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Additive categories

What is an additive category?

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. 11.6.1]: A category A is called additive if
(i) it contains a zero object 0, i.e. an object which is both initial and
terminal,
(ii) the product A x B exists for all objects A, B of A, and

(iii) the set of morhpisms Hom(A, B) carry the structure of an abelian
group for all objects A, B of A and the composition is bilinear.

Remark: Product and coproduct coincide here; we usually write $.
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Let R be a preadditive category with one nonzero object x.

We define:
o (R,+) := (Homg(x,x*),+)

o multiplication " - ":= composition
And obtain:
e (R,+) is abelian group

e (R,-) is monoid with 1 = id,
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Additive categories

Connection to rings

Let R be a preadditive category with one nonzero object x.

We define:
o (R,+) := (Homg(x,x*),+)

o multiplication " - ":= composition
And obtain:

e (R,+) is abelian group

e (R,-) is monoid with 1 = id,

o distributivity by bilinearity of composition
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Additive categories

Examples of additive categories

© Rings (one nonzero object)

@ Category Ab of abelian groups
e 0 := trivial group
e product := direct sum
e addition := pointwise

© Category R-Mod of R-modules
= Category Vect(K) of K-vectorspaces

Q Category G-Rep of G-representations
© Non-additive categories: e.g. Set or Top.
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What do you think of when you hear the word "kernel"?
Preimage f~1(0) of zero

More abstract, categorical definiton?

Definition: Let A be an additive category with zero object 0 and
f : A — B a morphism.We define its kernel ker(f) (if it exists) to be the
pullback of the following diagram:

0

B

ker(f) ——

£

-

f
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Abelian categories

Examples

Category Ab (usual notions of kernel and cokernel)
Category R-Mod (and thus Vect(K))

Category G-Rep

Category Shvyy, of sheaves of abelian groups

00000

Non-abelian category:

Category P(R) of projective R-modules

R = Z and multiplication by 2

= does have a cokernel Z/2Z, but it is not projective!
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(Naive) Idea: Preserve the relevant structure

Definition: Let F : A — B be a covariant functor between abelian
categories. We call it left exact (resp. right exact), if

(i) it is additive,
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Definition: Let F : A — B be a covariant functor between abelian
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Abelian categories

What properties should functors between them have?

(Naive) Idea: Preserve the relevant structure

Definition: Let F : A — B be a covariant functor between abelian

categories. We call it left exact (resp. right exact), if

(i) it is additive,

(i) for any short exact sequence 0 —+ A — B — C — 0 the sequence
0— F(A) — F(B) — F(C) (resp. F(A) — F(B) — F(C) —» 0) is
exact.

A contravariant functor fulfills equal statements for the corresponding

functor F' : A? — B.

A functor is called exact if it is left and right exact.
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of exact sequences naturally arises from the structure of abelian categories,
one may define it this way.
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Abelian categories

Remark: At first, this is not what one would expect. But since the notion
of exact sequences naturally arises from the structure of abelian categories,
one may define it this way.

Examples:
@ Equivalences between abelian categories are exact.
@ A abelian category, A an object
Hom (A, —) : A — Ab (covariant)

o left exact
e right exact if and only if A is projective

Hom s(—, A) : A — Ab (contravariant)

o left exact
e right exact if and only if A is injective

© The functor T ®g — : R-Mod — Ab is right exact,
but only left exact if T is flat.
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Projective and injective resolutions

Projective and injective objects

Idea: Objects "lying above surjections/below injections"

Definition: Let A be an abelian category. An object P of A is called
projective if for a surjection g : B — C and a map v : P — C there exists
amap 8: P — Bsuchthat y =gog:

P

A

B-—%-C—>0
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Characterisation and examples

Theorem: An object P of an abelian category A is projective if and only if
the functor Hom4(P, —) is exact.

Idea of proof:
Start with a short exact sequence
05A—"B—PC—C,

i.e. i = ker(p).

Hom(P, —) is left exact
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Characterisation and examples

Theorem: An object P of an abelian category A is projective if and only if
the functor Hom4(P, —) is exact.

Idea of proof:
Start with a short exact sequence

0—-A—='BPC—C,

i.e. i = ker(p).
Hom(P, —) is left exact= preserves kernels

= Hom(P, i) = Hom(P, ker(p))
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Following sequence is exact:

Hom(P i) Hom(P,p)

0 — Hom(P, A) Hom(P, B) Hom(P, C)

Left to show: Hom(P, p) is epimorphism < P is projective

Follows from reformulation of the definition of projective modules:
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Projective and injective resolutions

Following sequence is exact:

Hom(P i) Hom(P,p)

0 — Hom(P, A) Hom(P, B) Hom(P, C)

Left to show: Hom(P, p) is epimorphism < P is projective
Follows from reformulation of the definition of projective modules:

"An object P is projective if and only if Hom(P,—) preserves
epimorphism" (exercise).
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Projective and injective resolutions

Examples (I)
© Projective objects in Ab:free abelian groups
@ Projective R-module:direct summand of a free module
© Injective objects are more difficult to grasp in general
@ Injective objects are the dual of projective objects
© Injective abelian groups: divisible groups, e.g. (Q,") or (R, +)
O Noninjective and nonprojective abelian groups: e.g. cyclic groups

Z/nZ for n > 1
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© Projective, but not injective: any free abelian group of finite rank
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© Projective, but not injective: any free abelian group of finite rank
@ Injective, but not projective: group Q/Z

© The category R-Mod (assuming the axioms of choice) has enough
projectives and injectives.
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Examples (II)

© Projective, but not injective: any free abelian group of finite rank
@ Injective, but not projective: group Q/Z

© The category R-Mod (assuming the axioms of choice) has enough
projectives and injectives.

