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Abstract. We prove that under mild regularity assumptions on the initial

data the two-phase classical Stefan problem admits a (unique) solution that is

analytic in space and time.

1. Introduction

The Stefan problem is a model for phase transitions in liquid-solid systems and
accounts for heat diffusion and exchange of latent heat in a homogeneous medium.
The strong formulation of this model corresponds to a free boundary problem in-
volving a parabolic diffusion equation for each phase and a transmission condition
prescribed at the interface separating the phases.

In order to describe the physical situation in some more detail, we consider a
domain Ω that is occupied by a liquid and a solid phase, say water and ice, that are
separated by an interface Γ. Due to melting or freezing, the corresponding regions
occupied by water and ice will change and, consequently, the interface Γ will also
change its position and shape. This leads to a free boundary problem.

The basic physical laws governing this process are conservation of mass and
conservation of energy. The unknowns are the temperature u+ and u− for the
liquid and solid phase, respectively, and the position of the interface Γ separating
the two different phases. The conservation laws can then be expressed by a diffusion
equation for u+ and u− in the respective regions Ω+ and Ω− occupied by the
liquid and solid phase and by the so-called Stefan condition which accounts for
the exchange of latent heat due to melting or solidifying. In the classical Stefan
problem one assumes that

u+ = u− = 0 on Γ (1.1)

where 0 is the melting temperature.
The Stefan problem has been studied in the mathematical literature for over a cen-
tury, see [50, 45] and [56, pp. 117–120] for a historic account, and has attracted
the attention of many mathematicians.
The Stefan problem is known to admit a unique global weak solution, provided the
given data (that is, the initial temperature and the source terms) have the ‘correct’
signs; see for instance [29, 31, 37] and [41, pp. 496–503]. If the sign conditions are
obstructed, then the Stefan problem becomes ill-posed [20].
In the one-dimensional case the Stefan problem has been extensively studied by
many authors, among them J.R. Cannon, A. Friedmann, C.D. Hill, D.B. Kotlow,
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M. Primicerio, L.I Rubinstein, and D.G. Schaeffer, see [28, 30, 50] for more infor-
mation.
In the current paper we establish existence and regularity properties for solutions
of the classical two-phase Stefan problem. The novelty is that we can prove that
the free boundary Γ and the temperature u± are analytic in space and time.
Results concerning the regularity of the free boundary for weak solutions of the
multidimensional one-phase Stefan problem were established in [14, 15, 32, 38, 39],
and continuity of the temperature was proved in [17]. The regularity results were
derived by formulating the one-phase Stefan problem as a parabolic variational
inequality [22, 32], for which the solution exists globally in time. In more detail,
Friedman and Kinderlehrer [32] proved that under suitable (restrictive) assump-
tions on the initial data, the domain occupied by water remains star-shaped and
the free boundary is Lipschitz-continuous for all times. Caffarelli [14, 15] showed
that if for a fixed time t0, the point X0 is a point of density for the coincidence set,
then the free boundary is a C1-surface in a time-space neighborhood of (t0, X0).
Building on this result, Kinderlehrer and Nirenberg [38, 39] established that the
free boundary is smooth, that is, analytic in the space variables and in the second
Gevrey class for the time variable. In case the water region is star-shaped with
respect to the unit sphere, the authors derived that the free boundary is jointly
analytic in the space and time variables, provided the heat supplied is analytic and
positive. Under a very weak assumption (on the heat source) Matano [43] proved
that any weak solution (in the sense of [22]) eventually becomes smooth, and that
Γ(t) approaches the shape of a (growing) sphere. In order to prove that the solution
is eventually classical, Matano shows that each point X0 of the free boundary Γ(t)
has positive density with respect to the ice region if t is sufficiently large. Such
a property does not follow simply from local regularity analysis: a study of the
geometric features of Γ(t) in some global aspect is needed. The main tool involved
is the plane-reflection method.
We note here that the formulation of the Stefan problem as a variational inequality
does not seem to have a natural extension to the two-phase problem.
If the data are sufficiently smooth and satisfy high order (up to order 23) com-
patibility conditions, classical solutions on a small time interval were obtained by
Hanzawa [34]. The approach relies on the Nash-Moser implicit function theorem,
and leads to a loss of derivatives for the solution.
A unique local in time solution to the one-phase Stefan problem in Sobolev spaces
of periodic functions was constructed by Frolova and Solonnikov in [52, 53]. Their
result is based on the contraction mapping principle and on results for a linear
model problem established in [33].
Existence and uniqueness for a one-phase Stefan-like problem was obtained in [23]
by Escher.

Continuity of the temperature for weak solutions of the multidimensional two-phase
Stefan problem was obtained in [16, 18, 19, 57], and continuity of the temperature
distribution for an m-phase Stefan model with m > 2 was studied in [21]. More re-
cently, the regularity of the free boundary for weak (viscosity) solutions was studied
in [3, 4, 5, 40]. In more detail, Athanasopoulos, Caffarelli and Salsa [3, 4] consider
viscosity solutions of parabolic two-phase transition problems whose boundary is
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locally given by a Lipschitz graph in space and time. It is shown in [3] that this
assumption yields Lipschitz continuity for the temperature as well. If the problem
satisfies a non-degeneracy condition, the authors show in [4] that the free boundary
and the temperature are C1. The non-degeneracy condition states, roughly speak-
ing, that the heat fluxes are not vanishing simultaneously on the free boundary. The
authors also show by a counter example that the free boundary may not regular-
ize instantaneously in the absence of the non-degeneracy condition [4, section 10].
(They construct an example where a Lipschitz free boundary stays Lipschitz for
some time, without regularizing.) In some cases, the validity of the non-degeneracy
condition can be verified by global considerations, see Nochetto [46]. In [40], Koch
shows that under the same non-degeneracy condition C1-free boundaries are in fact
C∞-smooth.

Local existence of classical solutions on a small time interval for the two-phase
problem was first obtained by Meirmanov [44], provided that the initial data sat-
isfy high order compatibility conditions. Classical solutions for the two-phase Stefan
problem in Hölder spaces and weighted Hölder spaces (without loss of regularity)
were obtained by Bazalĭı, Bizhanova, Degtyarev, Solonnikov, and Radkevich, see
[6, 7, 8, 9, 10, 11, 12, 13, 49] for more information.

In this paper we prove under mild regularity assumptions on the initial data that
(local in time) solutions to the two-phase Stefan problem are in fact analytic in
space and time. In order to obtain our results we first establish Lp-maximal reg-
ularity results for an appropriate linear problem, that is, we establish the best
possible estimates for the linearized problem. This, in turn, allows us to use the
contraction principle to obtain a unique solution for the nonlinear problem. More-
over, our approach allows us to resort to the implicit function theorem to establish
analyticity. In contrast to the results and techniques in [4, 5, 40], which are con-
ditionally dependent on the ability to verify that a given weak (viscosity) solution
satisfies the ’non-degeneracy’ condition at a given point (t0, X0) ∈ Γ, we formulate
conditions on the initial data which allow us to simultaneously prove existence and
regularity properties of solutions.

We should like to mention that the authors in [52, 53] obtain a solution for the
one-phase problem with periodic conditions having the same maximal regularity
properties as in the current paper. However, our approach and our techniques are
different from those in [53], and our regularity results are completely new. It is
clear that the one-phase problem is also covered by our approach.

After these general remarks we shall now introduce the precise mathematical model
we are considering. We will, in fact, look at the special geometry where the free
boundary is represented as the graph of a function.

Let us then consider a family Γ = {Γ(t) : t ∈ (0, T )} of hypersurfaces in Rn+1,
where each individual hypersurface is assumed to be a graph over Rn, that is,

Γ(t) = graph(ρ(t))

for some ρ(t) : Rn → R. Moreover, let Ω+(t) and Ω−(t) denote the domain above
and below Γ(t), respectively, that is,

Ω±(t) := {(x, y) ∈ Rn × R : ±y > ±ρ(t, x)}.
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We set Ω(t) := Ω+(t) ∪ Ω−(t) and consider the following problem: Given Γ0 =
graph(ρ0) and u0 : Ω(0) → R, determine a family Γ = {Γ(t) : t ∈ (0, T )} and a
function

u :
⋃

t∈(0,T )

(
{t} × Ω(t)

)
→ R

such that 
(∂t − c∆)u = 0 in

⋃
t∈(0,T )({t} × Ω(t)),

γu = 0 on
⋃

t∈(0,T )({t} × Γ(t)),
V = −[c∂νu] on

⋃
t∈(0,T )({t} × Γ(t)),

u(0) = u0 in Ω(0),
Γ(0) = Γ0,

(1.2)

where γ stands for the trace operator, V denotes the normal velocity of Γ, and ν is
the unit normal vector, pointing into Ω+(t). Given any function v : Ω(t)→ R, we
write v+ and v− for the restriction of v to Ω+(t) and Ω−(t), respectively. Moreover,
we admit the possibility of two different diffusion coefficients in Ω±(t), i.e. c is given
as

c(t, x, y) =
{
c+, (x, y) ∈ Ω+(t),
c−, (x, y) ∈ Ω−(t). (1.3)

Using this notation, let [c∂νu] denote the jump of the normal derivatives of u across
Γ(t), that is,

[c∂νu] := c+γ∂νu
+ − c−γ∂νu

−.

Of course, u0 is a given initial value for u and Γ0 describes the initial position of Γ.
To formulate our main result, let W s

p (Rn), s ≥ 0, p ∈ (1,∞), denote the Sobolev-
Slobodeckij spaces, cf. [55] (see also Section 3). Then we have

Theorem 1.1. Let p > n + 3. Then there is a number η0 > 0 such that the
following holds: Given (u0, ρ0) ∈W 2−2/p

p (Ω(0))×W 2−2/p
p (Rn) with

γu±0 = 0, ±u±0 > 0 on Ω±(0), α± := ∂νu
±
0 (0, ρ0(0)) > 0, (1.4)

and
‖ρ0‖BUC1(Rn) ≤ η0,

∥∥∂νu
±
0 − α±

∥∥
BUC(Γ0)

≤ η0, (1.5)

there exists T = T (u0, ρ0) and an analytic solution (u,Γ), where Γ(t) = graph(ρ(t)),
for the Stefan problem (1.2). More precisely, we have that

M =
⋃

t∈(0,T )

({t} × Γ(t)) is a real analytic manifold

and that u± ∈ Cω(Ω
±
T ,R), with Ω

±
T := {(t, (x, y)) ∈ (0, T )×Rn+1 : (x, y) ∈ Ω

±
(t)}.

The solution Θ∗u is unique in the class ET specified in Section 4, where Θ is the
transformation defined in Section 2.

Remark 1.2. For simplicity we formulated our results for the case that the free
boundary is given as the graph of a function. We should emphasize that the situa-
tion of a general geometry can be reduced to the geometry of a graph by first fixing
an appropriate reference manifold, and then using the method of localization. It
can then be shown that the smallness condition (1.5) can always be satisfied by a
judicious choice of a reference manifold close to Γ0. By the parabolic maximum
principle, the non-degeneracy condition (1.4) persists as long as the solution does
not develop singularities.
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If the interface condition (1.1) is replaced by the Gibbs-Thomson correction

u+ = u− = σ κ on Γ, (1.6)

where σ is a positive constant, called the surface tension, and where κ denotes the
mean curvature of Γ, then the resulting problem is called the Stefan problem with
Gibbs-Thomson correction or the Stefan problem with surface tension. We refer to
[27] for more information and results.

Finally, we want to remark that this paper also serves as a preparation to a
forthcoming paper of the authors on singular limits for the two-phase Stefan prob-
lem. More precisely, it will be proved that a strong solution of the Stefan problem
with the Gibbs-Thomson correction (1.6) tends for σ → 0 to the strong solution of
the classical Stefan problem constructed in this paper.

2. The transformed problem

In what follows we write ∇x for the gradient with respect to x ∈ Rn, whereas ∇
denotes the full gradient with respect to (x, y) ∈ Rn×R. With the same meaning we
use ∆x and ∆. Let T > 0 and set Ṙ := R \ {0} and Ṙn+1 := Rn× Ṙ. In analogy to
the definition of u± : Ω(t)± → R for a function u on Ω(t) we denote the restriction
of a function v : Ṙn+1 → R to Rn+1

+ and Rn+1
− by v+ and v−, respectively, where

Rn+1
± := {x ∈ Rn+1 : ±xn+1 > 0}. We intent to transform the equations in Ω(t)

into a problem in Ṙn+1. For this purpose we define

Θ : [0, T ]× Ṙn+1 → QT :=
⋃

t∈[0,T ]

({t} × Ω(t)),

Θ(t, x, y) = (t, ψ(t, x, y)) := (t, x, y + ρE(t, x, y)),
(2.1)

where Γ(t) = graph(ρ(t)) is defined in the last section and ρE : [0, T ]× Ṙn+1 → R
is a suitable extension of ρ : [0, T ] × Rn → R, to be defined later. A simple
computation yields

(∇ψ)−1 =


1 · · · 0 0
...

. . .
...

0 1 0
−∂1ρE

1+∂yρE
· · · −∂nρE

1+∂yρE

1
1+∂yρE

 .

This shows that suitable conditions on the function ρE imply Θ to be a diffeomor-
phism. For instance, assuming ρE ∈ Ck((0, T ) × Ṙn+1) and ‖∂yρE‖∞ < 1 results
in

Θ ∈ Diffk((0, T )× Ṙn+1, QT ), k ∈ N ∪ {∞, ω}. (2.2)

It is clear that at this point we do not know how regular ρ and ρE are. But in
Sections 4 and 5 we will see that these functions are sufficiently regular to justify the
transformation of (1.2) into a quasilinear system that we are going to present next.
So for the remaining part of this section we just assume that ρ and the extension
ρE are suitable functions, such that the following computations make sense.

We denote the push-forward and pull-back by

u = Θ∗v = v ◦Θ−1 and v = Θ∗u = u ◦Θ,
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respectively. Note that

Θ∗∂tu = ∂tv −
∂tρE

1 + ∂yρE
∂yv,

Θ∗∇u = Θ∗∇Θ∗v = (∇ψ)−T∇v,
Θ∗∆u = Θ∗∇T∇u = {(∇ψ)−T∇}T (∇ψ)−T∇v =: ∆Θv,

where we mean M−T = (M−1)T for a matrix M . In slight abuse of notation we
will also denote the pull-back Θ∗c of ‘the diffusion coefficient c’ introduced in (1.3)
by c, that is, we set

c(x, y) =
{
c+, y > 0,
c−, y < 0. (2.3)

Explicitely, the tranformed Laplacian is therefore given by

∆Θv = ∆xv +
1 + |∇xρE |2

(1 + ∂yρE)2
∂2

yv −
2〈∇xρE |∇x∂yv〉

1 + ∂yρE

− 1
1 + ∂yρE

{
∆xρE +

1 + |∇xρE |2

(1 + ∂yρE)2
∂2

yρE −
2〈∇xρE |∇x∂yρE〉

1 + ∂yρE

}
∂yv,

(2.4)

where 〈·|·〉 denotes the standard scalar product in Rn+1. Next let us transform the
Stefan condition. Clearly, the function

X(t, x) := (x, ρ(t, x)), (t, x) ∈ [0, T ]× Rn,

is a parametrization of Γ(t) and

ν(t,X(t, x)) =
(−∇xρ(t, x), 1)√
1 + |∇xρ(t, x)|2

is the outer unit normal at Γ(t) pointing into Ω+. Thus, the Stefan condition

V = 〈∂tX|ν〉 = −〈c+γ∇u+ ◦X − c−γ∇u− ◦X|ν〉

becomes

∂tρ = 〈∂tX|(−∇xρ, 1)〉 = −〈c+γ∇u+ ◦X − c−γ∇u− ◦X|(−∇xρ, 1)〉
= −〈c+γΘ∗∇u+ − c−γΘ∗∇u−|(−∇xρ, 1)〉
= −〈c+γ∇v+ − c−γ∇v−| (γ∇ψ)−1(−∇xρ, 1)〉.

Here γ is the restriction (trace) operator of Rn+1
± onto Rn ≡ Rn × {0}. Then

equations (1.2) are formally equivalent to the system
∂tv − ∂tρE

1+∂yρE
∂yv − c∆Θv = 0 in J × Ṙn+1,

γv± = 0 on J × Rn,
∂tρ+ 〈c+γ∇v+−c−γ∇v−| (γ∇ψ)−1(−∇xρ, 1)〉 = 0 on J × Rn,

v(0) = Θ∗|t=0 u(0) = v0 in Ṙn+1,
ρ(0) = ρ0 in Rn,

where J = [0, T ]. Finally, we rephrase this system as
(∂t − c∆)v = F (v, ρE) in J × Ṙn+1,

γv± = 0 on J × Rn,
∂tρ+ [cγ∂y(v − aρE)] = H(v, ρE) on J × Rn,

v(0) = v0 in Ṙn+1,
ρ(0) = ρ0 in Rn,

(2.5)
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and we will require that the function ρE satisfies the equation
(∂t − c∆)ρE = 0 in J × Ṙn+1,

γρ±E = ρ on J × Rn,

ρE(0) = e−|y|(1−∆x)
1
2 ρ0 in Ṙn+1.

(2.6)

The coefficient a in equation (2.5) is, by definition, given by

a(x, y) =
{
a+, y > 0,
a−, y < 0, where a± :=

γ∂yv
±
0 (0)

1 + γ∂yρ
±
E(0, 0)

. (2.7)

Observe that α± > 0, given in (1.4), implies that also

a± =
γ∂yv

±
0 (0)

1 + γ∂yρ
±
E(0, 0)

=
(

1 + |∇xρ0(0)|2
)−1/2

∂νu
±
0 (0, ρ0(0)) > 0. (2.8)

Furthermore, we have

[cγ∂y(v − aρE)] = c+γ∂y(v − aρE)+ − c−γ∂y(v − aρE)−

= c+γ∂y(v+ − a+ρ
+
E)− c−γ∂y(v− − a−ρ−E).

With the help of (2.4) and the requirement that (∂t − c∆)ρE = 0 we obtain

F (v, ρE) =
∂tρE

1 + ∂yρE
∂yv + c(∆Θ −∆)v

= c

(
1 + |∇xρE |2

(1 + ∂yρE)2
− 1
)
∂2

yv − c
2〈∇xρE |∇x∂yv〉

1 + ∂yρE

− c

1 + ∂yρE

{(
1 + |∇xρE |2

(1 + ∂yρE)2
− 1
)
∂2

yρE −
2〈∇xρE |∇x∂yρE〉

1 + ∂yρE

}
∂yv.

(2.9)

Using the fact that γ∇xv
± = 0, a straightforward calculation also shows that

H(v, ρE) = H+(v, ρE)−H−(v, ρE) (2.10)

with

H±(v, ρE) = c±

{(
1−

1 + |γ∇xρ
±
E |2

1 + γ∂yρ
±
E

)
γ∂yv

± − a±γ∂yρ
±
E

}
. (2.11)

By applying a fixed point argument we will prove in section 4 that under appropriate
assumptions on the initial data, the coupled systems (2.5)–(2.6) admit a unique
local-in-time solution (v, ρ, ρE). This result will be based on a maximal regularity
result for the linearized system (2.5), where the nonlinear functions (F,H) are
replaced by functions (f, h) lying in suitable function spaces.

Remarks 2.1. (a) The additional term ’aρE ’ appearing in the linearization of
the Stefan condition in (2.5) is essential in our approach in order to get sufficient
regularity for the function ρ describing the free boundary, see also Remark 4.2 for
additional information. Moreover, due to the fact that the function ρE satisfies the
equation (∂t − c∆)ρE = 0, we do not have to consider the term

∂yv

1 + ∂yρE

(
∂tρE − c∆ρE

)
,

which would otherwise occur in the first line of equation (2.5).
(b) We refer to [6, 7, 8, 9, 10, 11, 12, 13, 33, 45, 49, 52, 53] for different results and
approaches for the linearization of the classical two-phase Stefan problem.
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(c) It is interesting to note that the classical Stefan problem requires a finer analysis
in order to establish maximal regularity than does the Stefan Problem with Gibbs-
Thomson correction, see [27]. This is, of course, not unexpected since surface
tension is known to have a regularizing effect.

3. Maximal regularity for the linearized problem

First let us introduce suitable function spaces. Let Ω ⊆ Rm be open and X be
an arbitrary Banach space. By Lp(Ω;X) and Hs

p(Ω;X), for 1 ≤ p ≤ ∞, s ∈
R, we denote the X-valued Lebegue and the Bessel potential space of order s,
respectively. We will also frequently make use of the fractional Sobolev-Slobodeckij
spaces W s

p (Ω;X), 1 ≤ p <∞, s ∈ R \ Z, with norm

‖g‖W s
p (Ω;X) = ‖g‖

W
[s]
p (Ω;X)

+
∑
|α|=[s]

(∫
Ω

∫
Ω

‖∂αg(x)− ∂αg(y)‖pX
|x− y|n+(s−[s])p

dxdy
)1/p

, (3.1)

where [s] denotes the largest integer smaller than s. Let T ∈ (0,∞] and J = [0, T ].
We set

0W
s
p (J ;X) :=


{u ∈W s

p (J ;X) : u(0) = u′(0) = . . . = u(k)(0) = 0},

if k + 1
p < s < k + 1 + 1

p , k ∈ N ∪ {0},

W s
p (J ;X), if s < 1

p .

The spaces 0H
s
p(J ;X) are defined analogously. Here we remind that Hk

p = W k
p for

k ∈ Z and 1 < p <∞, and that W s
p = Bs

pp for s ∈ R \ Z.
In this section we consider the linearized two-phase problem

(∂t − c∆)v = f in J × Ṙn+1,
γv± = 0 on J × Rn,

∂tρ+ [cγ∂y(v − aρE)] = h on J × Rn,

v(0) = v0 in Ṙn+1,
ρ(0) = ρ0 in Rn,

(3.2)

with c, a as defined in (2.3) and (2.7). We will always assume that the function ρE

satisfies equation (2.6), which we restate here for future reference
(∂t − c∆)ρE = 0 in J × Ṙn+1,

γρ±E = ρ on J × Rn,

ρE(0) = e−|y|(1−∆x)
1
2 ρ0 in Ṙn+1.

(3.3)

Remarks 3.1. (a) (3.2)–(3.3) constitutes a coupled system of equations, with the
functions (v, ρ, ρE) to be determined. We will in the sequel often just refer to a
solution (v, ρ) of (3.2) with the understanding that the function ρE also has to be
determined.
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(b) Suppose ρ ∈ W 1−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)) and ρ0 ∈ W 2−3/p
p (Rn)

is given such that ρ(0) = ρ0. Then the diffusion equation (3.3) admits a unique
solution

ρE ∈W 1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)).
This follows, for instance, from [27, Proposition 5.1], thanks to

e−|y|(1−∆x)
1
2 ρ0 ∈W 2−2/p

p (Ṙn+1).

(c) The solution ρE(t, ·) of equation (3.3) provides an extension of ρ(t, ·) to Ṙn+1.
We should remark that there are many possibilities to define such an extension.
The chosen one is the most convenient one for our purposes. We also remark that
we have great freedom for the extension of ρ0.

We will first consider the special case that (h(0), v0, ρ0) = (0, 0, 0). This allows
us to derive an explicit representation for the solution of (3.2)–(3.3).

Proposition 3.2. Let p ∈ (3,∞), T > 0, and J = [0, T ]. Suppose that
(h(0), v0, ρ0) = (0, 0, 0) and that

f ∈ Lp(J ;Lp(Ṙn+1)) and

h ∈ 0W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)).

Then there is a unique solution (v, ρ, ρE) of (3.2)–(3.3) satisfying

v ∈ 0W
1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)),

ρ ∈ 0W
3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

ρE ∈ 0W
1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)).

The norm of the solution operator

ST : (f, h) 7→ (v, ρ, ρE) (3.4)

is independent of the length of J = [0, T ] for any T ≤ T0, with T0 arbitrary, but
fixed.

Proof. (i) In order to be able to apply the Laplace transform in t, we consider the
modified set of equations

(∂t + 1− c∆)u = f in (0,∞)× Ṙn+1,
γu± = 0 on (0,∞)× Rn,

(∂t + 1)σ + [cγ∂y(u− aσE)] = h on (0,∞)× Rn,

u(0) = 0 in Ṙn+1,
σ(0) = 0 in Rn,

(3.5)

and 
(∂t + 1− c∆)σE = 0 in (0,∞)× Ṙn+1

γσ±E = σ on (0,∞)× Rn,

σE(0) = 0 in Ṙn+1,

(3.6)

for the unknown functions (u, σ, σE). We claim that the system (3.5)–(3.6) admits
a unique solution in the regularity class

u ∈ 0W
1
p (R+;Lp(Ṙn+1)) ∩ Lp(R+;W 2

p (Ṙn+1))

σ ∈ 0W
3/2−1/2p
p (R+;Lp(Rn)) ∩ 0W

1
p (R+;W 1−1/p

p (Rn)) ∩ Lp(R+;W 2−1/p
p (Rn))

σE ∈ 0W
1
p (R+;Lp(Ṙn+1)) ∩ Lp(R+;W 2

p (Ṙn+1))
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for any functions (f, h) with regularity

(f, h) ∈ Lp(R+;Lp(Ṙn+1))×
(

0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 1−1/p

p (Rn))
)
.

(ii) In the following, the symbol ˆ denotes the Laplace transform w.r.t. t combined
with the Fourier transform w.r.t. the tangential space variable x. Applying the two
transforms to equation (3.6) yields{

(ω2 − c∂2
y)σ̂E(y) = 0, y ∈ Ṙ,
σ̂E

±(0) = σ̂,
(3.7)

where we set

ω = ω(λ, ξ, y) =
√
λ+ 1 + c(y)|ξ|2,

ω± = ω±(λ, ξ) =
√
λ+ 1 + c±|ξ|2.

Equation (3.7) can readily be solved to the result

σ̂E(y) = e
− w√

c
|y|
σ̂. (3.8)

Next, applying the transforms to (3.5) we obtain
(ω2 − c∂2

y)û(y) = f̂(y), y ∈ Ṙ,
û±(0) = 0,

(λ+ 1)σ̂ + [c∂y(û− aσ̂E)(0)] = ĥ.

(3.9)

By employing the fundamental solution

k±(y, s) :=
1

2ω±
√
c±

(e−ω±|y−s|/√c± − e−ω±(y+s)/
√

c±), y, s > 0

of the operator (ω2
± − c±∂2

y), we make for û± the ansatz

û+(y) =
∫ ∞

0

k+(y, s)f̂+(s)ds, y > 0,

û−(y) =
∫ ∞

0

k−(−y, s)f̂−(−s)ds, y < 0.
(3.10)

A simple computation shows that

∂yû
+(0) =

1
c+

∫ ∞

0

e−ω+s/
√

c+ f̂+(s)ds and

∂yû
−(0) = − 1

c−

∫ ∞

0

e−ω−s/
√

c− f̂−(−s)ds.

Inserting this and the fact that ∂yσ̂E
±(0) = ∓ ω±√

c±
σ̂ in the third line of (3.9) gives

σ̂ =
1
m

(
ĥ−

∫ ∞

0

e−ω+s/
√

c+ f̂+(s)ds−
∫ ∞

0

e−ω−s/
√

c− f̂−(−s)ds
)
, (3.11)

with
m = λ+ 1 + a+

√
c+ω+ + a−

√
c−ω− . (3.12)

(iii) In order to show the claimed regularity for the Laplace Fourier inverse of the
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representation (û, σ̂) let us first introduce some operators that correspond to the
symbols occuring in (3.10)–(3.12). Let

K ∈ {H,W}.

Then by Ks
p we either mean the space Hs

p or the space W s
p . Here and in what

follows we make use of the notation and some of the results obtained in [27]. For
instance, in exactly the same way as there it can be shown that the domain of the
operator

F± = (G+ 1 + c±Dn)1/2 in 0H
r
p(R+;Ks

p(Rn))

is given by

D(F±) = 0H
r+1/2
p (R+;Ks

p(Rn)) ∩ 0H
r
p(R+,Ks+1

p (Rn)), r, s ≥ 0, (3.13)

and that F± : D(F±) → 0H
r
p(R+;Ks

p(Rn)) is invertible. Here G denotes the oper-
ator

Gu = ∂tu, u ∈ D(G) = 0H
r+1
p (R+;Ks

p(Rn)), (3.14)

and Dn denotes the canonical extension to 0H
r
p(R+;Ks

p(Rn)) of −∆ in Ks
p(Rn), i.e.

Dnu = −∆u u ∈ D(Dn) = 0H
r
p(R+;Ks+2

p (Rn)).

According to the results in [27, pages 15–16],∫ ∞

0

e−F+s/
√

c+f+(s)ds ∈ 0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 1−1/p

p (Rn))

⇐⇒ f+ ∈ Lp(R+;Lp(Rn+1
+ )).

(3.15)

And by the same arguments we have as well∫ ∞

0

e−F−s/
√

c−f−(−s)ds ∈ 0W
1/2−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 1−1/p

p (Rn))

⇐⇒ f− ∈ Lp(R+;Lp(Rn+1
− )).

(3.16)

Next we show closedness and invertibility of the operator

L := G+ 1 + a+
√
c+F+ + a−

√
c−F− , (3.17)

associated to the symbol m introduced in (3.12), in the space 0H
r
p(R+,Ks

p(Rn)).
However, here we cannot directly apply the Dore-Venni result as it is done for the
corresponding operator L in [27]. This is due to the fact that we can a-priori not
guarantee that the sum of the power angles of the single operators in L is strictly
less than π, which represents the limiting value in the Dore-Venni result. To our
operator L we apply a result of Kalton and Weis [36, Theorem 4.4], as demonstrated
in the next lemma.

Lemma 3.3. Let 1 < p <∞, r, s ≥ 0, and K ∈ {H,W}. Then

D(L) = 0H
r+1
p (R+;Ks

p(Rn)) ∩ 0H
r
p(R+;Ks+1

p (Rn))

and L : D(L)→ 0H
r
p(R+;Ks

p(Rn)) is invertible.



12 J. PRÜSS, J. SAAL, AND G. SIMONETT

Proof. Let ϕ0 ∈ (0, π/2) and ϕ ∈ (0, ϕ0/2). We consider the function

f(λ, z, r) := λ+ r + a+
√
c+
√
r(λ+ r) + c+z2 + a−

√
c−
√
r(λ+ r) + c−z2,

(λ, z, r) ∈ Σπ−ϕ0 × Σϕ × [0,∞) \ {(0, 0, 0)}.

Note that arg λ ≥ 0 implies that

arg
√
r(λ+ r) + c±z2 ≥ −ϕ, (λ, z, r) ∈ Σπ−ϕ0 × Σϕ × [0,∞).

In view of ϕ < ϕ0/2 this yields f(λ, z, r) 6= 0 on Σπ−ϕ0 × Σϕ × [0,∞) \ {(0, 0, 0)}
for arg λ ≥ 0. On the other hand, we can argue in the same way if arg λ ≤
0, which gives f(λ, z, r) 6= 0 on Σπ−ϕ0 × Σϕ × [0,∞) \ {(0, 0, 0)}. Recall that
by assumption c+, c−, a+, a− are stricly positive constants. This implies that the
continuous function |f | is stricly positive on the compact set

K :=
{

(λ, z, r) ∈ Σπ−ϕ0 × Σϕ × [0,∞) : R := |λ|+ r

+ a+
√
c+

(√
r(|λ|+ r) +

√
c+|z|

)
+ a−

√
c−

(√
r(|λ|+ r) +

√
c−|z|

)
= 1
}
.

Thus |f | ≥ c0 > 0 on K, which implies

|f(λ, z, r)| =
∣∣∣∣f ( λR, zR, rR

)∣∣∣∣ ·R
≥ c0

(
|λ|+ r + a+

√
c+

(√
r(|λ|+ r) +

√
c+|z|

)
+ a−

√
c−

(√
r(|λ|+ r) +

√
c−|z|

))
for all (λ, z, r) ∈ Σπ−ϕ0 × Σϕ × (0,∞) by virtue of

(
λ
R ,

z
R ,

r
R

)
∈ K.

Now, observe that the symbol m of the operator L is given by m = f(·, ·, 1). The
last estimate implies that the symbols

m0 :=
1
m
, m1 :=

λ+ 1
m

, and m± :=
a±
√
c± ω±

m
,

are uniformly bounded for (λ, z) ∈ Σπ−ϕ0 × Σϕ, where ω±(λ, z) =
√
λ+ 1 + c±z2.

Furthermore, note that we have

D1/2
n ∈ H∞(0Hr

p(R+;Ks
p(Rn))),

that is, D1/2
n admits a bounded H∞-calculus on 0H

r
p(R+;Ks

p(Rn)), with H∞-angle
φ∞

D
1/2
n

= 0. (This follows, for instance, from Mikhlin’s multiplier theorem.) Since
the space 0H

r
p(R+;Ks

p(Rn)) admits property α, [36, Theorem 5.3] shows that we
even have

D1/2
n ∈ RH∞(0Hr

p(R+;Ks
p(Rn))),

that is, D1/2
n admits an R-bounded H∞-calculus on 0H

r
p(R+;Ks

p(Rn)), with RH∞-
angle φR∞

D
1/2
n

= 0. By the uniform boundedness of mj , j ∈ {0, 1,+,−}, this implies
that

R
({
mj(λ,D1/2

n ) : λ ∈ Σπ−ϕ0

})
≤ C, j ∈ {0, 1,+,−},

where R(T ) denotes the R-bound of an operator family T ⊆  L(X) for a Banach
space X (here X = 0H

r
p(R+;Ks

p(Rn))). Clearly, mj(λ,D1/2
n ) commutes with the

resolvent of the operator G, and we know that G ∈ H∞(0Hr
p(R+;Ks

p(Rn))) with
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φ∞G = π/2, see [35]. In view of ϕ0 < π/2 we may apply [36, Theorem 4.4] to the
result

mj(G,D1/2
n ) ∈  L(0Hr

p(R+;Ks
p(Rn))), j ∈ {0, 1,+,−}.

Now set S := m0(G,D1/2
n ) and recall that

G+ 1 : D(G)→ 0H
r
p(R+;Ks

p(Rn)), F± : D(F±)→ 0H
r
p(R+;Ks

p(Rn))

are invertible. By the uniqueness of the Fourier and Laplace transform this yields

(G+ 1)−1m1(G,D1/2
n ) = (a±

√
c±F±)−1m±(G,D1/2

n ) = S on 0H
r
p(R+;Ks

p(Rn)),

and consequently

S : 0H
r
p(R+;Ks

p(Rn))→ D(G) ∩ D(F±).

Again by the uniqueness of the Fourier and Laplace transform we conclude that
LSf = f for f ∈ 0H

r
p(R+;Ks

p(Rn)) and SLu = u for u ∈ D(G) ∩D(F±). Thus, we
have S = L−1, i.e. S is the bounded inverse of the operator L, which in particular
implies that L is closed in 0H

r
p(R+;Ks

p(Rn)) and that

D(L) = D(G) ∩ D(F±).

This proves the assertion in view of (3.13) and (3.14). �

Next, we consider the formulas derived in (3.10), and (3.11), and start with the
one for u.
(iv) Exemplary we will show the desired regularity for u+. It is clear that we can
establish the regularity for u− in a similar way. Note that u+ is the solution of
(∂t +1−c+∆)u+ = f in Rn+1

+ with Dirichlet boundary conditions. Therefore it can
be represented in terms of the solution operator (G+ 1 + c+Dn+1)−1 in the whole
space, namely as u+ = P+(G + 1 + c+Dn+1)−1Eoddf

+, where P+ : Rn+1 → Rn+1
+

is the restriction operator and

(Eoddf)(x, y) :=
{

f(x, y), y > 0,
−f(x,−y), y < 0,

is the extension by odd reflection. But then by

P+ ∈  L
(
Lp(R+;W s

p (Rn+1)), Lp(R+;W s
p (Rn+1

+ ))
)
,

and
Eodd ∈  L

(
Lp(R+;Lp(Rn+1

+ )), Lp(R+;Lp(Rn+1))
)
,

for u+ the regularity in question is clear in view of the maximal regularity proper-
ties of the operator (G+ 1 + c+Dn+1)−1.
(v) Observe that by (3.15) and (3.16) the terms

∫∞
0

e−F+s/
√

c+f+(s)ds and∫∞
0

e−F−s/
√

c−f−(−s)ds belong to the regularity class of the data h. Therefore it
remains to show that L−1 maps the class of h into the desired class for σ. Lemma 3.3
shows that

L−1 : Lp(R+;W 1−1/p
p (Rn))→ 0H

1
p (R+;W 1−1/p

p (Rn)) ∩ Lp(R+;W 2−1/p
p (Rn)).

and moreover, that

L−1 : Lp(R+;Lp(Rn)) → 0H
1
p (R+;Lp(Rn)) ∩ Lp(R+;H1

p (Rn))

L−1 : 0W
1
p (R+;Lp(Rn))→ 0H

2
p (R+;Lp(Rn)) ∩ 0H

1
p (R+;H1

p (Rn)).
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By real interpolation we then obtain that L−1 maps 0W
1/2−1/2p
p (R+;Lp(Rn)) into

0W
3/2−1/2p
p (R+;Lp(Rn)) ∩ 0W

1/2−1/2p
p (R+;W 1

p (Rn)).

Hence

L−1h ∈ 0W
3/2−1/2p
p (R+;Lp(Rn)) ∩ 0W

1
p (R+;W 1−1/p

p (Rn))

∩ 0W
1/2−1/2p
p (R+;W 1

p (Rn)) ∩ Lp(R+;W 2−1/p
p (Rn)),

and the regularity assertion for σ follows. Here we would like to remark that by
Lemma 6.3, σ has exactly the regularity claimed in Proposition 3.2.
(vi) By the trivial embedding

0W
3/2−1/2p
p (R+;Lp(Rn)) ↪→ 0W

1−1/2p
p (R+;Lp(Rn))

and the just proved regularity for σ we see that

σ ∈ 0W
1−1/2p
p (R+;Lp(Rn)) ∩ Lp(R+;W 2−1/p

p (Rn)).

Remark 3.1(b) then implies the desired regularity for σE .
(vii) Let I be either a finite interval I := [0, T ], or I := R+. Then we set

0F(I) := Lp(I;Lp(Ṙn+1))×
(

0W
1/2−1/2p
p (I;Lp(Rn)) ∩ Lp(I;W 1−1/p

p (Rn))
)

and

0Z(I) : = 0W
1
p (I;Lp(Ṙn+1)) ∩ Lp(I;W 2

p (Ṙn+1)

×
(

0W
3/2−1/2p
p (I;Lp(Rn)) ∩ 0W

1
p (I;W 1−1/p

p (Rn)) ∩ Lp(I;W 2−1/p
p (Rn))

)
×
(

0W
1
p (I;Lp(Ṙn+1)) ∩ Lp(I;W 2

p (Ṙn+1))
)
.

Let T0 > 0 be fixed, and let J := [0, T ] with T ≤ T0. We set

Rc
J : 0F(J) → 0F(R+)

(f, h) 7→ (e−t(EJf), e−t(EJg)),

where EJ is defined in (6.2). It follows from Proposition 6.1 and the fact

‖(e−t(EJf), e−t(EJg))‖0F(R+) ≤ ‖e−t‖BUC1(R+)‖(EJf, EJg)‖0F(R+)

that there exists a positive constant c0 = c0(T0) such that

‖Rc
J(f, h)‖0F(R+) ≤ c0‖(f, h)‖0F(J), (f, h) ∈ 0F(J), (3.18)

for any interval J = [0, T ] with T ≤ T0.
Let (u, σ, σE) ∈ 0Z(R+) be the solution of (3.5)–(3.6), with (f, h) replaced by
(Rc

J(f, h)), whose existence has been established in steps (i)–(vi) of the proof. We
note that

‖(u, σ, σE)‖ 0Z(R+) ≤ K‖Rc
J(f, h)‖0F(R+) ≤ Kc0‖(f, h)‖0F(J)

for any (f, h) ∈ 0F(J) and and any interval J = [0, T ] with T ≤ T0, where K is a
universal constant. Finally, let

(v, ρ, ρE) := (RJ(etu),RJ(etσ),RJ(etσE))

where RJ denotes the restriction operator, defined by RJw := w|J for w : R+ → X.
Then it is easy to verify that

(v, ρ, ρE) ∈ 0Z(J), (v, ρ, ρE) solves (3.2)–(3.3) (3.19)
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and that there is a constant M = M(T0) such that

‖(v, ρ, ρE)‖ 0Z(J) ≤M‖(f, h)‖0F(J)

for any interval J = [0, T ] with T ≤ T0. Finally, uniqueness follows from the
uniqueness of the Fourier and Laplace transform, and this completes the proof. �

We are now ready to formulate our main result on the existence and uniqueness of
a solution for (3.2)–(3.3). By introducing appropriate auxiliary functions, we will
reduce this problem to the situation of Proposition 3.2.

Theorem 3.4. Let p ∈ (3,∞), T ∈ (0,∞), J = [0, T ].
(i) There exists a unique solution (v, ρ, ρE) to (3.2)–(3.3) with

v ∈W 1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)),

ρ ∈W 3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)),

ρE ∈W 1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)),

if and only if the data satisfy

(a) f ∈ Lp(J ;Lp(Ṙn+1)),

(b) h ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

(c) v0 ∈W 2−2/p
p (Ṙn+1),

(d) ρ0 ∈W 2−2/p
p (Rn),

(e) γv0 = 0.

(ii) If (h(0), v0, ρ0) = (0, 0, 0), then the norm of the solution operator

ST : (f, h) 7→ (v, ρ, ρE) (3.20)

is independent of the length of J = [0, T ] for any T ≤ T0, with T0 arbitrary,
but fixed.

Proof. It follows from the trace results in [27, Section 5] that the conditions listed
in (a)–(e) are necessary.
Suppose we had a solution (v, ρ, ρE) of (3.2)–(3.3) as claimed in the statement of
Theorem 3.4. Let u1 be the solution of the two-phase diffusion equation

(∂t − c∆)u1 = 0 in J × Ṙn+1,
γu±1 = 0 on J × Rn,

u1(0) = v0 in Ṙn+1,

η the extension function of Lemma 6.4(ii) with

(σ0, σ1) :=
(
ρ0, h(0)− [cγ∂y(v0 − ae−|y|(1−∆x)

1
2 ρ0)]

)
,

and let ηE be the solution of (3.3), with ρ replaced by η. Then it follows from
[27, Proposition 5.1], Lemma 6.4(ii), and Remark 3.1(b) that

u1, ηE ∈W 1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1))

η ∈W 3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)).
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One readily verifies that (u, σ, σE) := (v, ρ, ρE)−(u1, η, ηE) solves the linear problem
(∂t − c∆)u = f in J × Ṙn+1,

γu± = 0 on J × Rn,
∂tσ + [cγ∂y(u− aσE)] = h− ∂tη − [cγ∂y(u1 − aηE)] on J × Rn,

u(0) = 0 in Ṙn+1,
σ(0) = 0 in Rn,

(3.21)
and 

(∂t − c∆)σE = 0 in J × Ṙn+1,
γσ±E = σ on J × Rn,

σE(0) = 0 in Ṙn+1

(3.22)

in the required regularity classes.
Reversing this argument we see that it suffices to consider the reduced system

(3.21)–(3.22). To this end first observe that

[γ∂y(u1 − aηE)] ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)).

Thanks to the properties of η we conclude that

h− ∂tη − [cγ∂y(u1 − aηE)] ∈ 0W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)).

Therefore we may apply Proposition 3.2, which yields the existence of a unique
solution (u, σ, σE) of (3.21)–(3.22) in the desired regularity classes. It follows that

(v, ρ, ρE) = (u, σ, σE) + (u1, η, ηE) (3.23)

is a solution of (3.2)–(3.3) possessing the regularity properties claimed in the theo-
rem. The uniqueness of the solution follows from Proposition 3.2, and the proof is
now completed. �

4. The two-phase problem, local existence

Recall that ∇x and ∆x denote the gradient and the Laplacian, respectively, with
respect to x, whereas ∇ and ∆ denote the corresponding operators with respect to
(x, y) ∈ Rn × R.

From now on we assume p > n+ 3 and

‖∇ρE‖∞ = ‖∇ρE‖L∞(J×Ṙn+1) ≤ 1/2,

and consider the full two-phase Stefan problem in the transformed form (2.5). Here
ρE is the extension of

ρ ∈W 3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn))

satisfying equation (2.6). The above assumption is meaningful in view of

ρE ∈W 1
p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2

p (Ṙn+1)) ↪→ BUC(J ;W 2−2/p
p (Ṙn+1)),

see Proposition 6.2, and since, due to Sobolev’s embedding theorem and p > n+ 3,
the last space is continuously embedded in BUC(J ; BUC1(Ṙn+1)). Note that in
space we applied the Sobolev embedding theorem separately on Rn+1

+ and Rn+1
− .
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We will frequently make use of the fact that for fixed T0 > 0 there is a constant
c0 = c0(T0) such that

‖u‖
0BUC([0,T ];BUC1(Ṙn+1)) ≤ c0‖u‖0W 1

p ([0,T ];Lp(Ṙn+1))∩Lp([0,T ];W 2
p (Ṙn+1)) (4.1)

for all u ∈ 0W
1
p ([0, T ];Lp(Ṙn+1)) ∩ Lp([0, T ];W 2

p (Ṙn+1)) and all T ∈ (0, T0], see
Proposition 6.2.

In the following we set FT = F1
T × F2

T for the regularity class of the data (f, h),
that is,

F1
T : = Lp(J ;Lp(Ṙn+1)),

F2
T : = W 1/2−1/2p

p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p
p (Rn)).

(4.2)

Moreover, we set ET := E1
T × E2

T for the regularity class of (v, ρ), that is,

E1
T : = W 1

p (J ;Lp(Ṙn+1)) ∩ Lp(J ;W 2
p (Ṙn+1)),

E2
T : = W 3/2−1/2p

p (J ;Lp(Rn)) ∩W 1
p (J ;W 1−1/p

p (Rn)) ∩ Lp(J ;W 2−1/p
p (Rn)),

(4.3)

and Eγ,T := E1
γ,T × E2

T with

E1
γ,T :=

{
u ∈ E1

T : γu+ = γu− = 0
}
.

By 0ET := 0E1
T × 0E2

T , 0Eγ,T := 0E1
γ,T × 0E2

T , and 0F2
T we mean the corresponding

spaces with zero time trace at t = 0. Furthermore, we set for b > 0

E1
T,b := {w ∈ E1

T : ‖∇w‖L∞(J×Ṙn+1) < b}.

Clearly, E1
T,b is an open subset of E1

T . Suppose v, w ∈ ET . Then we define

‖γDu‖FT
:= ‖γDu+‖FT

+ ‖γDu−‖FT
,

‖γDu‖∞ := ‖γDu+‖L∞(J×Rn) + ‖γDu−‖L∞(J×Rn), u ∈ {v, w}, (4.4)∥∥∥ γ∂yv

1 + γ∂yw
− a
∥∥∥
∞

:=
∥∥∥ γ∂yv

+

1 + γ∂yw+
− a+

∥∥∥
L∞(J×Rn)

+
∥∥∥ γ∂yv

−

1 + γ∂yw−
− a−

∥∥∥
L∞(J×Rn)

where D ∈ {∂j , ∂y,∇,∇x}.

We will now list some properties for the nonlinear mappings (F,H). We remind
here that

F (v, w) = c

(
1 + |∇xw|2

(1 + ∂yw)2
− 1
)
∂2

yv − c
2〈∇xw|∇x∂yv〉

1 + ∂yw

− c ∂yv

1 + ∂yw

{(
1 + |∇xw|2

(1 + ∂yw)2
− 1
)
∂2

yw −
2〈∇xw|∇x∂yw〉

1 + ∂yw

} (4.5)

whereas H was given by

H(v, w) = H+(v, w)−H−(v, w) (4.6)

with

H±(v, w) = c±

{(
1− 1 + |γ∇xw

±|2

1 + γ∂yw±

)
γ∂yv

± − a±γ∂yw
±
}
. (4.7)
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Proposition 4.1. Let p > n+ 3. Then we have

(a) (F,H) ∈ Cω(E1
T × E1

T,1/2 ,F
1
T × F2

T ).

(b) Let DF (v, w) and DH(v, w) denote the Fréchet derivatives of F and H at
(v, w) ∈ E1

T × E1
T,1/2. Then

(DF (v, w), DH(v, w)) ∈  L( 0E1
T × 0E1

T , F1
T × 0F2

T ), (4.8)

and there are constants C1 = C1(α, T0) and C2 = C2(α, β, T0) such that

‖DF (v, w)‖ ≤ C1

(
‖v‖E1

T
+ ‖w‖E1

T
+ ‖∇w‖∞

)
and

‖DH(v, w)‖ ≤ C2

(
‖γ∂yv‖F2

T
+ ‖γ∇w‖F2

T
+ ‖γ∇w‖∞ +

∥∥∥ γ∂yv

1 + γ∂yw
− a
∥∥∥
∞

)
for all (v, w) ∈ E1

T × E1
T,1/2 with ‖∂yv‖L∞(J×Ṙn+1) ≤ α, ‖γ∂yv‖F2

T
≤ β

and all T ≤ T0. Here ‖DF (v, w)‖ and ‖DH(v, w)‖ denote the respective
operator norms in the spaces indicated in (4.8).

Proof. In the following, we will repeatedly use the fact that multiplication

L∞(J ;L∞(Ṙn+1))× Lp(J ;Lp(Ṙn+1))→ Lp(J ;Lp(Ṙn+1)), (f, g) 7→ fg

is continuous and bilinear (and hence also real analytic), with norm equal to one.

(a) We first note that ‖∇w‖L∞(J×Ṙn+1) ≤ 1/2 implies∥∥∥∥ 1
(1 + ∂yw)j

∥∥∥∥
L∞(J×Ṙn+1)

≤ 2j , j ∈ N. (4.9)

Hence we deduce that(
w 7→ 1

(1 + ∂yw)k

)
∈ Cω(E1

T,1/2, L∞(J ;L∞(Ṙn+1)))

for k = 1, 2. From the representation (4.5) it is then easy to see that

F ∈ Cω(E1
T × E1

T,1/2,F
1
T ).

Next, trace theory implies that(
(v, w) 7→ (γ∂v±, γ∂w±)

)
∈  L(E1

T × E1
T ,F2

T × F2
T ) (4.10)

where ∂ stands either for ∂j , j = 1, . . . , n, or ∂y. Applying Lemma 6.6(ii),(vi) and
(4.10) we may conclude that(

(v, w) 7→
(

1− 1 + |γ∇xw
±|2

1 + γ∂yw±

)
γ∂yv

±
)
∈ Cω(E1

T × E1
T,1/2,F

2
T ),

and hence also that

((v, w) 7→ H(v, w)) ∈ Cω(E1
T × E1

T,1/2,F
2
T ).

For further use we note that∥∥∥1 + |∇xw|2

(1 + ∂yw)k
− 1
∥∥∥
∞

=
∥∥∥ |∇xw|2 − 2(k − 1)∂yw − (∂yw)k

(1 + ∂yw)k

∥∥∥
∞
≤ C‖∇w‖∞ (4.11)
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for w ∈ E1
T,1/2 and k = 1, 2. Also, we will frequently make use of the trivial fact

that the norm of the trace operator γ : BUC(Ṙn+1) → BUC(Rn) equals 1, which
implies

‖γ∇w±‖L∞(J×Rn) ≤ ‖∇w‖L∞(J×Ṙn+1) ≤ 1/2,

and therefore also that∥∥∥∥ γ∇w±

1 + γ∂yw±

∥∥∥∥
L∞(J×Rn)

≤ 1, w ∈ E1
T,1/2. (4.12)

Moreover, it follows from the identity

1− 1 + |γ∇xw
±|2

1 + γ∂yw±
=
γ∂yw

± − |γ∇xw
±|2

1 + γ∂yw±

and Lemma 6.6(iii),(v) that∥∥∥∥1− 1 + |γ∇xw
±|2

1 + γ∂yw±

∥∥∥∥
F2

T

≤ C‖γ∇w±‖F2
T
, w ∈ E1

T,1/2 . (4.13)

(b) Let (v̄, w̄) ∈ 0E1
T × 0E1

T be given.
We will first consider the term

F1(v, w) =
(

1 + |∇xw|2

(1 + ∂yw)2
− 1
)
∂2

yv.

A straightforward computation shows that

DF1(v, w)[v̄, w̄] =
(

2〈∇xw|∇xw̄〉
(1 + ∂yw)2

− 2(1 + |∇xw|2)∂yw̄

(1 + ∂yw)3

)
∂2

yv

+
(

1 + |∇xw|2

(1 + ∂yw)2
− 1
)
∂2

y v̄.

Observing that all terms of DF1(v, w)[v̄, w̄] are made up of products of functions,
with one factor always belonging to E1

T and the remaining factors being in BUC(J×
Ṙn+1), and using in addition (4.9), (4.11), we readily obtain that

‖DF1(v, w)[v̄, w̄]‖F1
T
≤ C

(
‖v‖E1

T
+ ‖∇w‖∞

)
(‖v̄‖

0E1
T

+ ‖∇w̄‖∞)

≤ C
(
‖v‖E1

T
+ ‖∇w‖∞

)
(‖v̄‖

0E1
T

+ ‖w̄‖
0E1

T
)

(4.14)

where C is a universal constant for (v, w) ∈ E1
T × E1

T,1/2 and (v̄, w̄) ∈ 0E1
T × 0E1

T

which is also independent of T ∈ (0, T0) for a fixed T0 > 0. We remark that
we used in the last step property (4.1). For the second term of F , F2(v, w) =
−2〈∇xw|∇x∂yv〉/(1 + ∂yw), we obtain

DF2(v, w)[v̄, w̄] = −2〈∇xw|∇x∂y v̄〉+ 2〈∇xw̄|∇x∂yv〉
1 + ∂yw

+
2〈∇xw|∇x∂yv〉∂yw̄

(1 + ∂yw)2
.

As above we conclude that

‖DF2(v, w)[v̄, w̄]‖F1
T
≤ C

(
‖v‖E1

T
+ ‖∇w‖∞

)
(‖v̄‖

0E1
T

+ ‖w̄‖
0E1

T
). (4.15)

We consider now the last term

F3(v, w) = − ∂yv

1 + ∂yw

{(
1 + |∇xw|2

(1 + ∂yw)2
− 1
)
∂2

yw −
2〈∇xw|∇x∂yw〉)

1 + ∂yw

}
.
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Here we observe that the expression in the curly brackets can be restated as
F1(w,w) + F2(w,w). Similar arguments as above then show the existence of a
universal constant C = C(α, T0) such that

‖DF3(v, w)[v̄, w̄]‖F1
T
≤ C

(
‖w‖E1

T
+ ‖∇w‖∞

)(
‖v̄‖

0E1
T

+ ‖w̄‖
0E1

T

)
(4.16)

whenever (v, w) and (v̄, w̄) satisfy the assumptions of the proposition and
T ∈ (0, T0). Summarizing all the estimates in (4.14) and (4.15)–(4.16) yields the
estimate for ‖DF (v, w)‖ asserted in the proposition.

We will now turn our attention to the nonlinear function H(v, w), and we will
focus on the term H+(v, w). Without fearing confusion, we will in the following
just write H instead of H+, and (v, w) instead of (v+, w+). Moreover, we also set
a+ = a and c+ = 1. A straightforward calculation shows that

DH(v, w)[v̄, w̄] =

(
−2〈γ∇xw|γ∇xw̄〉

1 + γ∂yw
+
|γ∇xw|2 + 1
(1 + γ∂yw)2

γ∂yw̄

)
γ∂yv

+
(

1− 1 + |γ∇xw|2

1 + γ∂yw

)
γ∂y v̄ − aγ∂yw̄.

We first observe that the derivative DH(v, w)[v̄, w̄] is made up of products of func-
tions, where one factor always has zero time trace at t = 0. This implies that
DH(v, w)[v̄, w̄] lies in 0F2

T .
The identity

1/(1 + γ∂yw)2 = −γ∂yw/(1 + γ∂yw)2 + 1/(1 + γ∂yw)

yields

DH(v, w)[v̄, w̄] =
(
−2〈γ∇xw|γ∇xw̄〉

1 + γ∂yw
+
|γ∇xw|2 − γ∂yw

(1 + γ∂yw)2
γ∂yw̄

)
γ∂yv

+
(

1− 1 + |γ∇xw|2

1 + γ∂yw

)
γ∂y v̄ +

(
γ∂yv

1 + γ∂yw
− a
)
γ∂yw̄.

By applying Lemma 6.6(iv) first for

g = γ∂yv and h =
2γ∂jwγ∂jw̄

1 + γ∂yw

and then for

g =
γ∂jw

1 + γ∂yw
, and h = γ∂jw̄

and afterwards using Lemma 6.6(v) in order to estimate
∥∥∥ γ∂jw

1+γ∂yw

∥∥∥
F2

T

, we obtain

∥∥∥γ∂yv
γ∂jw γ∂jw̄

1 + γ∂yw

∥∥∥
0F2

T

≤ 2c20
(
‖γ∂yv‖∞ + ‖γ∂yv‖F2

T

)
·
(
‖γ∂jw‖∞ + ‖γ∂jw‖F2

T
+ ‖γ∂yw‖F2

T

)
‖γ∂jw̄‖0F2

T

≤ C
(
‖γ∇w‖∞ + ‖γ∇w‖F2

T

)
‖w̄‖

0E1
T
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with a universal constant C for all (v, w) ∈ E1
T × E1

T,1/2 with ‖γ∂yv‖∞ ≤ α and
‖γ∂yv‖F2

T
≤ β, and all T ≤ T0. It follows that

∥∥∥γ∂yv

(
−2〈γ∇xw|γ∇xw̄〉

1 + γ∂yw

)∥∥∥
0F2

T

≤ C
(
‖γ∇w‖∞ + ‖γ∇w‖F2

T

)
‖w̄‖

0E1
T
. (4.17)

A similar argument involving (4.12) also yields∥∥∥γ∂yv

(
|γ∇xw|2 − γ∂yw

(1 + γ∂yw)2
γ∂yw̄

)∥∥∥
0F2

T

≤ C
(
‖γ∇w‖∞ + ‖γ∇w‖F2

T

)
‖w̄‖

0E1
T
. (4.18)

It follows from Lemma 6.6(iv) and (4.11)–(4.13) that∥∥∥(1− 1 + |γ∇xw|2

1 + γ∂yw

)
γ∂y v̄

∥∥∥
0F2

T

≤ C
(
‖γ∇w‖∞ + ‖γ∇w‖F2

T

)
‖γ∂y v̄‖0F2

T

≤ C
(
‖γ∇w‖∞ + ‖γ∇w‖F2

T

)
‖v̄‖

0E1
T
.

(4.19)

Finally, we conclude from Remark 6.7 and Lemma 6.6(v) that∥∥∥( γ∂yv

1 + γ∂yw
− a
)
γ∂yw̄

∥∥∥
0F2

T

≤ C
(∥∥∥ γ∂yv

1 + γ∂yw
− a
∥∥∥
∞

+ ‖γ∂yv‖F2
T

+ ‖γ∂yw‖F2
T

)
‖w̄‖

0E1
T
.

(4.20)

Combining (4.17)–(4.20) yields the assertion for ‖DH(v, w)‖, thus completing the
proof of Proposition 4.1. �

Remark 4.2. On the previous page we used the framed 1 in order to highlight
where the second smallness condition of Theorem 1.1, or of Theorem 4.3, is used.
First we remark that the term γ∂yv/(1 + γ∂yw)2 can only be made small under
appropriate smallness assumptions on v, the temperature. However, the likely
assumption that the uniform norm of γ∂yv be small leads to an unnatural restriction
for the initial temperature v0. In contrast, the condition that the expression

(
γ∂yv

1 + γ∂yw
− a), where a =

γ∂yv0(0)
1 + γ∂yw0(0)

, (4.21)

be small follows from a smallness assumption on ( γ∂yv0
1+γ∂yw0

− a), which can always
be achieved for the Stefan problem by a judicious choice of a reference manifold
and by a localization procedure (as will be shown somewhere else).

Having pointed out that subtracting the quantity a from γ∂yv/(1 + γ∂yw) is ad-
vantageous in achieving smallness of the term in (4.21) – which is necessary for
the fixed point argument – we now emphasize that the resulting effect of adding
the number a > 0 to the left side in (2.5)–(2.6) is actually exactly the device that
renders sufficient regularity for the linearized problem.

We are now ready for the main result of this section.
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Theorem 4.3. Fix p > n+3. Then there is a number η > 0 such that the following
holds: Given (v0, ρ0) ∈W 2−2/p

p (Ṙn+1)×W 2−2/p
p (Rn) with

γv±0 = 0, ±v±0 > 0 on Rn+1
± , a± > 0, (4.22)

and

‖ρ0‖BUC1(Rn) ≤ η,
∥∥∥∥ γ∂yv

±
0

1 + γ∂yw
±
0

− a±
∥∥∥∥

BUC(Rn)

≤ η/2, (4.23)

where

w0 := e−|y|(1−∆x)
1
2 ρ0, a± :=

γ∂yv
±
0 (0)

1 + γ∂yw
±
0 (0)

, (4.24)

there exists T = T (v0, ρ0) and a unique solution (v, ρ) ∈ ET for (2.5)–(2.6).

Remarks 4.4. (a) Note that p > n+ 3 implies that

ρ0 ∈W 2−2/p
p (Rn) ↪→ BUC1+β(Rn)

for some β > 0. Next, the interpolation inequality

‖u‖BUC1+α(Rn) ≤ C(α, β)‖u‖α/β

BUC1+β(Rn)
‖u‖1−α/β

BUC1(Rn)
, u ∈ BUC1+β(Rn),

for 0 < α < β shows that there is an α > 0 such that

‖ρ0‖BUC1+α(Rn) ≤ Cη.

Thus, the conditions on ρ0 imply that

‖w0‖BUC1+α(Ṙn+1) = ‖e−|y|(1−∆x)
1
2 ρ0‖BUC1+α(Ṙn+1) ≤ cη

for some constant c = c(‖ρ0‖W 2−2/p
p (Rn)

) ≥ 1. We will assume that η is chosen small
enough so that

‖∇w0‖L∞(Ṙn+1) ≤ cη < 1/8. (4.25)

(b) It is clear that (4.25) and the conditions γv±0 = 0 and ±v±0 > 0 on Rn+1
± already

imply that a± ≥ 0, but in general not that a± > 0.

Proof. (i) It will be convenient to split the solution in a part with zero time trace
at t = 0 plus a remaining part taking care of the non-zero traces. For this purpose
we employ Theorem 3.4, which gives us a solution (v∗, ρ∗) for the linear problem
(3.2) with given data

(f, h, v0, ρ0) = (0, h∗, v0, ρ0) where h∗(t) := et∆xH(v0, w0).

Note that the data in the line above satsify the assumptions (a)–(e) of Theorem 3.4,
since for small ‖∇w0‖∞ we have H(v0, w0) = H(v, w))|t=0 ∈ W

1−3/p
p (Rn), and

therefore

h∗ ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)).
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Consequently, (v∗, ρ∗) ∈ ET is well-defined and it suffices to study the reduced
nonlinear problem

(∂t − c∆)v̄ = F0(v̄, w̄) in J × Ṙn+1,
γv̄ ± = 0 on J × Rn,

∂tρ̄+ [cγ∂y(v̄ − aw̄)] = H0(v̄, w̄) on J × Rn,

v̄(0) = 0 in Ṙn+1,
ρ̄(0) = 0 in Rn,

(4.26)

with

F0(v̄, w̄) := F (v̄ + v∗, w̄ + w∗), H0(v̄, w̄) := H(v̄ + v∗, w̄ + w∗)− h∗, (4.27)

where

w̄ and w∗ are extensions of ρ̄ and ρ∗, respectively, satisfying (3.3). (4.28)

Here we observe that H0(v̄, w̄) ∈ 0F2
T for all functions (v̄, w̄) ∈ 0E1

T × 0E1
T with

w = w̄ + w∗ ∈ E1
T,1/2. Thanks to this and Theorem 3.4(ii), the reduced nonlinear

problem (4.26) can now be rephrased as a fixed point equation

(v̄, ρ̄) = K0(v̄, ρ̄) := ST

(
F0(v̄, w̄),H0(v̄, w̄)

)
in 0ET , (4.29)

where ST is the solution operator of the linear problem defined in (3.20).
(ii) By applying the contraction mapping principle we will show the existence of a
unique fixed point for equation (4.29). The advantage of applying the fixed point
argument in the zero trace space 0ET lies in the fact that the embedding constant
of the embedding

0ET ↪→ 0BUC(J ; BUC1(Ṙn+1))

does not depend on the length of the time interval J = [0, T ], i.e. there is a constant
c0 > 0 with

‖u‖
0BUC(J;BUC1(Ṙn+1)) ≤ c0‖u‖0ET

, T ≤ T0. (4.30)

This enables us to choose T as small as we wish for without having the embedding
constant blowing up. Moreover, according to Theorem 3.4(ii), the norm of the
solution operator ST is independent of T as well, that is, there exists a number
M > 0 such that

‖ST ‖ L(F1
T× 0F2

T , 0E1
γ,T× 0E2

T ) ≤M, T ≤ T0. (4.31)

(iii) In the following, we let 0B̄i
T (0, r) be the closed ball of radius r centered at 0 in

0Ei
T with i = 1, 2. Moreover, we set

B̄1
T (v∗, r) := v∗ + 0B̄1

T (0, r), B̄1
T (w∗, r) := w∗ + 0B̄1

T (0, r).

Here we remark that r and T are independent parameters that can be chosen as
we please. We first choose r in such a way that

‖v̄‖
0E1

T
+ ‖γ∂y v̄‖0F2

T
+ ‖w̄‖

0E1
T

+ ‖γ∇w̄‖
0F2

T
+ ‖∇w̄‖

0BUC(J;BUC(Ṙn+1)) ≤ cη (4.32)

for all (v̄, w̄) ∈ 0B̄1
T (0, r)× 0B̄1

T (0, 4Nr), where N is defined in (4.43). We also pick
T ∈ (0, T0) small enough such that

‖v∗‖E1
T

+ ‖γ∂yv
∗‖F2

T
+ ‖w∗‖E1

T
+ ‖γ∇w∗‖F2

T
+ ‖∇w∗‖BUC(J×Ṙn+1) ≤ 3cη. (4.33)
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Indeed, by the fact that w∗(t) → w0 in W
2−2/p
p (Ṙn+1) ↪→ BUC1(Ṙn+1) for t → 0

and by (4.25) we obtain

‖∇w∗‖BUC(J;BUC(Ṙn+1)) ≤ 2cη for small T .

Since v∗ and w∗ are fixed functions, all the remaining terms in (4.33) converge to
0 as T → 0. We note that (4.25) and (4.32)–(4.33) imply

‖∇w‖L∞(J×Ṙn+1) < 1/2, w ∈ B̄1
T (w∗, 4Nr). (4.34)

Thanks to (4.30) it is also clear that there is a number α > 0 such that

‖∂yv‖L∞((0,T0)×Ṙn+1) ≤ α, v ∈ B̄1
T0

(v∗, 1). (4.35)

We can assume that the numbers r and T have been chosen small enough such that∥∥∥ γ∂yv

1 + γ∂yw
− a
∥∥∥

BUC(J×Ṙn+1)
≤ 4η, (v, w) ∈ B̄1

T (v∗, r)× B̄1
T (w∗, Nr). (4.36)

Indeed, an easy calculation shows that
γ∂yv(t)

1 + γ∂yw(t)
− a =

γ∂y v̄(t)
1 + γ∂yw(t)

− γ∂yv
∗(t) γ∂yw̄(t)

(1 + γ∂yw(t))(1 + γ∂yw∗(t))

+
( γ∂yv

∗(t)
1 + γ∂yw∗(t)

− a
)
.

By (4.30) and (4.34)–(4.35) the first two terms can be made small by choosing r

small. Note that v(t) → v0 and w(t) → w0 in W
2−2/p
p (Ṙn+1) ↪→ BUC1(Ṙn+1) for

t→ 0, implying that also
γ∂yv

∗(t)
1 + γ∂yw∗(t)

→ γ∂yv0
1 + γ∂yw0

in BUC(Rn) for t→ 0.

This and assumption (4.23) then yield the existence of a number T such that∥∥∥ γ∂yv
∗(t)

1 + γ∂yw∗(t)
− a
∥∥∥
∞
≤ 2η, 0 ≤ t ≤ T,

and the estimate in (4.36) follows. Combining (4.32)–(4.33) and (4.36) we obtain(
‖v‖E1

T
+ ‖γ∂yv‖F2

T
+ ‖w‖E1

T
+ ‖γ∇w‖F2

T
+ ‖∇w‖L∞(J×Ṙn+1)

+
∥∥∥ γ∂yv

1 + γ∂yw
− a
∥∥∥

L∞(J×Ṙn+1)

)
≤ 8cη

(4.37)

for all (v, w) ∈ B̄1
T (v∗, r) × B̄1

T (w∗, Nr). We can now conclude from (4.35), (4.37),
the definition of (F0,H0), and Proposition 4.1 that

‖DF0(v̄, w̄)‖+ ‖DH0(v̄, w̄)‖ ≤ Kη, (v̄, w̄) ∈ 0B̄1
T (0, r)× 0B̄1

T (0, Nr), (4.38)

where K := 8cmax{C1(α, T0), C2(α, 1, T0)}. Moreover, we assume that T was
chosen so small that

‖F0(0, 0)‖F1
T

+ ‖H0(0, 0)‖
0F2

T
≤ r/(2M), (4.39)

where M is the constant given in (4.31). We will in the following assume that r
and T have been fixed such that (4.38)–(4.39) holds with

Kη ≤ 1
2M(1 +N)

, (4.40)

where the constant N is introduced in (4.43).
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(iv) Let (v̄i, w̄i) ∈ 0B̄1
T (0, r)× 0B̄1

T (0, Nr) be given, where i = 1, 2. It follows from
the mean value theorem and from (4.38), (4.40) that

‖(F0,H0)(v̄1, w̄1)−(F0,H0)(v̄2, w̄2)‖0FT

≤ 1
2M(1 +N)

‖(v̄1, w̄1)−(v̄2, w̄2)‖
0E1

T× 0E1
T
.

(4.41)

In particular we obtain

‖(F0,H0)(v̄, w̄)− (F0,H0)(0, 0)‖0FT
≤ 1

2M(1 +N)
‖(v̄, w̄)‖

0E1
T× 0E1

T

for all (v̄, w̄) ∈ 0B̄1
T (0, r)× 0B̄1

T (0, Nr). This together with (4.39) yields

‖(F0,H0)(v̄, w̄)‖0FT
≤ 1

2M(1 +N)
‖(v̄, w̄)‖

0E1
T× 0E1

T
+

r

2M
≤ r

M
, (4.42)

for all (v̄, w̄) ∈ 0B̄1
T (0, r)× 0B̄1

T (0, Nr).

(v) Given ρ̄ ∈ 0E2
T , let ρ̄E ∈ 0E1

T be the extension of ρ̄ satisfying (3.3). According
to Proposition 3.2 there exists a constant N > 0 such that

‖ρ̄E‖0E1
T
≤ N‖ρ̄‖

0E2
T
, ρ̄ ∈ 0E2

T , T ≤ T0, (4.43)

and it follows readily from (4.31) and (4.41)–(4.43) that K0 = ST (F0,H0) maps
the set

0B̄1
T (0, r)× 0B̄2

T (0, r) ⊂ 0ET

into itself, and that K0 is a contraction. The assertion of the Theorem is now a
consequence of the contraction mapping theorem. �

5. Analyticity

Throughout this section (v, ρ) denotes the unique solution to (2.5) on J = [0, T ]
with initial value (v0, ρ0) ∈ W

2−2/p
p (Ṙn+1) × W

2−2/p
p (Rn). Recall that Γ(t) =

graph(ρ(t)). Our goal is to show that

M =
⋃

t∈(0,T )

({t} × Γ(t))

is a real analytic manifold and that (v, ρ) is in fact an analytic solution to (2.5).
Again we will see that the property of maximal regularity for the linearized problem
is of crucial importance.

Here the regularity classes are still denoted by ET , FT , 0ET , etc., i.e. we make
use of the notation introduced in the previous section.

Given µ ∈ Rn and g ∈ §(Rn), the Schwartz space over Rn, let τµg be the
translation of g by µ, i.e.

(τµg)(x) := g(x+ µ), x ∈ Rn.

It is not difficult to verify that τµ ∈  L(§(Rn)) and by duality, τµ extends to a
mapping, still denoted by τµ, such that τµ ∈  L(§′(Rn)). We first prove the following
result, cf. [24].
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Lemma 5.1. Assume that

X ∈
{
W s

p (Rn) : s ∈ R, p ∈ (1,∞)
}
.

Then {τµ : µ ∈ Rn} is a strongly continuous group of contractions on X, satisfying

τµg − τµ0g =

1∫
0

τµ0+s(µ−µ0)〈µ− µ0|∇g〉 ds in X

for any g ∈ §(Rn).

Proof. If X belongs to ∈
{
W k

p (Rn) : k ∈ Z, p ∈ (1,∞)
}

the assertion follows from
the transformation theorem for Lebesgue’s integral and the mean value theorem. If
X belongs to the Slobodeckij scale

{
W s

p (Rn) : s ∈ R \Z, p ∈ (1,∞)
}

the assertion
follows from the W k

p -result by interpolation. �

We need some further preparation. For this pick T ∗ ∈ (0, T ) and choose δ > 0
such that λt ∈ J for λ ∈ (1 − δ, 1 + δ) and t ∈ I := [0, T ∗]. Given g : I → §′(Rn)
and (λ, µ) ∈ (1− δ, 1 + δ)× Rn, let

gλ,µ(t) := τtµg(λt) for t ∈ I.

Then we have

Lemma 5.2. Given h0 ∈ W 1−3/p
p (Rn) let h∗(t) := et∆xh0. Then there is a neigh-

borhood Λ of (1, 0) in (1− δ, 1 + δ)× Rn such that(
(λ, µ) 7→ h∗λ,µ

)
∈ Cω(Λ,W 1/2−1/2p

p (I;Lp(Rn)) ