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Key Exchange Protocols
and
Representation attacks



Key Exchange Protocols (KEPs)

Alice and Bob wish to communicate over an insecure channel.

3 Efficient & secure methods if they share a secret (“key"):
Symmetric encryption (AES,...).

How to decide a shared secret key over an insecure channel?
Diffie-Hellman 1976. Key Exchange Protocol.
The most important breakthrough in cryptography.

In this minicourse: Only passive adversaries.
The kernel on which more involved PKC is built.



Key Exchange Protocol - the concept

Courtesy of Wikipedia
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The Diffie—=Hellman KEP

Alice Public Bob
ae{0,1,...,p—1} G={(g), |G|=p be{0,1,...,p—1}
gP

K:azgab K:bzgab

Exponentiation. x — g* via square and multiply, O(log, p).



Security of the Diffie—Hellman KEP

Diffie-Hellman Problem. (g2, g”) s g2.
Discrete Logarithm Problem. g* +— x.
DLP > DHP.

Both are e-hard.

Ts 2006. None depends on generator choice.



The Discrete Logarithm Problem

Discrete Logarithm Problem. g* — x.
Depends on the group!

G=(Zp,+) g=1."¢g"=x-g=x-1=x.
G < (Zp,-). Quite, but not enough, hard:

NFS. n:=logy(p): 2 (133 + o(1))n"/*(log, n)?/*.

n NFS Work Prediction Year Broken

525 247 2002
578 249 2003
664 252 2005
768 2% 2009
1024 262 20167

10,000 bits prime for “eternal” security? Impractical.



The future of cryptography

G < Elliptic Curve. Nothing better than 2"/2. Yet.

ECC. Rich mathematics — - -- — algorithmic breakthroughs?
Quantum Computers. Break all Diffie—Hellman KEPs.
Theoretic.

But what is your alternative?

Rivest-Shamir-Adleman (RSA, 1978). As easy as DLP in Z,
Lattice-based? Maybe.

How about noncommutative groups?

WIN/WIN: New KEP / efficient algorithms.



The Braid Diffie=Hellman KEP

Diffie—Hellman KEP 1976.

Alice Public Bob

ae{0,1,...,p—1} G={g), |G|=p be{0,1,...,p—1}




The Braid Diffie=Hellman KEP

Ko—-Lee—-Cheon—-Han-Kang—Park 2000. G noncommutative.

g = x"lgx.
Alice Public Bob
aeA A B<G,geG,[ABl=1 beB




Dehn’s Problems 1911

G=(X| R).
Word Problem. Decide whether g = 1.

Conjugacy Problem. Decide whether g, h are conjugate.
(AKA Generalized Word Problem.)

Isomorphism Problem. Decide whether G, H are isomorphic.
Originally, decision problems. Crypto uses the search versions.

Unlike the decision problems, the search problems are decidable,
but we ask for efficient solutions.

Proposed platform. Artin's braid group. (TBD)

Motivated a new line of research in combinatorial group theory.



Artin’s braid group B

Identity braid:




The ordinary braid
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The ordinary braid
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Real life applications

A Challah.



Artin’s braid group B

B: Braids / isotopy.
Multiplication: Concatenation of braids.

Inversion: Mirror braid.



Generators of the braid group
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Relations in the braid group

Far Commutativity: o;jo; = ojo; for i +1 < j.

R KT

Triple relation: Oi0i410j = 0j410i0j41-

L L
oo
1 N




Normal forms

Think DH KEP in (Z/pZ)* instead of Z}:

1. May not get the same key if choice not canonical!
2. Breakable!

Normal form: n+— (n mod p):

1. Ensures same key.

2. Hides the generation info.

Braid Diffie-Hellman KEP uses B as platform group.

Normal form in B?



The positive monoid B

B+ = Mon <01,02,... ’ oioj = ojo; (i+1<j), >

0i0j+10; = 0410041

Garside 1969;

1. Equivalent positive braids are positive-equivalent.
2. .. Equivalence classes of positive braids are finite.

3. Lex-minimal representatives are normal forms in BT,
Not efficient, but the theme will become useful later.
For simplicity, henceforth work in:

By: (o1,...,0n-1) < B, supported by the leftmost n strands.



