperbolic since FFN is q.i. to FBN by Prop 1.
Q.E.D.
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Open problems

Problem 1. Let A,B be free bases of FN . Again consider [A] and [B]
as vertices of FS′N .

Let n = dFS′
N

([A], [B]).

Let U be the set of all vertices of FS′N that occur along all folding paths
Γ0, . . . , Γm from [B] to [A] in FS′N as in the proof of Thm 3.

Is it true that
#U ≤ Cnα

for some constants C > 0 and α ≥ 1 independent of [A], [B]?

Ilya Kapovich (UIUC) March 16, 2012 22 / 24



Open problems

Problem 1. Let A,B be free bases of FN . Again consider [A] and [B]
as vertices of FS′N .

Let n = dFS′
N

([A], [B]).

Let U be the set of all vertices of FS′N that occur along all folding paths
Γ0, . . . , Γm from [B] to [A] in FS′N as in the proof of Thm 3.

Is it true that
#U ≤ Cnα

for some constants C > 0 and α ≥ 1 independent of [A], [B]?

Ilya Kapovich (UIUC) March 16, 2012 22 / 24



Open problems

Problem 1. Let A,B be free bases of FN . Again consider [A] and [B]
as vertices of FS′N .

Let n = dFS′
N

([A], [B]).

Let U be the set of all vertices of FS′N that occur along all folding paths
Γ0, . . . , Γm from [B] to [A] in FS′N as in the proof of Thm 3.

Is it true that
#U ≤ Cnα

for some constants C > 0 and α ≥ 1 independent of [A], [B]?

Ilya Kapovich (UIUC) March 16, 2012 22 / 24



Open problems

Problem 1. Let A,B be free bases of FN . Again consider [A] and [B]
as vertices of FS′N .

Let n = dFS′
N

([A], [B]).

Let U be the set of all vertices of FS′N that occur along all folding paths
Γ0, . . . , Γm from [B] to [A] in FS′N as in the proof of Thm 3.

Is it true that
#U ≤ Cnα

for some constants C > 0 and α ≥ 1 independent of [A], [B]?

Ilya Kapovich (UIUC) March 16, 2012 22 / 24



Open problems

Recall that φ ∈ Out(FN) is fully irreducible or iwip if there is no power
φt (t 6= 0) such that φt fixes the conjugacy class of a proper free factor
of FN .

Fact: Let φ ∈ Out(FN). Then exactly one of the following occurs:
φ is an iwip and it acts as a hyperbolic isometry on FFN (has a
quasi-axis and exactly 2 fixed points at infinity)
φ is not an iwip and some nonzero power φt of φ fixes a vertex of
FFN .

Another model: FS∗N has V (FS∗N) = V (FSN).
Two distinct vertices A,B of FS∗N are adjacent if there exists
w ∈ FN ,w 6= 1 such that

||w ||A = ||w ||B = 0

i.e. w is conjugate to an elmt of a vertex group of A and w is conjugate
to an elmnt of a vertex group of B.
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Open problems

Fact: For N ≥ 3 the spaces FFN and FS∗N are quasi-isometric.

Yet another graph: The graph JN has as its vertex set the set of
(minimal nontrivial) splittings FN = π1(A) such that A has one edge
and a cyclic (trivial or Z) edge group. Adjacency is again defined as
having a common elliptic element.

Then FS∗N is a subgraph of JN and, moreover V (FS∗N) is a 4-dense
subset of V (JN).

Problem 2. Is JN Gromov-hyperbolic?

If φ ∈ Out(FN) is a geometric iwip (comes from a pseudo-Anosov
homeo of a compact surface with one bry component) then φ acts on
JN with a bounded orbit while φ acts as a hyperbolic isometry on FS∗N .
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