SS 2017 31.05.2017 Blatt 6

PD. Dr. Axel Grünrock

ÜBUNGEN ZU HARMONISCHE ANALYSIS

Aufgabe 8 (5 P.) $(G_1, +_1)$ und $(G_2, +_2)$ seien LCA-Gruppen. Zeigen Sie, dass

$$\widehat{G_1 \times G_2} = \widehat{G_1} \times \widehat{G_2}$$

in folgendem Sinne gilt: Genau dann ist $\gamma \in \widehat{G_1} \times \widehat{G_2}$, wenn es $\gamma_1 \in \widehat{G_1}$ und $\gamma_2 \in \widehat{G_2}$ gibt, so dass $\gamma(x_1, x_2) = \gamma_1(x_1)\gamma_2(x_2)$ für alle $(x_1, x_2) \in G_1 \times G_2$. Was ergibt sich zusammen mit Ihrem Ergebnis aus Aufgabe 7 für die duale Gruppe von (\mathbb{C}^*, \cdot) ?

Aufgabe 9 (5 P.) Ein einfacher Beweis des Riemann-Lebesgue'schen Lemmas im Fall $G = (\mathbb{R}^n, +)$ ergibt sich aus der Beobachtung, dass für $\xi \in \mathbb{R}^n \setminus \{0\}$ gilt

$$-1 = \exp(i\pi) = \exp(i\pi \frac{\xi \cdot \xi}{|\xi|^2}) :$$

Sei $f \in L^1(\mathbb{R}^n)$ mit Fouriertransformierter

$$\widehat{f}(\xi) = c_n \int_{\mathbb{R}^n} f(x)e^{-ix\cdot\xi} dx,$$

wobei c_n ein noch nicht spezifizierter Normierungsfaktor ist. Zeigen Sie, dass

$$\widehat{f}(\xi) = -c_n \int_{\mathbb{R}^n} f(x + \frac{\pi \xi}{|\xi|^2}) e^{-ix \cdot \xi} dx = \frac{c_n}{2} \int_{\mathbb{R}^n} (f(x) - f(x + \frac{\pi \xi}{|\xi|^2})) e^{-ix \cdot \xi} dx$$

und folgern Sie hieraus $\lim_{\xi\to\infty}\widehat{f}(\xi)=0$. (Beim letzten Schritt ist ein Satz aus Abschnitt 1.2 der Vorlesung nützlich. Welcher?)

Aufgabe 10 (6 P.) Im folgenden soll bewiesen werden, dass die Fouriertransformation

$$\mathcal{F}_{\mathbb{R}}: L^1(\mathbb{R}) \to C_0(\mathbb{R})$$

nicht surjektiv ist. Zeigen Sie dazu:

(a) Es gibt eine Konstante $C \in \mathbb{R}$, so dass $|\int_a^b \frac{\sin \xi}{\xi} d\xi| \le C$ für alle $a, b \in \mathbb{R}$.

Bitte wenden!

- (b) Ist g die Fouriertransformierte von $f \in L^1(\mathbb{R})$ und ist g ungerade, so ist $g(\xi) = -ic_1 \int_{\mathbb{R}} \sin(x\xi) f(x) dx$.
- (c) Unter den in (b) genannten Voraussetzungen gilt für jedes R > 2:

$$\left| \int_{2}^{R} \frac{g(\xi)}{\xi} d\xi \right| \le c_1 C ||f||_1,$$

wobei C die Konstante aus Teil (a) ist.

(d) Eine ungerade stetige Funktion g, die auf $(2, \infty)$ mit $\frac{1}{\ln \xi}$ übereinstimmt, ist nicht die Fouriertransformierte einer L^1 -Funktion.

Aufgabe 11 (6 P.) Aus der Vorlesung ist bekannt, dass \widehat{G} kompakt ist, wenn G diskret ist. Im folgenden soll gezeigt werden: Ist G kompakt, so ist \widehat{G} diskret. Es sei also G eine kompakte abelsche Gruppe mit Haar-Maß H, so dass

$$\int_G dH(x) = 1.$$

Das neutrale Element von \widehat{G} sei mit γ_e bezeichnet, also $\gamma_e(x)=1$ für alle $x\in G$.

(a) Zeigen Sie: Ist $\gamma \in \widehat{G}$, so gilt

$$\int_{G} \gamma(x)dH(x) = \delta_{\gamma\gamma_{e}}.$$

(b) Folgern Sie für $\alpha,\beta\in\widehat{G}$ die Orthogonalitätsrelation

$$\int_{G} \alpha(x)\overline{\beta}(x)dH(x) = \delta_{\alpha\beta}.$$

(c) Da G kompakt ist, gilt $\gamma_e \in L^1(G)$. Folgern Sie aus der Stetigkeit von $\widehat{\gamma}_e$, dass $\{\gamma_e\} \subset \widehat{G}$ offen und somit \widehat{G} diskret ist.

Abgabe: 06.06.2017, in der Vorlesung,

Besprechung: 09.06.2017