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The word problem in groups becomes 100 years old this year (Max
Dehn introduced it in 1912). This year the mathematical world
also celebrates the 100'th anniversary of Alan Turing.
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CAbstract

We construct the first examples of finitely presented residually
finite groups with arbitrarily complicated word problem and depth
function. The groups are solvable of class 3. We also prove that
the universal theory of finite solvable of class 3 groups is
undecidable.



4/32



Let G = (X; R) be a residually finite finitely presented algebraic
structure of finite type (signature) T (say, groups, semigroups,
rings, etc.) Let F(X) be the free algebraic structure of type T
freely generated by X. Then we define the "yes” and “no” parts of
the word problem in G as follows:

WPyes = {(w,w') € F3(X) | w =¢ w'} and
WP = {(w,w') € F3(X) | w #¢ w'}.

To solve the word problem in G one runs in parallel two separate
algorithms Ay and A, such that starting with a given pair of
elements w, w’ € F(X) Ayes stops if and only if (w, w') € WPy
and Ay, stops if and only if (w, w') € WP,,.
The algorithm Ay.; enumerates one by one all consequences of
the defining relations R and waits until w = w’ appears in the list.
The algorithm A, enumerates all homomorphisms ¢1, ¢o, ..., of
G into finite algebraic structures of type T and waits until

di(w) # di(w').



The most “common” residually finite groups are linear groups, say,
over fields (Malcev). In that case the word problem can be solved
in deterministic polynomial time (Lipton, Zalstein, Waak). The
“no” part can be solved by considering factor groups corresponding
to ideals of finite index of some polynomial rings, hence also can
be shown to be solvable in deterministic polynomial time.

The same can be said about most finitely presented groups (where
“most” means “overwhelming probability” in one of several
probabilistic models): most finitely presented groups have small
cancellation, (Olshanskii), small cancellation groups are virtually
RAAGs (Ollivier, Wise, Agol) which are linear (even over Z).



Theorem. (Kh., Myasn., Sapir) Let f(n) be a recursive function.
Then there exists a residually finite finitely presented solvable
group G such that for any finite presentation (X; R) of G the time
complexity of both “yes” and "“no” parts of the word problem are
at least as high as f(n).



Madlener and Otto: in the case of a group or semigroup G the
complexity of the non-deterministic algorithm Ay can be
characterized by the Dehn function of G.

Definition (Madlener-Otto, Gersten, Gromov) Let G = (X|R) be
a f.p. group, w be aword in X, w =1 in G. The area of w is the
minimal number of cells in a van Kampen diagram with boundary
label w. By other words, this is the minimal number n such that

n -1
w=T_gir8

where rj; € R, in the free group with basis X.
Definition (Dehn function) For any n > 1 let d(n) be the largest
area of a word w of length at most n.



Gersten: the question about possible Dehn function of a residually
finite group.

Nilpotent groups are examples of residually finite groups with
arbitrary high polynomial Dehn function. The Baumslag-Solitar
groups (x,y | x¥ = x¥), k > 2, are residually finite (even linear)
groups with exponential Dehn function. It was also known that
super-exponential behavior can occur, although it does not seem to
happen in “natural” classes of groups. Thus if G is a finitely
presented group with an unsolvable word problem, then the Dehn
function of G cannot be bounded above by any recursive function.



 Quantification of the "yes" part: the WordIBIORISHIN

Theorem (Sapir, Birget, Rips). Let L be a language accepted by a
Turing machine M with a superadditive time function T(n) > n*.
Then there exists a f.p. group G with the Dehn function
equivalent to T(n).

10/32



 Strange creatures

In Gersten-Baumslag’s group < x, y|x(") = x> > Dehn function is
not bounded by a tower of exponents but the W.P. is polynomial
(Myasnikov, Ushakov).
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Our

Theorem (KMS) For every recursive function f, there is a
residually finite finitely presented solvable of class 3 group G with
Dehn function greater than f. In addition, one can assume that
the word problem in G is at least as hard as the membership
problem in a given recursive set of natural numbers Z or as easy as
polynomial time.

Corollary. For every recursive function f, there is a residually finite
finitely presented solvable of class 3 group G with Dehn function
greater than f and the word problem decidable in polynomial time.
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Qua

The function quantifying the algorithm A, is the depth function
introduced by Bou-Rabee (2010). Recall that if G = (X) is a
finitely generated group or semigroup, the depth function pg(n) is
the smallest function such that every two words w #¢ w’ of length
at most n are separated by a homomorphism to a group
(semigroup) H with |H| < pg(n). That function does not depend
on the choice of finite generating set X (up to the natural
equivalence).
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For every finitely generated linear group or semigroup G, p¢ is at
most polynomial. Since finitely generated metabelian groups are
subgroups of direct products of linear groups (Wehrfritz, 80) the
depth function of every finitely generated metabelian group is at
most polynomial.

