Tensor Triangulated Categories

Jan Hennig

June 24, 2021

Definition (Triangulated Category)

A triangulated category \mathcal{K} is an additive (essentially small) category together with a 'shift' $\Sigma \colon \mathcal{K} \to \mathcal{K}$ and a collection of distinguished triangles $\Delta = \left(\begin{array}{cc} a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} \Sigma a \end{array}\right)$ such that: Bookkeeping: Δ distinguished and $\Delta \simeq \Delta'$ implies Δ' distinguished,

> $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} \Sigma a$ is distinguished if and only if $b \xrightarrow{g} c \xrightarrow{h} \Sigma a \xrightarrow{-\Sigma f} \Sigma b$ is, $a \xrightarrow{1} a \rightarrow 0 \rightarrow \Sigma a$ is distinguished

Existence: Every $a \xrightarrow{f} b$ extends to a distinguished triangle Morphism: Every partial morphism between distinguished triangle extends as follows

$$\begin{array}{ccc} a & \stackrel{f}{\longrightarrow} b & \stackrel{g}{\longrightarrow} c & \stackrel{h}{\longrightarrow} \Sigma a \\ \downarrow_{k} & \downarrow_{l} & \downarrow_{\exists m} & \downarrow_{\Sigma k} \\ a' & \stackrel{f'}{\longrightarrow} b' & \stackrel{g'}{\longrightarrow} c' & \stackrel{h''}{\longrightarrow} \Sigma a' \end{array}$$

Octaheder: ...

Definition

A functor $T : \mathcal{K} \to \mathcal{K}'$ between triangulated categories is called exact/triangular if it commutes with shifts (i.e. $T\Sigma \simeq \Sigma' T$) and preserves distinguished triangles.

A tensor triangulated category \mathcal{K} is a triangulated category with a monoidal structure $\otimes : \mathcal{K} \times \mathcal{K} \to \mathcal{K}$ (i.e. \otimes is 'associative' and 'has a unit $1 = 1_{\mathcal{K}}$ ') such that: $- \otimes -$ is exact in each variable (i.e. $- \otimes a : \mathcal{K} \to \mathcal{K}$ and $a \otimes - : \mathcal{K} \to \mathcal{K}$ are exact for every $a \in \mathcal{K}$).

Remark

Additionally we assume that the monoidal structure is symmetric, i.e. $a \otimes b \simeq b \otimes a$.

Remark

There a certain compatibility assumptions hiding. E.g.

$$(\Sigma a) \otimes (\Sigma b) \xrightarrow{\Sigma (a \otimes (\Sigma b))} \Sigma^2 (a \otimes b)$$
$$\Sigma ((\Sigma a) \otimes b)$$

both ways give elements in $\text{Hom}_{\mathcal{K}}((\Sigma a) \otimes (\Sigma b), \Sigma^2(a \otimes b))$, which are assumed to only differ by a sign.

An exact functor F between tensor triangulated categories is called \otimes -exact if it preserves the tensor structure (including the unit) up to isomorphism.

Remark

Again with certain compatibility conditions:

$$F((\Sigma a) \otimes b) \xrightarrow{F(\Sigma(a \otimes b))} \Sigma(F(a \otimes b)) \xrightarrow{\Sigma(F(a \otimes b))} \Sigma((Fa) \otimes (Fb))$$

$$(F(\Sigma a)) \otimes (Fb) \longrightarrow (\Sigma(Fa)) \otimes (Fb) \xrightarrow{\Sigma((Fa))} \Sigma((Fa) \otimes (Fb))$$

Note that every morphism in the diagram above is an isomorphism (but not necessarily unique).

A non-empty full subcategory $\mathcal{J} \subseteq \mathcal{K}$ is called:

triangulated: If for every distinguished triangle a ^f→ b ^g→ c ^h→ Σa in K with two of a, b, c in J, all three have to lie in J.
thick: If it is triangulated and a ⊕ b ∈ J ⇒ a, b ∈ J.
⊗-ideal: If K ⊗ J ⊆ J.
radical: If a^{⊗n} ∈ J ⇒ a ∈ J.

Remark

A triangulated subcategory $\mathcal{J} \subseteq \mathcal{K}$ is additive and replete, i.e. $a \simeq b \in \mathcal{J} \implies a \in \mathcal{J}$. Quick proof:

additive: Full, non-empty, Bookkeeping (3) and triangulated \implies pre-additive sum of dist. triangles is dist. (Existence, Morphism, Bookkeeping (1) and "four-lemma") $a \longrightarrow a \longrightarrow 0 \longrightarrow \Sigma a$ by Bookkeeping (3) $0 \longrightarrow b \longrightarrow b \longrightarrow 0$ by Bookkeeping (2 and 3) their sum and triangulated \implies additive replete: Bookkeeping (1 and 3) and triangulated $a \xrightarrow{\sim} b \longrightarrow 0 \longrightarrow \Sigma a$

Let X be a quasi-compact and quasi-separated scheme. Denote by D(QCoh(X)) the derived category of quasi-coherent sheaves on X.

Define $D^{\text{perf}}(X)$ as the full subcategory of $D^b(\text{Coh}(X)) \subseteq D(\text{QCoh}(X))$ of perfect complexes (i.e. complexes locally quasi-isomorphic to a bounded complex of free sheaves of finite rank)

Example

Let X be a variety (separated, finite type over a field k)

X quasi-projective:
$$D^{perf}(X) = D^b(VB_X)$$
.

X = Spec(R) affine: $D(\text{QCoh}(X)) \cong D(R-\text{Mod})$ and $D^{\text{perf}}(X) \cong K^b(R-\text{proj})$.

Definition

An object C is called compact, if the functor Hom(C, -) commutes with arbitrary coproducts.

Theorem

Let X be a quasi-compact, quasi-separated scheme. The compact objects in D(QCoh(X)) are precisely the objects $D^{perf}(X)$

Proof

First reduce to the case that X = Spec(R) is affine, i.e. D(QCoh(X)) = D(R-Mod). Idea: both are equal to Thick(R), the smallest thick subcategory of D(R-Mod) containing R.

Thick(R) = compacts: This is a theorem.

Thick(*R*) ⊆ compacts: Hom_{D(*R*-Mod)}(*R*, *L*) \cong Hom_{K(*R*-Mod)}(*R*, *L*) \cong H⁰(*L*), so *R* is compact and the compact objects form a thick subcategory.

Thick(R) \subseteq D^{perf}(X): R is perfect and D^{perf}(X) is a thick subcategory.

 $D^{perf}(X) \subseteq \text{Thick}(R)$: Thick(R) is additive and contains R, thus R^n for all n. It also contains all finitely generated projectives (thick) and their shifts (triangulated). Let $P := 0 \rightarrow P^i \rightarrow \cdots \rightarrow P^s \rightarrow 0$ be a perfect complex. This gives a short exact sequence of complexes of R-modules.

$$0 \to P^{s}[s] \to P \to P^{\leq s-1} \to 0$$

This gives a distinguished triangle in D(R-Mod)

$$P^{s}[s] \rightarrow P \rightarrow P^{\leq s-1} \rightarrow \Sigma(P^{s}[s]).$$

By induction (triangulated) this reduces to the case that Thick(R) contains all all finitely generated projectives and their shifts (done). This shows that Thick(R) contains all perfect complexes (repleted).

A thick \otimes -ideal $\mathcal{P} \subsetneq \mathcal{K}$ is called prime if: it is proper (i.e. $1_{\mathcal{K}} \notin \mathcal{P}$),

 $a \otimes b \in \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$.

Definition

The spectrum of \mathcal{K} is the set of primes:

$$\mathsf{Spc}(\mathcal{K}) := \{ \mathcal{P} \subseteq \mathcal{K} | \ \mathcal{P} \text{ is prime} \}.$$

Definition

For any family of objects $\mathcal{S}\subseteq \mathcal{K}$ define:

$$\mathsf{Z}(\mathcal{S}) := \{ \mathcal{P} \in \mathsf{Spc}(\mathcal{K}) | \ \mathcal{S} \cap \mathcal{P} = \emptyset \}.$$

Remark (Important!)

This is not the definition you know from algebraic geometry! This would look like:

 $\mathsf{V}(\mathcal{S}) = \{ \mathcal{P} \in \mathsf{Spec}(\mathcal{K}) | \ \mathcal{S} \subseteq \mathcal{P} \}.$

Jan Hennig

Proposition

Let \mathcal{K} be a tensor triangulated category and $\mathcal{S}_j \subseteq \mathcal{K}$ families of objects for $j \in J$. Then:

1): $Z(\mathcal{K}) = \emptyset$ and $Z(\emptyset) = \operatorname{Spc}(\mathcal{K})$ 2): $S_i \subseteq S_j \implies Z(S_j) \subseteq Z(S_i)$ 3): $Z(S_i) \cup Z(S_j) = Z(S_i \oplus S_j)$ (" = $V(S_i \cap S_j)$ ") for $S_i \oplus S_j = \{a_i \oplus a_j | a_i \in S_i, a_j \in S_j\}$ 4): $\bigcap_{j \in J} Z(S_j) = Z(\bigcup_{j \in J} S_j)$

Proof

Recall: $Z(S) := \{ \mathcal{P} \in Spc(\mathcal{K}) | S \cap \mathcal{P} = \emptyset \}.$

1),2),4): clear (although different argument for 1) compared to AG)

3): $a_i \oplus a_j \in \mathcal{P} \cap (S_i \oplus S_j)$, then $a_i, a_j \in \mathcal{P}$ (by thickness) and hence $\mathcal{P} \notin Z(S_i) \cup Z(S_j)$, If there are $a_i \in \mathcal{P} \cap S_i$ and $a_i \in \mathcal{P} \cap S_i$ then $a_i \oplus a_i \in \mathcal{P} \cap (S_i \oplus S_i)$ (by additivity)

Remark

This defines the Zariski topology on Spc(\mathcal{K}), where the closed sets are given by Z(\mathcal{S}) for $\mathcal{S} \subseteq \mathcal{K}$. Denote the open complement of Z(\mathcal{S}) by U(\mathcal{S}):

 $\mathsf{U}(\mathcal{S}) := \mathsf{Spc}(\mathcal{K}) \setminus \mathsf{Z}(\mathcal{S}) = \{ \mathcal{P} \in \mathsf{Spc}(\mathcal{K}) | \ \mathcal{S} \cap \mathcal{P} \neq \emptyset \}$

Proposition

The open sets $U(a) := U({a}) = {\mathcal{P} \in Spc(\mathcal{K}) | a \in \mathcal{P}} \subseteq Spc(\mathcal{K})$ satisfy the following: 1): $U(0) = Spc(\mathcal{K})$ and $U(1) = \emptyset$ 2): $U(a \oplus b) = U(a) \cap U(b)$ 3): $U(\Sigma a) = U(a)$ 4): $U(a) \supseteq U(b) \cap U(c)$ for every distinguished triangle $a \to b \to c \to \Sigma a$ 5): $U(a \otimes b) = U(a) \cup U(b)$

Proof

Recall that a prime ideal is in particular: proper, additive, triangulated, thick and a \otimes -ideal.

1): $0 \in \mathcal{P}$ for every \mathcal{P} (additive); $1 \in \mathcal{P} \implies \mathcal{P} = \mathcal{K}$ (\otimes -ideal) contradicting properness

2): " \subseteq ": thick and " \supseteq ": additive

4): triangulated (note: works also for any permutation of a, b, c)

3): Apply 4) twice to
$$a \rightarrow 0 \rightarrow \Sigma a \rightarrow \Sigma a$$
 and use 1)

5): " \subseteq ": prime and " \supseteq ": \otimes -ideal

Remark

Define supp(a) := $Z({a}) = Spc(\mathcal{K}) \setminus U(a) = {\mathcal{P} \in Spc(\mathcal{K}) | a \notin \mathcal{P}}$, then this satisfies the "dual" ("complementary") properties for closed sets.

Jan Hennig

A support data on a tensor triangulated category \mathcal{K} is a pair (X, σ) of a topological space X and a closed subset $\sigma(a) \subseteq X$ for any $a \in \mathcal{K}$ such that:

Theorem

Let \mathcal{K} be a tensor triangulated category. The spectrum (Spc(\mathcal{K}), supp) is the final support data on \mathcal{K} , i.e. for any support data (X, σ) on \mathcal{K} there exists a unique continuous map $f: X \to \text{Spc}(\mathcal{K})$ such that $\sigma(a) = f^{-1}(\text{supp}(a))$.

Remark

The map $f: X \to \text{Spc}(\mathcal{K})$ above can be given explicitly by:

 $f(x) = \{a \in \mathcal{K} | x \notin \sigma(a)\} \quad \forall x \in X.$

Assume that the tensor triangulated category ${\cal K}$ is also rigid and idempotent-complete.

Definition

For an open set $U \subseteq \operatorname{Spc}(\mathcal{K})$ denote its closed complement by $Z := \operatorname{Spc}(\mathcal{K}) \setminus U$. Define the thick \otimes -ideal $\mathcal{K}_Z := \{a \in \mathcal{K} | \operatorname{supp}(a) \subseteq Z\}$ (follows from support data properties). Define $\mathcal{K}(U) := (\mathcal{K}/\mathcal{K}_Z)^{\natural}$ the idempotent completion of the Verdier quotient.

Remark

The Verdier quotient \mathcal{K}/\mathcal{J} is localizing with respect to all morphisms, whose cone lies in \mathcal{J} . The following holds: $(\mathcal{K}(U))(V) \cong \mathcal{K}(V)$ for every $V \subseteq U \cong \text{Spc}(\mathcal{K}(U))$. The ring $\text{End}_{\mathcal{K}(U)}(\mathbb{1}_{\mathcal{K}(U)})$ is commutative (product given by the tensor product).

Definition

Define a presheaf of commutative rings on $Spc(\mathcal{K})$ by

$$U \mapsto \operatorname{End}_{\mathcal{K}(U)}(\mathbb{1}_{\mathcal{K}(U)})$$

on a basis of quasi-compact open subsets.

Define the structure sheaf $\mathcal{O}_\mathcal{K}$ as the sheafification of this presheaf and denote by

$$\mathsf{Spec}(\mathcal{K}) := (\mathsf{Spc}(\mathcal{K}), \mathcal{O}_{\mathcal{K}})$$

the locally ringed space (not known to be a scheme).