The fundamental braid A

N

A = (010203)(0102)01

"
g

D

4

L

Bt

W
Vb € By3 minimal |p|, b= A" p
Plexmin = lex minimum of these p’s

Garside’s normal form of b := A’ - plexmin

inf(b) := i (maximal)



Permutation braids and an efficient normal form

a<b: IpeByT, ap = b.
BN+:{,D€BN : ].Sp}
pesS: 1<p<A.

Permutation braids: S =<eff Sn.
Canonical expression by transpositions (i, i + 1).

Adyan 1984-Thurston 1992-Elrifai-Morton 1994 Normal Form.
b=A"Cppy. . py

pi € P of maximal length, i =1,2,... /¢ (left-weighted).
Complexity: |b|>N log N.



The Braid Diffie=Hellman KEP

G = By.
Alice Public Bob
acA AB<G,geG,[ABl=1 beB
gb




Problems related to the Braid Diffie—=Hellman KEP

AB< G,g€G,[AB]=1.

BDH Problem. (g2,g%) — g (a € A,b € B).

Conjugacy Search Problem (CSP). g¥ — %, g¥ = g* (g,x € G).
CSP1. g+ 3¢ C¢(B), g7 = g°.

CSP2. g?» 3€ A, g2 =g°.

CSP2 > CSP1 > BDH Problem.



Representations of By

t
0

Moody 91, Long—Paton 93, Bigelow 99. Not faithful for N > 5.

Burau 1936. o; — i1 @ (1 I t ) ® In_i—1 € GLn(Z[tF1]).
Lawrence-Krammer. LK: By — GL(N)(Z[tﬂ, gt)).
2

Bigelow 2001 (JAMS), Krammer 2002 (Annals):
LK representation is faithful for all V.

Cheon—Jun 2003.

1. LK Evaluation: Fast. Inversion: Roughly N°® (acceptable).
2. Sufficient to find the key's image « in a field

Z[t=Y, a1/ (p, £ (1), &(q))

with k mod (p, f(t),g(q)) = k.



Representation attack

BDH Problem. (g2,g%)+— g (a € A, b € B).

Cheon—Jun 2003. Representation attack.

Assume G =eff matrix group. Think G is a matrix group.
:a_lga <~ a-:g-a
Solve

{a- - e —  ast. {a - &

a-B = B-a

(o7

Then |g”| =gbt =gt = (") = |g°| =g =K |

Possibly, o ¢ G, but this works | Complexity: (n?)% = N12.

a-B = B-«



To resurrect the Braid Diffie—=Hellman KEP

Problem. Find G without any representation that is:

1. low-dimensional,
2. faithful, and

3. efficiently computable in both directions.



Second Braid Diffie=Hellman KEP

Cha—-Ko—-Lee—Han—Cheon 2001.

Alice Public

a1 € Ar,a2 € A A1, A2, B1,B, < G, g e G

Bob

b1 € Bl,bg € B2

Cheon—Jun 2003. Similar representation attack:

C=aigay <

-1
a;

c=g-a.

K = bi[aig3 b



Finding an invertible solution

Problem. Find an invertible matrix in a subspace of M,(F).
Cheon—Jun Heuristic. Pick “random” elements until invertible.
Ts. Assume span{A;,...,An} NGL,(F) # 0. Then

n

Pr(laiAr + -+ amAm| #0) > 1 — m

Proof: f(x1,...,xm) = |[x1A1 + -+ xmAm| € F[x1, ..., xm],
nonzero, degree n.

Schwartz 1980—-Zippel 1989 Lemma.
f(xi,...,xm) € F[x1,...,xm] nonzero degree n.

Pr(f(x1,...,xm) £0)>1— ﬁ.



The Shpilrain—Ushakov KEP 2006

Alice Public Bob
aeG geG b e G
B < CG(al)

A < Ce(b)
aeA by € B
a1 gaz
bigby

K = aibigbsaz

K = braigasbo



Linear Centralizer Attack on Shpilrain—Ushakov KEP
Ts (fresh!). Assume G < M = M,(F) (eq., eff. representable).

Key observations.

1. Can't constraint solutions of linear equations to groups,
can constraint solutions to subspaces!

2. H=(g1,...,86) < G = Cc(H) € Cu(H) = Culgr,-- -, 8)-
.. Cc(H) computable by solving

X811 = 81X

X8k = BkX

linear equations in the n? entries of x, kn® operations.
3. Cul(gi,.-.,8k) is a vector subspace of M.
4. Cp(Cp(H)) computable: dim(Cu(H)) < n? equations.

In 2,4: May use instead few random g € H, Cy(H).



Representation attack (continued)
g a1, b€ G, B< Ce(ar), A< Ce(bs), a» € A, by € B.
Shpilrain-Ushakov Problem. (a1gaz, bighy) — a1 bigazbs.
@ €A== a € Cu(Cu(A) <= a,' € Cu(Cu(A)).
A< Cs(b2) = by € C6(A) C Cu(A) = [Cu(Cm(A)), bo] = 1.
Attack (Ts).

1. Compute bases for the subspaces Cy(B), Cp(Cum(A)).
2. Solve a;g = - agl
with a1 € Cy(B), a,* € Cu(Cum(A)) invertible.
3. 3 solution: (ay,a, ).
« N
4. 8132 = b131g32b2 = b181g32b2 =K

5. Complexity < n?-(n?)% = N©, heuristically N'2.
Not practical, but worst-case polytime.



The Commutator Key Exchange Protocol

Anshel-Anshel-Goldfeld 1999.

Alice Public Bob
v(x1,...,xk) € Fi (ar,...,ak) < G w(x1,...,xk) € Fk
a:v(al,...,ak) <b1,...,bk>SG b:W(bl,...,bk)

b2, ... b?
alb,...,akb
K= a_lv(alb, .. .,akb) K= W(bla, ey bka)_lb

alv(a?,.. . ab)y=atab =a b tab = (b)) b

=w(b?,...,b )7 tb



Problems related to the Commutator KEP

a€(al,...,ax),be (by,...,bc) <G.
Commutator KEP Problem.

(bla, cee bka, alb, cee akb) — a_lb_lab.
Conjugacy Search Problem (CSP). g¥ +— %, g¥ = gX.

Multiple CSP. (g1%,...,8*) — %, (&%, ...,8) = (&%, ..., 85).
Multiple CSP is easy in matrix groups.



Polynomial time attack on Commutator KEP
ac <a1,...,ak>,b€ <b1,...,bk> <G.

Commutator KEP Problem.
(bla, ey bka, alb, ey akb) — a_lb_lab.
Ts, Linear Centralizer Attack (fresh!). WLOG G is a matrix group.

1. Compute a base for Cpy(Cpi(ba, ..., bk)).

2. Solve
bia = a- aab = b- alb
bra = a' axb = b- akb

with a invertible, b € Cp(Cpi(bi, ..., b)) invertible.
3. 3 solution: (a, b).

5 15b=51h1(a ta)b=51(da Db lab=atlab =alab = K |



The end of braid-based cryptography?

...and worse: of my lecture series?
Not quite:

1. N2 is impractical: 2% (times constants) for N = 256.

2. There are additional braid-PKC proposals (Dehornoy,
Kalka,...).

3. The other problems (CSP, Multiple CSP,...) remain open.

Linear Centralizer Attacks seem applicable to some of the other
KEPs.
Probably not all: Fiat-Shamir Authentication based on CSP, etc.

The only way to rule out (most of) this approach is to solve the

CSP.



Part |l
Generic length-based algorithms



Solving equations in noncommutative groups

Assume: Finitely generated, efficiently solvable word problem
(better: normal form).

Conjugacy Search Problem (CSP). g¥ — %, g¥ = g% (g,x € G).
Root Search Problem. x? — %, x? = 2.

Double Coset Problem. agh € AgB+— 3€ A, b e B, agh = 3gb.
Hi,....Hk < G, w(t,...,tkem) € Fktms Piy---sPm € G.
Solution Search Problem.

W(hl,...,hk,pl,...,pm)'—>/~11~€ Hl,...,EkGHk,

w(hi, ... hi,piy. ooy pm) = w(hi, ... he, piy.e oy Pm)-
Generalizes to systems of equations (e.g., Multiple CSP).



Solving equations in noncommutative groups

Solution Search Problem.
W(hl,...,hk,pl,...,pm) — h1~€ Hl,.;.,hk € Hy,
W(hlu"'7hk7p17"°7pm) = W(h17”'7hk7p15‘°'7pm)-

Observations. Suffices to:

1. Find the leading variable.
2. Find a “small” list containing the solution.

Length-based algorithms. Find leading variable 4+ expression in its
subgroup.

Too ambitious, but they are heuristic.

Assumptions:

1. hi,..., h, sampled (somewhat) independently.
2. 3 "well-behaved” length function: Usually ¢/(hg) > ¢(g).



Hughes—Tannenbaum 2002
G ={(g1,.-.,8n) (symmetric generating set).

Given g%, x = gj, - - gi,-

-1 -1 -1
gX frd glk g’_kil o e gll ggll oo gl'k,]_gl.k
-1 1 _ _ —1
g = gg, '8, 8 88 Ei 181
—1
ot -1 1
gl = g 8,88 8,

Hopefully, shortest length for gj, .

Peel off gj, and continue to gj,_, etc.

May use {g1,...,g,}™ as generators. Complexity: % -n™.
In By: Use ¢(g) = length of the normal form of g.

No experimental results given.



Length functions in the braid group

Paterson—Razborov 1991. Minimal length in B is NP-hard.
Paterson—Razborov 1991. Is Minimal length in By poly-time?
Berger 1994. Yes in Bs.

Birman. Is Minimal length in B is NP-hard for BKL generators?

Hock=Ts 2010. £(b) < lr(b) < (JA| —1)4(b) in Bp. In particular,
Cr(b) = ¢(b) in Bs.
Hock—Ts 2010. Approximate Artin length using BKL /g.

(A.G.) Myasnikov—Shpilrain—Ushakov 2006. Experimentally:
Dehornoy handle reduction + A-conjugation gives excellent length
function.



LBA partial history
Garber-Kaplan—Teicher—Ts—Vishne 2006. Experimentally:

1. Length of rational form better than normal form.

2. Hughes—Tannenbaum LBA succeeds only for toy parameters,
with long generators.

Garber-Kaplan—Teicher—Ts—Vishne 2005. Memory-enhanced LBA.
Much better, but also needs somewhat long generators.

(A.D.) Myasnikov—Ushakov 2007. Variation of Memory-enhanced
LBA: Keep all (and only) the steps reducing length.

Against Commutator KEP in Bgg:

1. Very successful when |g;| > 20.
2. Fails when |g;| < 10.

The Commutator KEP was never attacked for |g;| ~ 10.



LBA against CSP in full By

The hardest case for LBA:

1. one instance,
2. short generators,

3. many relations.

For reasonable parameters:

%
Experimental results: O 0.

For all mentioned algorithms.



Classic LBAs assume very specific distributions

Example 1. g conjugate to h:= g’ (g, b € By independent).
Reducing g length won't get us to h!

Example 2. g := uv conjugate to h := vu (u, v € By independent).
The LBA heuristic is meaningless here.

Kovalyova—Tsaban 2010. Solution:
Meet in the Middle (memory-enhanced) LBA.



LBA*, or: Compression Algorithm (Ts)

Idea similar to A* algorithm for shortest paths in a graph.
Guaranteed success in finite time!

Assumption. {h € g© : £(h) < K} finite.

Complexity. Heuristically, v/M,

M = |{h e g® : {(h) (near) minimal}|.



LBA*, or: Compression Algorithm (Ts)

Algorithm. Input: Conjugate g, h.
Sg = @, Sh = (Z)
go =g, hp = h.
Loop until a computed conjugate of his in S, or vice versa.
1. Add all conjugates of gy by generators to S,.
2. Add all conjugates of hy by generators to S,.
3. 80 €/pg f-minimal elements of S, not taken before.
4

- ho €,,4 ¢-minimal elements of S; not taken before.
Finite time. Every dog has its day: {h € g© : £(h) < K} finite.

Example. Big, g,x € {Uitl,. UN 1}32 (g,8%).
ExCAN16L32.txt



Part |l

Invariants-based algorithms



Finite invariants of conjugacy classes

Methodology. Efficiently computable:

1. g+ finite I; C g°;

2. g~h= 1, =1

3. x with g¥ € Ig;

4. Compute Iy from any single element, by conjugations.

CSP Solution. Given g ~ h:

1. Conjugate g into /5.
2. Conjugate hinto I = /.
3. Build Iz by conjugations from g, until h’'s conjugate is found.

Heuristic. More efficiently, build Ig, /5 until they meet.

For Conjugacy Decision Problem: I, N I intersect?



Example: The free group

Think ring. Reduce cyclically (equivalently, cycle).

X_lxyyxxy_lxxy

xilxyyxxyflxx
x_lxyyxxy_lx

XYYyxXxy 1

y—1X—1
Xfl

x Ty Iy T Ixyyyx

y oy xyyy
xxy’lxyy
Xy‘lxyyx
y_lxyyxx
xyyxxy’1

lg 1= all cyclic rotations of the cyclically reduced form of g
= Cycle of the cycling orbit of g.



Inf, sup, and canonical length

b<c: bp=c, peBy™.

Left invariant: b < ¢ = db < dc.

A< App-p < AT

———
normal form of »

Canonical length of b: £.

inf(b) = i
sup(b) = i+/¢
b € [i,i+£] = [inf(b),sup(b)]

b e [i,00): i <inf(b).



Super Summit Sets (a new view)

expsum: By — Z sum of exponents. Well-defined; conj-invariant.

Garside 1969. Summit Set: SS(b) := {A'p € bBY : |p| minimal}.
Finite nonempty conjugacy invariant.

Cf. LBA!

All elements of SS(b) have the same inf, inf(b).

Classically, inf(b) = max(inf(bBn)), SS(b) := bB~ N [inf(b), o0).
Elrifai-Morton 1994. Minimize also the canonical length of p.

Super Summit Set:
SSS(b) := {A’p € bB¥ : p minimal length and canonical length}.

All elements of SS(b) have the same sup, sup(b).

Classically, sup(b) = min(sup(SS(b))), SSS(b) = bBN N [inf(b), sup(b)].



Conjugating b into SSS(b)
In the free group, cycling brings g to the conjugacy invariant set.
Cycling in By:
A'pipy-pe=piAp--pp — A'prepopr,
and moving to normal form.
Conjugation by pr = p12'.
i may only increase, £, |p| may only decrease.

Elrifai-Morton 1994, Birman—Ko—Lee 2001. Cycling |A| times
increases inf(b) (if not maximal).

DeCycling:
Apy--prapr — peprepy = Aprpy- - proy

+ normal form. Same results, for sup.



Computing SSS(b) from an element

Elrifai-Morton Convexity. SSS(b) is connected by conjugations by
permutation braids.

Complexity: |SSS(b)| - N!.
For a,b>1: daA b= maximal d < a, b.

Franco—Gonzalez-Meneses 2003. x,y € P,
g,8%,8” € SSS(b) = g~V € SSS(b).
.. Enough to consider minimal permutation braids above

O1y---yON—1-

Complexity: |SSS(b)|- N = N - |SSS(b)|. Typically huge!



Ultra Summit Sets and beyond
Gebhardt 2005. Keep cycling!

In the free group, l; = cycle of the cycling orbit of g.
USS(b) := all cycles of cycling orbits in SSS(g).
Gebhardt. Can move among cycles by minimal permutation braids.

Complexity: n-|USS(b)|.

Typically, | USS(b)] is linear in |b|. (May be exponential.)

Lee 2000. RSSS(b) intersection of cycling and decycling orbits (no
minimal pb's).

Gebhardt-Gonzalez-Meneses 2010. Sliding Circuit SC(b) (with
minimal pb’s).

SC(b) C SSSR(b) C USS(b) C SSS(b) C SS(b).

(Typo intentional.)



Dead end?
SC(b) C SSSR(b) C USS(b) C SSS(b) C SS(b).
An-Ko 2012:

1. CSP for pseudo-Anosov braids boils down to CSP for rigid
pseudo-Anosov braids.

2. There, SC(b) = RSSS(b) = USS(b).
3. 3 exponential family with | SC(b)| > 2N/2.

Ts. Experimentally: Simple, high-entropy distribution on By with
| USS(b)| > 2N=2 in probability 1 — 2=N/2: Pick

o 41 41
b:=4 75, Tin

until b € USS(b) and has canonical length > .
Concentration of measure. Byg, 1,000 tries: | USS(b)| > 2173,

High entropy. No birthday in 214 samples.



Part IV
Dedicated length-based
algorithms



Using Vershik's (Right-Angled Artin) group

The computation of USS(b) for

_ +1
b “rnd i

~0$1 € By
kills my (8-core 8GB RAM) computer already for N = 32.
An improvement of LBA*, however, succeeds there.
Homomorphic preimage invariants. On board, IY"H:

. Vershik’s group V;

. Linear time normal form in V;

1
2
3. Linear time conjugacy normal form in V;
4. The hybrid with LBA* in B.



