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Dr. Gillian Taylor: "Don’t tell me, you’re from outer space.”
Captain Kirk: "No, I'm from lowa. | only work in outer space."

The 1986 movie Star Trek IV: The Voyage Home

"Quter space is no place for a person of breeding."
Lady Violet Bonham Carter

"Interestingly, according to modern astronomers, space is finite. This is
a very comforting thought - particularly for people who cannot
remember where they left things."

Woody Allen

"Space is almost infinite. As a matter of fact, we think it is infinite."
Dan Quale
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@ Curve complex for surfaces

@ Free splitting and free factor complexes for Fy

© Statement of the main result

© Bowditch criterion of hyperbolicity and its implications
© Free bases graph

© Sketch of the proof of the main result

@ Open problems (time permitting)
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Curve complex for surfaces.

Let S be a closed surface of negative Euler char. The curve complex
C(S), introduced by Harvey in 1970s, has the vertex set consisting of
free homotopy classes [a] of essential simple closed curves on S.

Two distinct vertices [«], [5] are joined by an edge if there exist disjoint
representatives «, 5 of [a], [5]. Higher-dimensional simplices are
defined similarly.

The mapping class group Mod(S) acts on C(S) by simplicial
automorphisms.
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Free splitting and free factor complexes

Defn. The free splitting complex FSy has as its vertex set the set of
“elementary free splittings” Fy = 71(A) where A is a (minimal

nontrivial) graph of groups with a single edge (possibly a loop-edge)
and the trivial edge group.
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set of conjugacy classes of vertex groups of A. The image 7(A) of a
vertex of FSy has diameter < 2 in FFy,.

E.g. 7(Fy = Ax B) = {[A],[B]}.
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Free splitting and free factor complexes

Two big results proved last year:

Theorem 1. [Bestvina-Feighn, July 2011, arXiv:1107.3308]
For any N > 3 the free factor complex FFy is Gromov-hyperbolic.

Theorem 2. [Handel-Mosher, November 2011, arXiv:1111.1994]
For any N > 3 the free splitting complex FSy is Gromov-hyperbolic.

The proofs are rather different, although both are long and

complicated. However, it appears that the Handel-Mosher proof admits
significant simplification.
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we have

diamy (f([x, y])) < M.
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Prop. 1 Define a multi-finction q : V(FBy) — V(FFy) as follows.
For a free basis A = {ay,...,an} of Fy put

f(lA]) ={[{ap]:i=1,....,N.}

Then q is a quasi-isometry between FBy and FFy,.

Prop. 2 The set S := V(FBy) = {[A] : A is a free basis of Fy}, when
appropriately interpreted, is a C-dense subset of the barycentric
subdivision FS), of FSy.

Prop. 3 There is a natural coarsely L-Lipschitz map f : FSy, — FBy
such that f|s = Id|s.
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Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.

Ilya Kapovich (UIUC) March 16,2012  18/24



Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.
We will prove that FBy is Gromov-hyperbolic by applying Corollary A’
to the map f : FSy, — FBy. Then hyperbolicity of FFy will follow from

Prop 1, since FBy is q.i. to FFy.

Ilya Kapovich (UIUC) March 16,2012  18/24



Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.

We will prove that FBy is Gromov-hyperbolic by applying Corollary A’
to the map f : FSy, — FBy. Then hyperbolicity of FFy will follow from
Prop 1, since FBy is q.i. to FFy.

Main thing to verify: that if x = [B], ¥y = [A] € S are such that

drs, (X, y) < 1 then f([x, y]) has diameter < M in FBy.

Ilya Kapovich (UIUC) March 16,2012  18/24



Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.
We will prove that FBy is Gromov-hyperbolic by applying Corollary A’
to the map f : FSy, — FBy. Then hyperbolicity of FFy will follow from

Prop 1, since FBy is q.i. to FFy.

Main thing to verify: that if x = [B], ¥y = [A] € S are such that

drs, (X, y) < 1then f([x, y]) has diameter < M in FBy.

Instead of a geodesic [x, y] in FS), can use a quasi-geodesic from x to
y.

Ilya Kapovich (UIUC) March 16,2012  18/24



Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.