By the recent result of Agol (2012) based on the results of Wise
(2011), every small cancelation group is a subgroup of a Right
Angled Artin group, hence linear and has polynomial depth
function.

For the free group F, pfr,(n) is at most n3 by a result of Kassabov
and Matucci (2012).
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There are some finitely presented groups for which the depth
function is unknown and very interesting. For example the
ascending HNN extensions of free groups are known to be
residually finite and even virtually residually nilpotent (Borisov,
Sapir, 2005) but the only upper bound one can deduce from the
proof is exponential. Although many of these groups have small
cancelation presentations and so covered by the results of Agol,
there are some groups of this kind for which the depth function is
not known.

One of these groups is (x,y,t | txt 1 = xy, tyt ™1 = yx). It is
hyperbolic. If the depth function of that group is not polynomial,
that group would not be linear, disproving a conjecture by Wise
(he conjectured that all hyperbolic ascending HNN extensions of
free groups are linear and, moreover, subgroups of Right Angled
Artin groups).
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Qua

For finitely generated infinitely presented groups (even amenable
ones) the situation is much more clear now. Using the method of
Kassabov and Nikolov (2009) and the result of Nikolov and Segal
(2003) one can construct a finitely generated residually finite group
with arbitrary large recursive depth function.
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Theorem (KMS) For every recursive function f, there is a
residually finite finitely presented solvable of class 3 group G with
depth function greater than f. In addition, one can assume that
the word problem in G is at least as hard as the membership
problem in a given recursive set of natural numbers Z or as easy as
polynomial time.

Corollary. For every recursive function f, there is a residually finite
finitely presented solvable of class 3 group G with depth function
greater than f and the word problem decidable in polynomial time.
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CSegan

All bad examples that existed for f.p. groups we can construct for
f.p. residually finite 3-step solvable groups.




Let G be a group generated by a finite set X, H < G be a
subgroup generated by a finite set Y. Recall that the distortion
function fy g (n) is defined as the minimal number f such that
every element of H represented as a word w of length < n in the
alphabet X can be represented as a word of length < f in the
alphabet Y.

The distortion function fg 4 is recursive if and only if the
membership problem in H is decidable.
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Subgr
finitel

As usual we say that H is closed in the pro-finite topology of G if
H is the intersection of subgroups of G of finite index.

If G is finitely presented and H is closed in the pro-finite topology
of G, then there exists a McKinsey-type algorithm A(G, H) solving
the membership problem for H (and thus the fg y is recursive).
For every word w in the alphabet X, the “yes" part Ayes(G, H) of
the algorithm lists all words in Y/, rewrites them as words in X,
and then applies relations of G to check whether one of these
words is equal to w. The “no" part An(G, H) of the algorithm
lists all homomorphisms ¢ of G into finite groups and checks
whether ¢(w) & ¢(H). One can ask what is the complexity of the
“yes" and “no” parts of that algorithm, in particular, and of the
membership problem for H in general.
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One can also quantify the complexity of the two parts Ayes(G, H)
and A,o(G, H). The “yes" part is quantified by the distortion
function fg (n) and the "no” part is quantified by the relative
depth function pg 1(n) which is defined as the minimal number r
such that for every word w of length < n in X which does not
represent an element of H there exists a homomorphism ¢ from G
to a finite group of order < r such that ¢(w) & ¢(H).

There were no examples of finitely generated subgroups of finitely
presented groups that are closed in the pro-finite topology but
have “arbitrary bad” distortion or “arbitrary bad” relative depth
function.



The well known Mihailova's construction shows that finitely
generated subgroups of the residually finite group Fy x F (here F;
is a free group of rank 2) could be as distorted as one pleases. In
fact the set of possible distortion functions of subgroups of F» x Fp
coincides, up to a natural equivalence, with the set of Dehn
functions of finitely presented groups (Olshanskii, Sapir, 2001).

The equalizers of pairs of homomorphisms ¢: Fy — G,¢: F, — G
(where Fy, F, are subgroups of F,) are the subgroups of Fx x F, of
the form {(x, y) € Fx x Fn | ¢(x) = ¢¥(y)}. The equalizer
subgroup is finitely generated if and only if G is finitely presented.
It is easy to prove that if G is residually finite, then the equalizer is
closed in the pro-finite topology of Fy x F;.
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Theorem (KMS) For every recursive function f(n) there exists a
finitely generated subgroup H < F, x F5 that is closed in the
pro-finite topology of F» x F, and whose distortion function
fr,xF,,H, the relative depth function, and the time complexities of
both “yes” and "“no" parts of the membership problem are at least

f(n).



