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Definition (Triangulated Category)

A triangulated category K is an additive (essentially small) category together with a ’shift’

Σ: K → K and a collection of distinguished triangles ∆ =
(

a b c Σaf g h
)

such that:

Bookkeeping: ∆ distinguished and ∆ ' ∆′ implies ∆′ distinguished,

a b c Σaf g h is distinguished if and only if b c Σa Σb
g h −Σf

is,

a a 0 Σa1 is distinguished

Existence: Every a bf extends to a distinguished triangle

Morphism: Every partial morphism between distinguished triangle extends as follows

a b c Σa

a′ b′ c ′ Σa′

f

k

g

l

h

∃m Σk

f ′ g′ h′

Octaheder: . . .

Definition

A functor T : K → K′ between triangulated categories is called exact/triangular if it commutes
with shifts (i.e. TΣ ' Σ′T ) and preserves distinguished triangles.
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Definition

A tensor triangulated category K is a triangulated category with a monoidal structure
⊗ : K×K → K (i.e. ⊗ is ’associative’ and ’has a unit 1 = 1K’) such that:
−⊗− is exact in each variable (i.e. −⊗ a : K → K and a⊗− : K → K are exact for every a ∈ K).

Remark

Additionally we assume that the monoidal structure is symmetric, i.e. a⊗ b ' b ⊗ a.

Remark

There a certain compatibility assumptions hiding. E.g.

Σ (a⊗ (Σb))

(Σa)⊗ (Σb) Σ2 (a⊗ b)

Σ ((Σa)⊗ b)

both ways give elements in HomK
(

(Σa)⊗ (Σb) , Σ2 (a⊗ b)
)

, which are assumed to only differ

by a sign.
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Definition

An exact functor F between tensor triangulated categories is called ⊗-exact if it preserves the
tensor structure (including the unit) up to isomorphism.

Remark

Again with certain compatibility conditions:

F (Σ (a⊗ b)) Σ (F (a⊗ b))

F ((Σa)⊗ b) Σ ((Fa)⊗ (Fb))

(F (Σa))⊗ (Fb) (Σ(Fa))⊗ (Fb)

Note that every morphism in the diagram above is an isomorphism (but not necessarily unique).

Jan Hennig Tensor Triangulated Categories June 24, 2021 4 / 12



Definition

A non-empty full subcategory J ⊆ K is called:

triangulated: If for every distinguished triangle a b c Σaf g h in K with two of
a, b, c in J , all three have to lie in J .

thick: If it is triangulated and a⊕ b ∈ J =⇒ a, b ∈ J .

⊗-ideal: If K⊗ J ⊆ J .

radical: If a⊗n ∈ J =⇒ a ∈ J .

Remark

A triangulated subcategory J ⊆ K is additive and replete, i.e. a ' b ∈ J =⇒ a ∈ J .
Quick proof:

additive: Full, non-empty, Bookkeeping (3) and triangulated =⇒ pre-additive
sum of dist. triangles is dist. (Existence, Morphism, Bookkeeping (1) and ”four-lemma”)

a a 0 Σa by Bookkeeping (3)

0 b b 0 by Bookkeeping (2 and 3)
their sum and triangulated =⇒ additive

replete: Bookkeeping (1 and 3) and triangulated a b 0 Σa∼
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Definition

Let X be a quasi-compact and quasi-separated scheme. Denote by D(QCoh(X )) the derived
category of quasi-coherent sheaves on X .

Define Dperf(X ) as the full subcategory of Db(Coh(X )) ⊆ D(QCoh(X )) of perfect complexes
(i.e. complexes locally quasi-isomorphic to a bounded complex of free sheaves of finite rank)

Example

Let X be a variety (separated, finite type over a field k)

X quasi-projective: Dperf(X ) = Db(VBX ).

X = Spec(R) affine: D(QCoh(X )) ∼= D(R-Mod) and Dperf(X ) ∼= Kb(R-proj).

Definition

An object C is called compact, if the functor Hom(C ,−) commutes with arbitrary coproducts.

Theorem

Let X be a quasi-compact, quasi-separated scheme. The compact objects in D(QCoh(X )) are
precisely the objects Dperf(X )
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Proof

First reduce to the case that X = Spec(R) is affine, i.e. D(QCoh(X )) = D(R-Mod).
Idea: both are equal to Thick(R), the smallest thick subcategory of D(R-Mod) containing R.

Thick(R) = compacts: This is a theorem.

Thick(R) ⊆ compacts: HomD(R-Mod)(R, L) ∼= HomK(R-Mod)(R, L) ∼= H0(L), so R is compact
and the compact objects form a thick subcategory.

Thick(R) ⊆ Dperf(X ): R is perfect and Dperf(X ) is a thick subcategory.

Dperf(X ) ⊆ Thick(R): Thick(R) is additive and contains R, thus Rn for all n.
It also contains all finitely generated projectives (thick) and their shifts (triangulated).
Let P := 0→ P i → · · · → Ps → 0 be a perfect complex. This gives a short exact
sequence of complexes of R-modules.

0→ Ps [s]→ P → P≤s−1 → 0

This gives a distinguished triangle in D(R-Mod)

Ps [s]→ P → P≤s−1 → Σ(Ps [s]).

By induction (triangulated) this reduces to the case that Thick(R) contains all all finitely
generated projectives and their shifts (done). This shows that Thick(R) contains all perfect
complexes (repleted).
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Definition

A thick ⊗-ideal P ( K is called prime if:

it is proper (i.e. 1K /∈ P),

a⊗ b ∈ P implies a ∈ P or b ∈ P.

Definition

The spectrum of K is the set of primes:

Spc(K) := {P ⊆ K| P is prime}.

Definition

For any family of objects S ⊆ K define:

Z(S) := {P ∈ Spc(K)| S ∩ P = ∅}.

Remark (Important!)

This is not the definition you know from algebraic geometry!
This would look like:

V(S) = {P ∈ Spec(K)| S ⊆ P}.
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Proposition

Let K be a tensor triangulated category and Sj ⊆ K families of objects for j ∈ J. Then:

1): Z(K) = ∅ and Z(∅) = Spc(K)

2): Si ⊆ Sj =⇒ Z(Sj ) ⊆ Z(Si )

3): Z(Si ) ∪ Z(Sj ) = Z(Si ⊕ Sj )
(

” = V(Si ∩ Sj )”
)

for Si ⊕ Sj = {ai ⊕ aj | ai ∈ Si , aj ∈ Sj}

4):
⋂

j∈J Z(Sj ) = Z(
⋃

j∈J Sj )

Proof

Recall: Z(S) := {P ∈ Spc(K)| S ∩ P = ∅}.
1),2),4): clear (although different argument for 1) compared to AG)

3): ai ⊕ aj ∈ P ∩ (Si ⊕ Sj ), then ai , aj ∈ P (by thickness) and hence P /∈ Z(Si ) ∪ Z(Sj ),
If there are ai ∈ P ∩ Si and aj ∈ P ∩ Sj then ai ⊕ aj ∈ P ∩ (Si ⊕ Sj ) (by additivity)

Remark

This defines the Zariski topology on Spc(K), where the closed sets are given by Z(S) for S ⊆ K.
Denote the open complement of Z(S) by U(S):

U(S) := Spc(K) \ Z(S) = {P ∈ Spc(K)| S ∩ P 6= ∅}
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Proposition

The open sets U(a) := U({a}) = {P ∈ Spc(K)| a ∈ P} ⊆ Spc(K) satisfy the following:

1): U(0) = Spc(K) and U(1) = ∅
2): U(a⊕ b) = U(a) ∩ U(b)

3): U(Σa) = U(a)

4): U(a) ⊇ U(b) ∩ U(c) for every distinguished triangle a b c Σa

5): U(a⊗ b) = U(a) ∪ U(b)

Proof

Recall that a prime ideal is in particular: proper, additive, triangulated, thick and a ⊗-ideal.

1): 0 ∈ P for every P (additive); 1 ∈ P =⇒ P = K (⊗-ideal) contradicting properness

2): ”⊆”: thick and ”⊇”: additive

4): triangulated (note: works also for any permutation of a, b, c)

3): Apply 4) twice to a 0 Σa Σa and use 1)

5): ”⊆”: prime and ”⊇”: ⊗-ideal

Remark

Define supp(a) := Z({a}) = Spc(K) \ U(a) = {P ∈ Spc(K)| a /∈ P}, then this satisfies the
”dual” (”complementary”) properties for closed sets.
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Definition

A support data on a tensor triangulated category K is a pair (X , σ) of a topological space X and
a closed subset σ(a) ⊆ X for any a ∈ K such that:

1): σ(0) = ∅ and σ(1) = X

2): σ(a⊕ b) = σ(a) ∪ σ(b)

3): σ(Σa) = σ(a)

4): σ(a) ⊆ σ(b) ∪ σ(c) for every distinguished triangle a b c Σa

5): σ(a⊗ b) = σ(a) ∩ σ(b)

A morphism f : (X , σ)→ (Y , τ) of support data on K is a continuous map f : X → Y such that
σ(a) = f −1(τ(a)).

Theorem

Let K be a tensor triangulated category. The spectrum (Spc(K), supp) is the final support data
on K, i.e. for any support data (X , σ) on K there exists a unique continuous map
f : X → Spc(K) such that σ(a) = f −1(supp(a)).

Remark

The map f : X → Spc(K) above can be given explicitly by:

f (x) = {a ∈ K| x /∈ σ(a)} ∀x ∈ X .
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Assume that the tensor triangulated category K is also rigid and idempotent-complete.

Definition

For an open set U ⊆ Spc(K) denote its closed complement by Z := Spc(K) \ U.
Define the thick ⊗-ideal KZ := {a ∈ K| supp(a) ⊆ Z} (follows from support data properties).
Define K(U) := (K/KZ )\ the idempotent completion of the Verdier quotient.

Remark

The Verdier quotient K/J is localizing with respect to all morphisms, whose cone lies in J .
The following holds: (K(U))(V ) ∼= K(V ) for every V ⊆ U ∼= Spc(K(U)).
The ring EndK(U)(1K(U)) is commutative (product given by the tensor product).

Definition

Define a presheaf of commutative rings on Spc(K) by

U 7→ EndK(U)(1K(U))

on a basis of quasi-compact open subsets.
Define the structure sheaf OK as the sheafification of this presheaf and denote by

Spec(K) := (Spc(K),OK)

the locally ringed space (not known to be a scheme).
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