We will prove that FBy is Gromov-hyperbolic by applying Corollary A’
to the map f : FSy, — FBy. Then hyperbolicity of FFy will follow from
Prop 1, since FBy is q.i. to FFy.

Main thing to verify: that if x = [B], ¥y = [A] € S are such that

drs, (X, y) < 1 then f([x, y]) has diameter < M in FBy.

Instead of a geodesic [x, y] in FS), can use a quasi-geodesic from x to
y.
Handel-Mosher, given any vertices x, y € FSy, construct a "folding
line" gx,, from x to y in FS), and show that gy, is a (reparameterized)
uniform quasigeodesic in FSy,.

Ilya Kapovich (UIUC) March 16,2012  18/24



Sketch of the proof of the main result

Recall that FS), is Gromov-hyperbolic by Handel-Mosher.

We will prove that FBy is Gromov-hyperbolic by applying Corollary A’
to the map f : FSy, — FBy. Then hyperbolicity of FFy will follow from
Prop 1, since FBy is q.i. to FFy.

Main thing to verify: that if x = [B], y = [A] € S are such that

drs, (X, y) < 1 then f([x, y]) has diameter < M in FBy.

Instead of a geodesic [x, y] in FS), can use a quasi-geodesic from x to
y.
Handel-Mosher, given any vertices x, y € FSy, construct a "folding
line" gx,, from x to y in FS), and show that gy, is a (reparameterized)
uniform quasigeodesic in FSy,.

The general construction of gy is rather hard, but for

x,y € S= V(FBy) itis fairly easy and can be interpreted in terms of
the standard Stallings folds.
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Sketch of the proof of the main result

Let x = [B],y = [A] € S be such that dr, (x,y) < 1. Thus may
assume that A = {ay,...,an}, B={by,..., by} and that a; = by.
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over A such that w; = b; in Fy.
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Sketch of the proof of the main result

Now construct a sequence of labelled graphs 'y, 1,2, ... where each
Ii+1 is obtained from I'; by a "maximal fold":
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terminate in a finite number of steps with I',, = R4, the graph with a
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Sketch of the proof of the main result

Now construct a sequence of labelled graphs 'y, 1,2, ... where each
Ii+1 is obtained from I'; by a "maximal fold":

There is a vertex v in I'; and two outgoing edges ey, &> from v with
labels wq, w» such that the freely words wy, wo € F(A) have the same
first letter. The graph I';, ¢ is obtained from I'; by "folding" together into
a single edge the initial segments of e, e corresponding to the
maximal common initial segment of the word wy, ws.

Since B and A are free bases of Fy, the sequence is guaranteed to
terminate in a finite number of steps with I',, = R4, the graph with a
single vertex and N loop-edges labelled ay, . . ., a.

Key feature: Each I'; has a loop-edge, based at its base-vertex v;,
labeled by ay.
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Sketch of the proof of the main result

Handel-Mosher’s general results imply: the sequence Iy, '1,..., 'y
determines a uniform quasigeodesic gy, from x = [B] to y = [A] in
FSy.
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Open problems

Problem 1. Let A, B be free bases of Fy. Again consider [A] and [5]
as vertices of FS),.
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Open problems

Problem 1. Let A, B be free bases of Fy. Again consider [A] and [5]
as vertices of FS),.

Let n = drg ([A]. [B]).

Let U be the set of all vertices of FS), that occur along all folding paths
o, ...,Imfrom [B] to [A] in FS), as in the proof of Thm 3.

Is it true that
#U < Cn“

for some constants C > 0 and « > 1 independent of [A], [B]?
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Open problems

Recall that ¢ € Out(Fy) is fully irreducible or iwip if there is no power
#! (t # 0) such that ¢! fixes the conjugacy class of a proper free factor
of Fy.
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(minimal nontrivial) splittings Fy = m1(A) such that A has one edge
and a cyclic (trivial or Z) edge group. Adjacency is again defined as
having a common elliptic element.

Then FSj, is a subgraph of Jy and, moreover V(FSy) is a 4-dense
subset of V(Jy).

Problem 2. Is Jy Gromov-hyperbolic?

If € Out(Fy) is a geometric iwip (comes from a pseudo-Anosov
homeo of a compact surface with one bry component) then ¢ acts on
Jn with a bounded orbit while ¢ acts as a hyperbolic isometry on FSy,.
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