There is an analogous (though a bit weaker) result, for subgroups
of a direct product S3(X) x S3(X), where S3(X) is a free solvable
group of class 3 with free generating set X.

Theorem (KMS) For any recursive function f(n) there is a finite
set X and a finitely generated subgroup H € S3(X) x S3(X) such
that E is closed in the pro-finite topology on S3(X) x S3(X) and
whose distortion function, the relative depth function, and the time
complexities of both “yes” and “no” parts of the membership
problem are at least f(n).



A possible idea to construct complicated residually finite finitely
presented groups would be to take a complicated Turing machine
with decidable halting problem and show that the corresponding
group is residually finite. Unfortunately even for simple Turing
machines the corresponding groups are not residually finite.

Thus we have to modify the machine. We use the fact that every
Turing machine with decidable halting problem is equivalent to a
universally halting and even sym-universally halting Turing
machine.
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A machine M in general has an alphabet and a set of words in that
alphabet called configurations. It also has a finite set of
commands. Each command is a partial injective transformation of
the set of configurations. A computation is a sequence

01 02 0,
Wi — W — ... —> Wjy1.

where w; are configurations, 01, ..., 6, are commands and

0;(w;) = wiyq for every i = 1,...,n. A machine is called
deterministic if the domains of its commands are disjoint. A
machine usually has a distinguished stop configuration, and a set
I = (M) of input configurations. A configuration is called
accepted by M if there exists a computation connecting that
configuration with the stop configuration.
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Met

The machine Sym(M) is defined in the natural way (add the
inverses of all commands of M).

A (not necessarily deterministic) machine M is called universally
halting if for every configuration w of M there exist only finitely
many computations of M starting with w without repeated
configurations.

We call a deterministic machine M sym-universally halting if
Sym(M) halts if it starts with any non-accepted configuration.
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We are using (a modified version of) my construction to construct
a finitely presented 3-solvable group with unsolvable word problem.
This is an interpretation of a Minsky machine M in finitely
presented solvable groups G(M) of class 3. The main feature of
the group G(M) is that the words corresponding to the
configurations of M and some of their subwords form a basis of the
second derived subgroup G(M)” of G(M) which is an Abelian
group of prime exponent (i.e. a vector space over Z/pZ). The
factor-group G(M)/G(M)" is metabelian, hence residually finite
(and with easy word problem) by. Thus the “extra elements” of
G(M) are easy to deal with.
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Min

The hardware of a K-glass Minsky machine, K > 2, consists of K
glasses containing coins. We assume that these glasses are of
infinite height. The machine can add a coin to a glass, and remove
a coin from a glass (provided the glass is not empty). The
commands of a Minsky machine are numbered. So a configuration
of a K-glass Minsky machine is a K + 1-tuple (i;€1,. .., €x) where
i is the number of command that is to be executed, ¢; is the
number of coins in the glass #;j.
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More precisely, a command has one of the following forms:
@ Put a coin in each of the glasses #+#n;, ..., n; and go to
command # j. We shall encode this command as

iy — Add(ny,...,n);J

where i is the number of the command:

o If the glasses #+n1, ..., n; are not empty then take a coin
from each of these glasses and go to instruction # j. This
command is encoded as

i€n, >0,...,€n, >0 — Sub(ny,...,n); J;

o If glasses ##n1, ..., n; are empty, then go to instruction # j.

This command is encoded as
i€n, =0,...,€n, =0 = J;

@ Stop. This command is encoded as i; — 0;
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Remark This defines deterministic Minsky machines. We will also
need non-deterministic Minsky machines. Those will have two or
more commands with the same number.
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Theorem

Let X be a r.e. set of numbers. Then the following holds:

(a) There exists a 3-glass deterministic Minsky machine MM3
which when started on (1; m,0,...,0) stops in the configuration
(90,0,0,...,0) provided m € X, and works forever otherwise.

(b) We can also assume that every computation of MMy or MM3
starting with a configuration ¢ empties each glass after at most
O(|c|) steps.

(c) If X is recursive, then the machine MM3 above can be chosen
to be sym-universally halting.

(d)If M is a deterministic Turing machine recognizing X, then we
can assume that MMy (resp. MM3) polynomially reduces to M
where the numbers written on the tapes of M are measured as
represented in unary (that is the size of a number n is set as n and
not logy, n).
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