@ The category Abg, of finite abelian groups has no projective objects.
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Examples (II)

© Projective, but not injective: any free abelian group of finite rank
@ Injective, but not projective: group Q/Z

© The category R-Mod (assuming the axioms of choice) has enough
projectives and injectives.

@ The category Abg, of finite abelian groups has no projective objects.

Remark: The algebraic K-group Ko(R) "measures" the difference between
injective and projective modules.
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Resolutions

Idea: Next talk...
Definition: Let A be an abelian category and A an object of A. A left
resolution is a complex P. with P, =0fori<0andamape: Pp > M

such that the following complex is exact:
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Projective and injective resolutions

Resolutions

Idea: Next talk...

Definition: Let A be an abelian category and A an object of A. A left
resolution is a complex P. with P, =0fori<0andamape: Pp > M
such that the following complex is exact:

e =8Py d P4 Py M= 0

If each of the P; is projective, the resolution is called projective.
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Theorem:
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There is a projective object Py with a surjection fy : Py — A (enough
projectives).

Epimorphism fy has a kernel ker(fy) (A abelian)
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Projective and injective resolutions

Theorem: If an abelian category A has enough projectives, every object
has a projective resolution.

Proof: Let A be an arbitrary object of A.

There is a projective object Py with a surjection fy : Py — A (enough
projectives).

Epimorphism fy has a kernel ker(fy) (A abelian)
obtain again a surjection P; — ker(fy) with P; projective
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Projective and injective resolutions

Theorem: If an abelian category A has enough projectives, every object
has a projective resolution.
Proof: Let A be an arbitrary object of A.

There is a projective object Py with a surjection fy : Py — A (enough
projectives).

Epimorphism fy has a kernel ker(fy) (A abelian)
obtain again a surjection P; — ker(fy) with P; projective

Denote by 1 : P; — Py the composition.
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Projective and injective resolutions

We obtain (by iteration) an exact sequence by construction:
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Injective resolutions

Similar observations for the dual:

Definition: Let A be an abelian category and A an object of A. A right

resolution is a complex I, with /' =0 for i < 0 and a map € : M — /9 such
that the following complex is exact:
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Projective and injective resolutions

Injective resolutions

Similar observations for the dual:

Definition: Let A be an abelian category and A an object of A. A right
resolution is a complex I, with /' =0 for i < 0 and a map € : M — /9 such
that the following complex is exact:

0 M €0 sd 1 yd 2 _od

If each of the /' is injective, the resolution is called injective.
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Projective and injective resolutions

Injective resolutions

Similar observations for the dual:

Definition: Let A be an abelian category and A an object of A. A right
resolution is a complex I, with /' =0 for i < 0 and a map € : M — /9 such
that the following complex is exact:

0 M=% =9t 592 54
If each of the /' is injective, the resolution is called injective.

Theorem: If an abelian category A has enough injectives, every object has
an injective resolution.
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Projective and injective resolutions

Examples

© For the object Z/27 we have a free resolution

05222 —17/2Z -0

@ An injective resolution of Z would be

0-Z—-Q—-Q/Z—0
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Projective and injective resolutions

Examples

© For the object Z/27 we have a free resolution

07227 —7/27 —0

@ An injective resolution of Z would be

0-Z—-Q—-Q/Z—0

© The Koszul complex is a free resolution of the quotient ring
R/(x1,-+ yXq)-
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More on abelian categories

But what is a quasi-coherent sheaf on an affine scheme
Spec(R)?
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More on abelian categories

But what is a quasi-coherent sheaf on an affine scheme
Spec(R)?

Careful: This is just an intuitive explanation!

o Affine scheme:=spectrum of some ring,
i.e. collection prime ideals with a good topology (Zariski topology).

R + Spec(R)

@ Sheaf:associates modules to open subsets
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More on abelian categories

But what is a quasi-coherent sheaf on an affine scheme
Spec(R)?

Careful: This is just an intuitive explanation!

o Affine scheme:=spectrum of some ring,
i.e. collection prime ideals with a good topology (Zariski topology).

R + Spec(R)

@ Sheaf:associates modules to open subsets

Spec(R) D U~ M € ob(R-mod)
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More on abelian categories

But what is a quasi-coherent sheaf on an affine scheme
Spec(R)?
Careful: This is just an intuitive explanation!

o Affine scheme:=spectrum of some ring,
i.e. collection prime ideals with a good topology (Zariski topology).

R + Spec(R)

@ Sheaf:associates modules to open subsets
Spec(R) D U~ M € ob(R-mod)

organises these in a compatible way
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More on abelian categories

@ Quasi coherence: locally a cokernel of some morphism of free modules

= What to remember?

Collection of (/ocal) modules organised in one global construction!
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ring R and an exact, fully faithful functor
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Freyd-Mitchell embedding theorem

Idea: Can even find a connection between abelian categories and R-mod:

Theorem (1964): Let A be a small abelian category. Then, there exists a
ring R and an exact, fully faithful functor

A— R — mod

embedding A as a full subcategory in the sense that
Hom4(M, N) = Homg_mod(M, N).
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What about the tensor?

Every standard example of abelian categories can be equipped with a
tensor!
Questions:

© Are there abelian categories you cannot equip with the notion of a
tensor?

@ Is the structure of being abelian enough to behave well with a tensor?
Can we get/Do we need more?
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Thank you for your attention!
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