Tensor Triangulated Categories

Jan Hennig

June 24, 2021

Definition (Triangulated Category)

A triangulated category \mathcal{K} is an additive (essentially small) category together with a 'shift' $\Sigma: \mathcal{K} \rightarrow \mathcal{K}$ and a collection of distinguished triangles $\Delta=(a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} \Sigma a)$ such that:

Bookkeeping: Δ distinguished and $\Delta \simeq \Delta^{\prime}$ implies Δ^{\prime} distinguished, $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} \Sigma a$ is distinguished if and only if $b \xrightarrow{g} c \xrightarrow{h} \Sigma a \xrightarrow{-\Sigma f} \Sigma b$ is, $a \xrightarrow{1} a \rightarrow 0 \rightarrow \Sigma a$ is distinguished

Existence: Every $a \xrightarrow{f} b$ extends to a distinguished triangle
Morphism: Every partial morphism between distinguished triangle extends as follows

Octaheder: ...

Definition

A functor $T: \mathcal{K} \rightarrow \mathcal{K}^{\prime}$ between triangulated categories is called exact/triangular if it commutes with shifts (i.e. $T \Sigma \simeq \Sigma^{\prime} T$) and preserves distinguished triangles.

Definition

A tensor triangulated category \mathcal{K} is a triangulated category with a monoidal structure $\otimes: \mathcal{K} \times \mathcal{K} \rightarrow \mathcal{K}$ (i.e. \otimes is 'associative' and 'has a unit $1=1_{\mathcal{K}}$ ') such that:
$-\otimes-$ is exact in each variable (i.e. $-\otimes a: \mathcal{K} \rightarrow \mathcal{K}$ and $a \otimes-: \mathcal{K} \rightarrow \mathcal{K}$ are exact for every $a \in \mathcal{K}$).

Remark

Additionally we assume that the monoidal structure is symmetric, i.e. $a \otimes b \simeq b \otimes a$.

Remark

There a certain compatibility assumptions hiding. E.g.

both ways give elements in $\operatorname{Hom}_{\mathcal{K}}\left((\Sigma a) \otimes(\Sigma b), \Sigma^{2}(a \otimes b)\right)$, which are assumed to only differ by a sign.

Definition

An exact functor F between tensor triangulated categories is called \otimes-exact if it preserves the tensor structure (including the unit) up to isomorphism.

Remark

Again with certain compatibility conditions:

Note that every morphism in the diagram above is an isomorphism (but not necessarily unique).

Definition

A non-empty full subcategory $\mathcal{J} \subseteq \mathcal{K}$ is called:
triangulated: If for every distinguished triangle $a \xrightarrow{f} b \xrightarrow{g} c \xrightarrow{h} \Sigma a$ in \mathcal{K} with two of a, b, c in \mathcal{J}, all three have to lie in \mathcal{J}. thick: If it is triangulated and $a \oplus b \in \mathcal{J} \Longrightarrow a, b \in \mathcal{J}$. \otimes-ideal: If $\mathcal{K} \otimes \mathcal{J} \subseteq \mathcal{J}$. radical: If $a^{\otimes n} \in \mathcal{J} \Longrightarrow a \in \mathcal{J}$.

Remark

A triangulated subcategory $\mathcal{J} \subseteq \mathcal{K}$ is additive and replete, i.e. $a \simeq b \in \mathcal{J} \Longrightarrow a \in \mathcal{J}$.
Quick proof:
additive: Full, non-empty, Bookkeeping (3) and triangulated \Longrightarrow pre-additive sum of dist. triangles is dist. (Existence, Morphism, Bookkeeping (1) and "four-lemma")
$a \longrightarrow \mathrm{a} \longrightarrow \mathrm{\Sigma} \longrightarrow \mathrm{a}$ by Bookkeeping (3)
$0 \longrightarrow b \longrightarrow 0$ by Bookkeeping (2 and 3)
their sum and triangulated \Longrightarrow additive
replete: Bookkeeping (1 and 3) and triangulated $a \longrightarrow 0 \longrightarrow \Sigma a$

Definition

Let X be a quasi-compact and quasi-separated scheme. Denote by $\mathrm{D}(\mathrm{QCoh}(X))$ the derived category of quasi-coherent sheaves on X.

Define $D^{\text {perf }}(X)$ as the full subcategory of $\mathrm{D}^{b}(\operatorname{Coh}(X)) \subseteq \mathrm{D}(\mathrm{QCoh}(X))$ of perfect complexes (i.e. complexes locally quasi-isomorphic to a bounded complex of free sheaves of finite rank)

Example

Let X be a variety (separated, finite type over a field k)
X quasi-projective: $\mathrm{D}^{\text {perf }}(X)=\mathrm{D}^{b}\left(\mathrm{VB}_{X}\right)$.
$X=\operatorname{Spec}(R)$ affine: $\mathrm{D}(\mathrm{QCoh}(X)) \cong \mathrm{D}(R-\operatorname{Mod})$ and $D^{\text {perf }}(X) \cong \mathrm{K}^{b}(R$-proj $)$.

Definition

An object C is called compact, if the functor $\operatorname{Hom}(C,-)$ commutes with arbitrary coproducts.

Theorem

Let X be a quasi-compact, quasi-separated scheme. The compact objects in $\mathrm{D}(\mathrm{QCoh}(X))$ are precisely the objects $D^{\text {perf }}(X)$

Proof

First reduce to the case that $X=\operatorname{Spec}(R)$ is affine, i.e. $\mathrm{D}(\mathrm{QCoh}(X))=\mathrm{D}(R-M o d)$. Idea: both are equal to Thick (R), the smallest thick subcategory of $\mathrm{D}(R-\mathrm{Mod})$ containing R.

Thick $(R)=$ compacts: This is a theorem.
Thick $(R) \subseteq$ compacts: $\operatorname{Hom}_{\mathrm{D}(R-M o d)}(R, L) \cong \operatorname{Hom}_{K(R-M o d)}(R, L) \cong H^{0}(L)$, so R is compact and the compact objects form a thick subcategory.
Thick $(R) \subseteq \mathrm{D}^{\text {perf }}(X): R$ is perfect and $\mathrm{D}^{\text {perf }}(X)$ is a thick subcategory.
$\mathrm{D}^{\text {perf }}(X) \subseteq$ Thick (R) : Thick (R) is additive and contains R, thus R^{n} for all n.
It also contains all finitely generated projectives (thick) and their shifts (triangulated). Let $P:=0 \rightarrow P^{i} \rightarrow \cdots \rightarrow P^{s} \rightarrow 0$ be a perfect complex. This gives a short exact sequence of complexes of R-modules.

$$
0 \rightarrow P^{s}[s] \rightarrow P \rightarrow P^{\leq s-1} \rightarrow 0
$$

This gives a distinguished triangle in $\mathrm{D}(R-M o d)$

$$
P^{s}[s] \rightarrow P \rightarrow P^{\leq s-1} \rightarrow \Sigma\left(P^{s}[s]\right) .
$$

By induction (triangulated) this reduces to the case that Thick (R) contains all all finitely generated projectives and their shifts (done). This shows that Thick(R) contains all perfect complexes (repleted).

Definition

A thick \otimes-ideal $\mathcal{P} \subsetneq \mathcal{K}$ is called prime if:
it is proper (i.e. $1_{\mathcal{K}} \notin \mathcal{P}$),
$a \otimes b \in \mathcal{P}$ implies $a \in \mathcal{P}$ or $b \in \mathcal{P}$.

Definition

The spectrum of \mathcal{K} is the set of primes:

$$
\operatorname{Spc}(\mathcal{K}):=\{\mathcal{P} \subseteq \mathcal{K} \mid \mathcal{P} \text { is prime }\} .
$$

Definition

For any family of objects $\mathcal{S} \subseteq \mathcal{K}$ define:

$$
\mathrm{Z}(\mathcal{S}):=\{\mathcal{P} \in \operatorname{Spc}(\mathcal{K}) \mid \mathcal{S} \cap \mathcal{P}=\emptyset\} .
$$

Remark (Important!)

This is not the definition you know from algebraic geometry!
This would look like:

$$
\mathrm{V}(\mathcal{S})=\{\mathcal{P} \in \operatorname{Spec}(\mathcal{K}) \mid \mathcal{S} \subseteq \mathcal{P}\}
$$

Proposition

Let \mathcal{K} be a tensor triangulated category and $\mathcal{S}_{j} \subseteq \mathcal{K}$ families of objects for $j \in J$. Then:
1): $Z(\mathcal{K})=\emptyset$ and $Z(\emptyset)=\operatorname{Spc}(\mathcal{K})$
2): $\mathcal{S}_{i} \subseteq \mathcal{S}_{j} \Longrightarrow Z\left(\mathcal{S}_{j}\right) \subseteq Z\left(\mathcal{S}_{i}\right)$
3): $\mathrm{Z}\left(\mathcal{S}_{i}\right) \cup \mathrm{Z}\left(\mathcal{S}_{j}\right)=\mathrm{Z}\left(\mathcal{S}_{i} \oplus \mathcal{S}_{j}\right)\left("=\mathrm{V}\left(\mathcal{S}_{i} \cap \mathcal{S}_{j}\right)^{\prime \prime}\right)$ for $\mathcal{S}_{i} \oplus \mathcal{S}_{j}=\left\{a_{i} \oplus a_{j} \mid a_{i} \in \mathcal{S}_{i}, a_{j} \in \mathcal{S}_{j}\right\}$
4): $\bigcap_{j \in J} Z\left(\mathcal{S}_{j}\right)=\mathrm{Z}\left(\bigcup_{j \in J} \mathcal{S}_{j}\right)$

Proof

Recall: $\mathrm{Z}(\mathcal{S}):=\{\mathcal{P} \in \operatorname{Spc}(\mathcal{K}) \mid \mathcal{S} \cap \mathcal{P}=\emptyset\}$.
1),2),4): clear (although different argument for 1) compared to $A G$)
3): $a_{i} \oplus a_{j} \in \mathcal{P} \cap\left(\mathcal{S}_{i} \oplus \mathcal{S}_{j}\right)$, then $a_{i}, a_{j} \in \mathcal{P}$ (by thickness) and hence $\mathcal{P} \notin \mathrm{Z}\left(\mathcal{S}_{i}\right) \cup \mathrm{Z}\left(\mathcal{S}_{j}\right)$, If there are $a_{i} \in \mathcal{P} \cap \mathcal{S}_{i}$ and $a_{j} \in \mathcal{P} \cap \mathcal{S}_{j}$ then $a_{i} \oplus a_{j} \in \mathcal{P} \cap\left(\mathcal{S}_{i} \oplus \mathcal{S}_{j}\right)$ (by additivity)

Remark

This defines the Zariski topology on $\operatorname{Spc}(\mathcal{K})$, where the closed sets are given by $Z(\mathcal{S})$ for $\mathcal{S} \subseteq \mathcal{K}$. Denote the open complement of $\mathrm{Z}(\mathcal{S})$ by $\mathrm{U}(\mathcal{S})$:

$$
\mathrm{U}(\mathcal{S}):=\operatorname{Spc}(\mathcal{K}) \backslash \mathrm{Z}(\mathcal{S})=\{\mathcal{P} \in \operatorname{Spc}(\mathcal{K}) \mid \mathcal{S} \cap \mathcal{P} \neq \emptyset\}
$$

Proposition

The open sets $\mathrm{U}(a):=\mathrm{U}(\{a\})=\{\mathcal{P} \in \operatorname{Spc}(\mathcal{K}) \mid a \in \mathcal{P}\} \subseteq \operatorname{Spc}(\mathcal{K})$ satisfy the following:
1): $U(0)=\operatorname{Spc}(\mathcal{K})$ and $U(1)=\emptyset$
2): $U(a \oplus b)=U(a) \cap U(b)$
3): $U(\Sigma a)=U(a)$
4): $U(a) \supseteq U(b) \cap U(c)$ for every distinguished triangle $a \rightarrow b \rightarrow c \rightarrow \Sigma a$
5): $U(a \otimes b)=U(a) \cup U(b)$

Proof

Recall that a prime ideal is in particular: proper, additive, triangulated, thick and a \otimes-ideal.
1): $0 \in \mathcal{P}$ for every \mathcal{P} (additive); $1 \in \mathcal{P} \Longrightarrow \mathcal{P}=\mathcal{K}(\otimes$-ideal) contradicting properness
2): " \subseteq ": thick and " \supseteq ": additive
4): triangulated (note: works also for any permutation of a, b, c)
3): Apply 4) twice to $a \rightarrow 0 \rightarrow \Sigma a \rightarrow \Sigma a$ and use 1)
5): " \subseteq ": prime and " \supseteq ": \&-ideal

Remark

Define $\operatorname{supp}(a):=Z(\{a\})=\operatorname{Spc}(\mathcal{K}) \backslash U(a)=\{\mathcal{P} \in \operatorname{Spc}(\mathcal{K}) \mid a \notin \mathcal{P}\}$, then this satisfies the "dual" ("complementary") properties for closed sets.

Definition

A support data on a tensor triangulated category \mathcal{K} is a pair (X, σ) of a topological space X and a closed subset $\sigma(a) \subseteq X$ for any $a \in \mathcal{K}$ such that:
1): $\sigma(0)=\emptyset$ and $\sigma(1)=X$
2): $\sigma(a \oplus b)=\sigma(a) \cup \sigma(b)$
3): $\sigma(\Sigma a)=\sigma(a)$
4): $\sigma(a) \subseteq \sigma(b) \cup \sigma(c)$ for every distinguished triangle $a \rightarrow b \rightarrow c \rightarrow \Sigma a$
5): $\sigma(a \otimes b)=\sigma(a) \cap \sigma(b)$

A morphism $f:(X, \sigma) \rightarrow(Y, \tau)$ of support data on \mathcal{K} is a continuous map $f: X \rightarrow Y$ such that $\sigma(a)=f^{-1}(\tau(a))$.

Theorem

Let \mathcal{K} be a tensor triangulated category. The spectrum $(\operatorname{Spc}(\mathcal{K})$, supp) is the final support data on \mathcal{K}, i.e. for any support data (X, σ) on \mathcal{K} there exists a unique continuous map $f: X \rightarrow \operatorname{Spc}(\mathcal{K})$ such that $\sigma(a)=f^{-1}(\operatorname{supp}(a))$.

Remark

The map $f: X \rightarrow \operatorname{Spc}(\mathcal{K})$ above can be given explicitly by:

$$
f(x)=\{a \in \mathcal{K} \mid x \notin \sigma(a)\} \quad \forall x \in X
$$

Assume that the tensor triangulated category \mathcal{K} is also rigid and idempotent-complete.

Definition

For an open set $U \subseteq \operatorname{Spc}(\mathcal{K})$ denote its closed complement by $Z:=\operatorname{Spc}(\mathcal{K}) \backslash U$.
Define the thick \otimes-ideal $\mathcal{K}_{Z}:=\{a \in \mathcal{K} \mid \operatorname{supp}(a) \subseteq Z\}$ (follows from support data properties). Define $\mathcal{K}(U):=\left(\mathcal{K} / \mathcal{K}_{Z}\right)^{\natural}$ the idempotent completion of the Verdier quotient.

Remark

The Verdier quotient $\mathcal{K} / \mathcal{J}$ is localizing with respect to all morphisms, whose cone lies in \mathcal{J}. The following holds: $(\mathcal{K}(U))(V) \cong \mathcal{K}(V)$ for every $V \subseteq U \cong \operatorname{Spc}(\mathcal{K}(U))$.
The ring $\operatorname{End}_{\mathcal{K}(U)}\left(\mathbb{1}_{\mathcal{K}(U)}\right)$ is commutative (product given by the tensor product).

Definition

Define a presheaf of commutative rings on $\operatorname{Spc}(\mathcal{K})$ by

$$
U \mapsto \operatorname{End}_{\mathcal{K}(U)}\left(\mathbb{1}_{\mathcal{K}(U)}\right)
$$

on a basis of quasi-compact open subsets.
Define the structure sheaf $\mathcal{O}_{\mathcal{K}}$ as the sheafification of this presheaf and denote by

$$
\operatorname{Spec}(\mathcal{K}):=\left(\operatorname{Spc}(\mathcal{K}), \mathcal{O}_{\mathcal{K}}\right)
$$

the locally ringed space (not known to be a scheme).

