Abelian Categories

GRK-Workshop on tensor triangulated categories

Jule Hänel

15.04.2021

	 -	•
 e	•	

Abelian Categories

15.04.2021 1/33

More on abelian categories

Abelian categories

3 Projective and injective resolutions

4 More on abelian categories

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Idea: Lift the definition of a ring to a categorical level

		 2	n e	
 ч.	e	- C. I.		

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. II.6.1]: A category A is called *additive* if

A B F A B F

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. II.6.1]: A category \mathcal{A} is called *additive* if

(i) it contains a zero object 0, i.e. an object which is both initial and terminal,

A B b

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. II.6.1]: A category \mathcal{A} is called *additive* if

- (i) it contains a zero object 0, i.e. an object which is both initial and terminal,
- (ii) the product $A \times B$ exists for all objects A, B of A, and

A B b A B b

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. II.6.1]: A category \mathcal{A} is called *additive* if

- (i) it contains a zero object 0, i.e. an object which is both initial and terminal,
- (ii) the product $A \times B$ exists for all objects A, B of A, and
- (iii) the set of morhpisms Hom(A, B) carry the structure of an abelian group for all objects A, B of A and the composition is bilinear.

Idea: Lift the definition of a ring to a categorical level

Definition [Wei, Def. II.6.1]: A category A is called *additive* if

- (i) it contains a zero object 0, i.e. an object which is both initial and terminal,
- (ii) the product $A \times B$ exists for all objects A, B of A, and
- (iii) the set of morhpisms Hom(A, B) carry the structure of an abelian group for all objects A, B of A and the composition is bilinear.

Remark: Product and coproduct coincide here; we usually write \oplus .

		-	-
 	- E		 -

Let $\mathcal R$ be a preadditive category with one nonzero object *.

Let ${\mathcal R}$ be a preadditive category with one nonzero object $\ast.$ We define:

イロト イヨト イヨト イヨト

Let ${\mathcal R}$ be a preadditive category with one nonzero object $\ast.$ We define:

•
$$(R, +) := (Hom_{\mathcal{R}}(*, *), +)$$

イロト イヨト イヨト イヨト

Let \mathcal{R} be a preadditive category with one nonzero object *. We define:

- $(R, +) := (Hom_{\mathcal{R}}(*, *), +)$
- multiplication " \cdot " := composition

Let ${\mathcal R}$ be a preadditive category with one nonzero object $\ast.$

We define:

- $(R, +) := (Hom_{\mathcal{R}}(*, *), +)$
- multiplication " \cdot " := composition

And obtain:

Let ${\mathcal R}$ be a preadditive category with one nonzero object $\ast.$

We define:

- $(R, +) := (Hom_{\mathcal{R}}(*, *), +)$
- multiplication " \cdot " := composition

And obtain:

• (R,+) is abelian group

Let ${\mathcal R}$ be a preadditive category with one nonzero object *.

We define:

- $(R, +) := (Hom_{\mathcal{R}}(*, *), +)$
- multiplication " \cdot " := composition

And obtain:

- (R,+) is abelian group
- (R, \cdot) is monoid with $1 = \mathit{id}_*$

Let ${\mathcal R}$ be a preadditive category with one nonzero object *.

We define:

- $(R, +) := (Hom_{\mathcal{R}}(*, *), +)$
- multiplication " \cdot " := composition

And obtain:

- (R,+) is abelian group
- (R, \cdot) is monoid with $1 = \mathit{id}_*$
- distributivity by bilinearity of composition

A B F A B F

What the category looks like:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

What the category looks like:

Here, r is an element of R represented by morphisms of \mathcal{R} .

< □ > < 同 > < 回 > < Ξ > < Ξ

What the category looks like:

Here, r is an element of R represented by morphisms of \mathcal{R} .

. . .

|--|

	<u> </u>	
 e		-

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Ings (one nonzero object)

イロト イヨト イヨト イヨト

- Rings (one nonzero object)
- October 2018 Category Ab of abelian groups

< ロト < 同ト < ヨト < ヨト

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group

< ロト < 同ト < ヨト < ヨト

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group
 - o product := direct sum

A B F A B F

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group
 - o product := direct sum
 - addition := pointwise

A B F A B F

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group
 - product := direct sum
 - addition := pointwise
- Category R-Mod of R-modules ⇒ Category Vect(K) of K-vectorspaces

★ ∃ ►

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group
 - product := direct sum
 - addition := pointwise
- Category R-Mod of R-modules
 ⇒ Category Vect(K) of K-vectorspaces
- Category **G**-**Rep** of *G*-representations

15.04.2021 7/33

★ ∃ ►

- Rings (one nonzero object)
- Octegory Ab of abelian groups
 - 0 := trivial group
 - product := direct sum
 - addition := pointwise
- Category R-Mod of R-modules
 ⇒ Category Vect(K) of K-vectorspaces
- Category G-Rep of G-representations
- Solution Non-additive categories: e.g. Set or Top.

★ ∃ ►

2 Abelian categories

3 Projective and injective resolutions

(3)

		-	-
 	- E		 -

What do you think of when you hear the word "kernel"?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

What do you think of when you hear the word "kernel"? Preimage $f^{-1}(0)$ of zero

What do you think of when you hear the word "kernel"? Preimage $f^{-1}(0)$ of zero

More abstract, categorical definiton?
Kernels and cokernels

What do you think of when you hear the word "kernel"? Preimage $f^{-1}(0)$ of zero

More abstract, categorical definiton?

Definition: Let A be an additive category with zero object 0 and $f: A \rightarrow B$ a morphism.

A B F A B F

Kernels and cokernels

What do you think of when you hear the word "kernel"? Preimage $f^{-1}(0)$ of zero

More abstract, categorical definiton?

Definition: Let A be an additive category with zero object 0 and $f : A \rightarrow B$ a morphism. We define its *kernel* ker(f) (if it exists) to be the pullback of the following diagram:

Kernels and cokernels

What do you think of when you hear the word "kernel"? Preimage $f^{-1}(0)$ of zero

More abstract, categorical definiton?

Definition: Let A be an additive category with zero object 0 and $f : A \rightarrow B$ a morphism. We define its *kernel* ker(f) (if it exists) to be the pullback of the following diagram:

イロト イポト イヨト イヨト 二日

Dually: cokernels in terms of pushouts

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

Dually: cokernels in terms of pushouts

Definition: Let A be an additive category with zero object 0 and $f : A \rightarrow B$ a morphism. We define its *cokernel coker*(f) (if it exists) to be the pushout of the following diagram:

(B)

Dually: cokernels in terms of pushouts

Definition: Let A be an additive category with zero object 0 and $f : A \rightarrow B$ a morphism. We define its *cokernel coker*(f) (if it exists) to be the pushout of the following diagram:

		 2	n e	
 ч.	e	- C. I.		

Idea: Generalise the structure of the category of abelian groups

Idea: Generalise the structure of the category of abelian groups

Definition: An additive category \mathcal{A} is called *abelian* if

Jule Hänel

Idea: Generalise the structure of the category of abelian groups

Definition: An additive category A is called *abelian* if (i) every morphism has a kernel and a cokernel, and

Idea: Generalise the structure of the category of abelian groups

Definition: An additive category A is called *abelian* if
(i) every morphism has a kernel and a cokernel, and
(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

Idea: Generalise the structure of the category of abelian groups

Definition: An additive category A is called *abelian* if
(i) every morphism has a kernel and a cokernel, and
(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

		-	-
 м.	- E	•	-

▲ロト ▲舂 ト ▲ ヨト ▲ ヨト ― ヨー 釣ん()~

Category Ab (usual notions of kernel and cokernel)

	 _	
 e	•	 -

イロト イヨト イヨト イヨト

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))
- Category G-Rep

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))
- Category G-Rep
- Category Shv_{Ab} of sheaves of abelian groups

A (1) < A (1) < A (1) </p>

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))
- Category G-Rep
- Category Shv_{Ab} of sheaves of abelian groups
- Non-abelian category: Category P(R) of projective *R*-modules

(4) (3) (4) (4) (4)

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))
- Category G-Rep
- Category Shv_{Ab} of sheaves of abelian groups
- Non-abelian category: Category P(R) of projective *R*-modules *R* = Z and multiplication by 2

< 回 > < 三 > < 三

- Category Ab (usual notions of kernel and cokernel)
- Category R-Mod (and thus Vect(K))
- Category G-Rep
- Category Shv_{Ab} of sheaves of abelian groups
- Non-abelian category: Category P(R) of projective *R*-modules
 R = ℤ and multiplication by 2
 ⇒ does have a cokernel ℤ/2ℤ, but it is not projective!

< 回 > < 三 > < 三

	2	n e
 - C	- C. I.	

イロト イヨト イヨト イヨト

(Naive) Idea: Preserve the relevant structure

• = • •

(Naive) Idea: Preserve the relevant structure

Definition: Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a covariant functor between abelian categories. We call it *left exact* (resp. *right exact*), if

(Naive) Idea: Preserve the relevant structure

Definition: Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a covariant functor between abelian categories. We call it *left exact* (resp. *right exact*), if (i) it is additive,

(Naive) Idea: Preserve the relevant structure

Definition: Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a covariant functor between abelian categories. We call it *left exact* (resp. *right exact*), if

- (i) it is additive,
- (ii) for any short exact sequence $0 \to A \to B \to C \to 0$ the sequence $0 \to F(A) \to F(B) \to F(C)$ (resp. $F(A) \to F(B) \to F(C) \to 0$) is exact.

< □ > < 同 > < 回 > < 回 > < 回 >

(Naive) Idea: Preserve the relevant structure

Definition: Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a covariant functor between abelian categories. We call it *left exact* (resp. *right exact*), if

- (i) it is additive,
- (ii) for any short exact sequence $0 \to A \to B \to C \to 0$ the sequence $0 \to F(A) \to F(B) \to F(C)$ (resp. $F(A) \to F(B) \to F(C) \to 0$) is exact.

A contravariant functor fulfills equal statements for the corresponding functor $F': \mathcal{A}^{op} \to B$.

イロト イポト イヨト イヨト 二日

(Naive) Idea: Preserve the relevant structure

Definition: Let $\mathcal{F} : \mathcal{A} \to \mathcal{B}$ be a covariant functor between abelian categories. We call it *left exact* (resp. *right exact*), if

- (i) it is additive,
- (ii) for any short exact sequence $0 \to A \to B \to C \to 0$ the sequence $0 \to F(A) \to F(B) \to F(C)$ (resp. $F(A) \to F(B) \to F(C) \to 0$) is exact.

A contravariant functor fulfills equal statements for the corresponding functor $F': \mathcal{A}^{op} \to B$.

A functor is called *exact* if it is left and right exact.

(日) (周) (日) (日) (日) (000

(B)

Image: Image:

Examples:

(B)

Examples:

Equivalences between abelian categories are exact.

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \rightarrow \mathbf{Ab}$ (covariant)

- Equivalences between abelian categories are exact.
- - left exact

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \to \mathbf{Ab}$ (covariant)
 - left exact
 - right exact if and only if A is projective

Examples:

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \to \mathbf{Ab}$ (covariant)
 - left exact
 - right exact if and only if A is projective

 $Hom_{\mathcal{A}}(-,A): \mathcal{A} \to \mathsf{Ab} \text{ (contravariant)}$

Examples:

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \to \mathbf{Ab}$ (covariant)
 - left exact
 - right exact if and only if A is projective

$$Hom_{\mathcal{A}}(-,A): \mathcal{A} \to \mathsf{Ab} \text{ (contravariant)}$$

left exact

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \to \mathbf{Ab}$ (covariant)
 - left exact
 - right exact if and only if A is projective

$$Hom_{\mathcal{A}}(-, A) : \mathcal{A} \to \mathsf{Ab} \text{ (contravariant)}$$

- left exact
- right exact if and only if A is injective
Remark: At first, this is not what one would expect. But since the notion of exact sequences naturally arises from the structure of abelian categories, one may define it this way.

Examples:

- Equivalences between abelian categories are exact.
- 3 \mathcal{A} abelian category, \mathcal{A} an object $Hom_{\mathcal{A}}(\mathcal{A}, -) : \mathcal{A} \to \mathbf{Ab}$ (covariant)
 - left exact
 - right exact if and only if A is projective

$$Hom_{\mathcal{A}}(-,A): \mathcal{A} \to \mathbf{Ab} \text{ (contravariant)}$$

- left exact
- right exact if and only if A is injective
- Solution T ⊗_R : R-Mod → Ab is right exact, but only left exact if T is flat.

-

< ∃ >

	2.1	
 16		1.5

イロト イヨト イヨト イヨト

Idea: Objects "lying above surjections/below injections"

Idea: Objects "lying above surjections/below injections"

Definition: Let \mathcal{A} be an abelian category. An object P of \mathcal{A} is called *projective* if for a surjection $g: B \to C$ and a map $\gamma: P \to C$ there exists a map $\beta: P \to B$ such that $\gamma = g \circ \beta$:

イロト イポト イヨト イヨト 二日

Idea: Objects "lying above surjections/below injections"

Definition: Let \mathcal{A} be an abelian category. An object P of \mathcal{A} is called *projective* if for a surjection $g: B \to C$ and a map $\gamma: P \to C$ there exists a map $\beta: P \to B$ such that $\gamma = g \circ \beta$:

(日) (周) (ヨ) (ヨ)

Definition: An abelian category \mathcal{A} has *enough projectives* (resp. *injectives*) if for all objects A in \mathcal{A} there exists an epimorphism $P \to A$ with P projective (resp. exists a monomorphism $A \to I$ with I injective).

イロト イポト イヨト イヨト 二日

Definition: An abelian category \mathcal{A} has *enough projectives* (resp. *injectives*) if for all objects A in \mathcal{A} there exists an epimorphism $P \to A$ with P projective (resp. exists a monomorphism $A \to I$ with I injective).

イロト イポト イヨト イヨト 二日

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

(日) (四) (三) (三) (三)

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

.

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p)

.

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p).

Hom(P, -) is left exact

イロト イポト イヨト イヨト

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p).

Hom(P, -) is left exact \Rightarrow preserves kernels

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p). Hom(P, -) is left exact \Rightarrow preserves kernels $\Rightarrow Hom(P, i) = Hom(P, ker(p))$

イロト イヨト イヨト

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p). Hom(P, -) is left exact \Rightarrow preserves kernels $\Rightarrow Hom(P, i) = Hom(P, ker(p)) = ker(Hom(P, p))$.

Theorem: An object P of an abelian category \mathcal{A} is projective if and only if the functor $Hom_{\mathcal{A}}(P, -)$ is exact.

Idea of proof:

Start with a short exact sequence

$$0 \to A \to^i B \to^p C \to C,$$

i.e. i = ker(p). Hom(P, -) is left exact \Rightarrow preserves kernels $\Rightarrow Hom(P, i) = Hom(P, ker(p)) = ker(Hom(P, p))$.

(a)

$$0 \rightarrow Hom(P, A) \xrightarrow{Hom(P, i)} Hom(P, B) \xrightarrow{Hom(P, p)} Hom(P, C)$$

(a)

$$0 \rightarrow Hom(P,A) \stackrel{Hom(P,i)}{\longrightarrow} Hom(P,B) \stackrel{Hom(P,p)}{\longrightarrow} Hom(P,C)$$

Left to show:

• • • • • • • • • • •

$$0 \rightarrow Hom(P,A) \xrightarrow{Hom(P,i)} Hom(P,B) \xrightarrow{Hom(P,p)} Hom(P,C)$$

Left to show: Hom(P, p) is epimorphism $\Leftrightarrow P$ is projective

	-	-
 - C		 -

$$0 \rightarrow Hom(P, A) \xrightarrow{Hom(P, i)} Hom(P, B) \xrightarrow{Hom(P, p)} Hom(P, C)$$

<u>Left to show</u>: Hom(P, p) is epimorphism $\Leftrightarrow P$ is projective Follows from reformulation of the definition of projective modules:

$$0 \rightarrow Hom(P, A) \xrightarrow{Hom(P, i)} Hom(P, B) \xrightarrow{Hom(P, p)} Hom(P, C)$$

Left to show: Hom(P, p) is epimorphism $\Leftrightarrow P$ is projective

Follows from reformulation of the definition of projective modules:

"An object P is projective if and only if Hom(P, -) preserves epimorphism" (exercise).

		-	-
 	- E		 -

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

1 Projective objects in **Ab**:

	2 12	
 e	a 11	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

1 Projective objects in **Ab**:free abelian groups

- Projective objects in Ab:free abelian groups
- 2 Projective *R*-module:

- Projective objects in Ab:free abelian groups
- 2 Projective *R*-module:direct summand of a free module

- Projective objects in Ab:free abelian groups
- 2 Projective *R*-module:direct summand of a free module
- Injective objects are more difficult to grasp in general

- Projective objects in Ab:free abelian groups
- Projective *R*-module:direct summand of a free module 2
- Injective objects are more difficult to grasp in general 3
- Injective objects are the dual of projective objects

.

- Projective objects in Ab:free abelian groups
- Projective R-module:direct summand of a free module
- Injective objects are more difficult to grasp in general
- Injective objects are the dual of projective objects
- ${f 0}$ Injective abelian groups: *divisible groups*, e.g. $({\Bbb Q},\cdot)$ or $({\Bbb R},+)$

- Projective objects in Ab:free abelian groups
- Projective R-module:direct summand of a free module
- Injective objects are more difficult to grasp in general
- Injective objects are the dual of projective objects
- ${f 0}$ Injective abelian groups: *divisible groups*, e.g. $({\Bbb Q}, \cdot)$ or $({\Bbb R}, +)$
- Noninjective and nonprojective abelian groups: e.g. cyclic groups
 Z/nZ for n > 1

イロト イポト イヨト イヨト

	2	n e
 - C	- C. I.	

▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

• Projective, but not injective: any free abelian group of finite rank
- Projective, but not injective: any free abelian group of finite rank
- ${\it 20}$ Injective, but not projective: group ${\Bbb Q}/{\Bbb Z}$

- Operation of the second sec
- 2 Injective, but not projective: group \mathbb{Q}/\mathbb{Z}
- The category R-Mod (assuming the axioms of choice) has enough projectives and injectives.

< □ > < 同 > < 回 > < 回 > < 回 >

- Projective, but not injective: any free abelian group of finite rank
- 2 Injective, but not projective: group \mathbb{Q}/\mathbb{Z}
- The category R-Mod (assuming the axioms of choice) has enough projectives and injectives.
- On the category Ab_{fin} of finite abelian groups has no projective objects.

< □ > < 同 > < 回 > < 回 > < 回 >

- Projective, but not injective: any free abelian group of finite rank
- 2 Injective, but not projective: group \mathbb{Q}/\mathbb{Z}
- The category R-Mod (assuming the axioms of choice) has enough projectives and injectives.
- The category Ab_{fin} of finite abelian groups has no projective objects.

Remark: The algebraic K-group $K_0(R)$ "measures" the difference between injective and projective modules.

		-	-
 	- E		 -

イロト イヨト イヨト イヨト

Idea: Next talk...

	<u> </u>	•
 e		

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

<u>Idea:</u> Next talk...

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} .

Jule Häne

<u>Idea:</u> Next talk...

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *left resolution* is a complex P. with $P_i = 0$ for i < 0 and a map $\epsilon : P_0 \to M$ such that the following complex is exact:

<u>Idea:</u> Next talk...

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *left* resolution is a complex P. with $P_i = 0$ for i < 0 and a map $\epsilon : P_0 \to M$ such that the following complex is exact:

$$\dots \rightarrow^d P_2 \rightarrow^d P_1 \rightarrow^d P_0 \rightarrow^{\epsilon} M \rightarrow 0$$

<u>Idea:</u> Next talk...

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *left* resolution is a complex P. with $P_i = 0$ for i < 0 and a map $\epsilon : P_0 \to M$ such that the following complex is exact:

$$.. \rightarrow^{d} P_{2} \rightarrow^{d} P_{1} \rightarrow^{d} P_{0} \rightarrow^{\epsilon} M \rightarrow 0$$

If each of the P_i is projective, the resolution is called *projective*.

٠

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem:

	-	-
 - C		 -

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

< ロト < 同ト < ヨト < ヨト

Proof: Let A be an arbitrary object of A.

() <) <)</p>

Image: Image:

Proof: Let A be an arbitrary object of A.

There is a projective object P_0 with a surjection $f_0 : P_0 \rightarrow A$ (enough projectives).

Proof: Let A be an arbitrary object of A.

There is a projective object P_0 with a surjection $f_0 : P_0 \rightarrow A$ (enough projectives).

Epimorphism f_0 has a kernel $ker(f_0)$ (\mathcal{A} abelian)

Proof: Let A be an arbitrary object of A.

There is a projective object P_0 with a surjection $f_0 : P_0 \rightarrow A$ (enough projectives).

Epimorphism f_0 has a kernel $ker(f_0)$ (\mathcal{A} abelian) obtain again a surjection $P_1 \rightarrow ker(f_0)$ with P_1 projective

イロト イポト イヨト イヨト 二日

Proof: Let A be an arbitrary object of A.

There is a projective object P_0 with a surjection $f_0 : P_0 \rightarrow A$ (enough projectives).

Epimorphism f_0 has a kernel $ker(f_0)$ (\mathcal{A} abelian) obtain again a surjection $P_1 \rightarrow ker(f_0)$ with P_1 projective

Denote by $f_1: P_1 \rightarrow P_0$ the composition.

(日) (周) (日) (日) (日) (000

We obtain (by iteration) an exact sequence by construction:

We obtain (by iteration) an exact sequence by construction:

	 -	-
 e		 -

		-	-
 	- E		 -

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Similar observations for the dual:

	- <u> </u>	
 - C		-

Similar observations for the dual:

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *right* resolution is a complex I with $I^i = 0$ for i < 0 and a map $\epsilon : M \to I^0$ such that the following complex is exact:

A B M A B M

Similar observations for the dual:

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *right* resolution is a complex I with $I^i = 0$ for i < 0 and a map $\epsilon : M \to I^0$ such that the following complex is exact:

$$0 \to M \to^{\epsilon} I^0 \to^{d} I^1 \to^{d} I^2 \to^{d} \dots$$

A B M A B M

Similar observations for the dual:

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *right* resolution is a complex I with $I^i = 0$ for i < 0 and a map $\epsilon : M \to I^0$ such that the following complex is exact:

$$0 \to M \to^{\epsilon} I^0 \to^{d} I^1 \to^{d} I^2 \to^{d} \dots$$

If each of the I^i is injective, the resolution is called *injective*.

Similar observations for the dual:

Definition: Let \mathcal{A} be an abelian category and \mathcal{A} an object of \mathcal{A} . A *right* resolution is a complex I with $I^i = 0$ for i < 0 and a map $\epsilon : M \to I^0$ such that the following complex is exact:

$$0 \to M \to^{\epsilon} I^0 \to^{d} I^1 \to^{d} I^2 \to^{d} \dots$$

If each of the I^i is injective, the resolution is called *injective*.

Theorem: If an abelian category A has enough injectives, every object has an injective resolution.

< □ > < 同 > < 回 > < 回 > < 回 >

		-	-
 	- E		 -

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

イロト イヨト イヨト イヨト

④ For the object $\mathbb{Z}/2\mathbb{Z}$ we have a free resolution

$$0 \to \mathbb{Z} \to \hat{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

イロト イヨト イヨト イヨト

④ For the object $\mathbb{Z}/2\mathbb{Z}$ we have a free resolution

$$0 \to \mathbb{Z} \to^{\cdot 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

$\textcircled{2} An injective resolution of \mathbb{Z} would be}$

< □ > < 同 > < 回 > < Ξ > < Ξ

④ For the object $\mathbb{Z}/2\mathbb{Z}$ we have a free resolution

$$0 \to \mathbb{Z} \to^{\cdot 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

 $\textcircled{2} An injective resolution of \mathbb{Z} would be}$

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

Jule Hänel

< □ > < 同 > < 回 > < Ξ > < Ξ

① For the object $\mathbb{Z}/2\mathbb{Z}$ we have a free resolution

$$0 \to \mathbb{Z} \to^{\cdot 2} \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0$$

2 An injective resolution of $\mathbb Z$ would be

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$$

The Koszul complex is a free resolution of the quotient ring R/(x₁, · · · , x_d).

Jule Hänel

15.04.2021 26 / 33

Projective and injective resolutions

More on abelian categories

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Idea: Translate R-mod into an algebraic-geometric setting

		 2	n e	
 ч.	e	- C. I.		

< □ > < 同 > < 回 > < Ξ > < Ξ

Idea: Translate R-mod into an algebraic-geometric setting

{*R*-modules}

		- ID
	<u> </u>	
 - C	a	- C I

Idea: Translate R-mod into an algebraic-geometric setting

 ${R-\text{modules}} \longleftrightarrow {\text{Quasi-coherent sheaves on } Spec(R)}$

Jule Hänel

イロト イ団ト イヨト イヨト 二日
A useful categorical equivalence

Idea: Translate R-mod into an algebraic-geometric setting

 ${R-\text{modules}} \longleftrightarrow {\text{Quasi-coherent sheaves on } Spec(R)}$

 $\{\text{finintely gen. proj. } R\text{-modules}\} \longleftrightarrow \{\text{coherent sheaves on } Spec(R)\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

A useful categorical equivalence

Idea: Translate R-mod into an algebraic-geometric setting

 ${R-\text{modules}} \longleftrightarrow {\text{Quasi-coherent sheaves on } Spec(R)}$

 $\{\text{finintely gen. proj. } R\text{-modules}\} \longleftrightarrow \{\text{coherent sheaves on } Spec(R)\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>Careful</u>: This is just an intuitive explanation!

	<u> </u>	•
 e		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>Careful</u>: This is just an intuitive explanation!

• Affine scheme:=

	2	
 e		 -

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

 $R \leftrightarrow Spec(R)$

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

 $R \leftrightarrow Spec(R)$

Sheaf:

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

 $R \leftrightarrow Spec(R)$

• Sheaf:associates modules to open subsets

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

 $R \leftrightarrow Spec(R)$

• Sheaf:associates modules to open subsets

 $Spec(R) \supset U$

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

$$R \leftrightarrow Spec(R)$$

• Sheaf: associates modules to open subsets

 $Spec(R) \supset U \mapsto M \in ob(\mathsf{R}\text{-}\mathsf{mod})$

<u>Careful</u>: This is just an intuitive explanation!

- Affine scheme:=spectrum of some ring,
 - i.e. collection prime ideals with a good topology (Zariski topology).

$$R \leftrightarrow Spec(R)$$

• Sheaf:associates modules to open subsets

 $Spec(R) \supset U \mapsto M \in ob(\mathsf{R}\text{-}\mathsf{mod})$

organises these in a compatible way

- H H	e -	a	n	e
				-

Abelian Categories

15.04.2021 29/33

• Quasi coherence:

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Quasi coherence: locally a cokernel of some morphism of free modules

Image: A matrix

- Quasi coherence: locally a cokernel of some morphism of free modules
- \Rightarrow What to remember?

- Quasi coherence: locally a cokernel of some morphism of free modules
- \Rightarrow What to remember?

Collection of (local) modules organised in one global construction!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Idea: Can even find a connection between abelian categories and R-mod:

< □ > < 同 > < 回 > < Ξ > < Ξ

<u>Idea:</u> Can even find a connection between abelian categories and **R-mod**:

Theorem (1964):

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

<u>Idea:</u> Can even find a connection between abelian categories and **R-mod**: **Theorem (1964):** Let \mathcal{A} be a small abelian category.

Idea: Can even find a connection between abelian categories and R-mod:

Theorem (1964): Let A be a small abelian category. Then, there exists a ring R and an exact, fully faithful functor

Idea: Can even find a connection between abelian categories and R-mod:

Theorem (1964): Let A be a small abelian category. Then, there exists a ring R and an exact, fully faithful functor

$$\mathcal{A} \to \textit{R}-\textit{mod}$$

embedding \mathcal{A} as a full subcategory in the sense that $Hom_{\mathcal{A}}(M, N) \cong Hom_{R-mod}(M, N).$

Jule Hänel

15.04.2021 31/33

	2	n e
 - C	- C. I.	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Every standard example of abelian categories can be equipped with a tensor!

< ロト < 同ト < ヨト < ヨト

Every standard example of abelian categories can be equipped with a tensor!

Questions:

< ロト < 同ト < ヨト < ヨト

Every standard example of abelian categories can be equipped with a tensor!

Questions:

Are there abelian categories you cannot equip with the notion of a tensor?

(4) (5) (4) (5)

Every standard example of abelian categories can be equipped with a tensor!

Questions:

- Are there abelian categories you cannot equip with the notion of a tensor?
- Is the structure of being abelian enough to behave well with a tensor? Can we get/Do we need more?

A B b

Thank you for your attention!

Jule Hänel

Abelian Categories

15.04.2021 33 / 33

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >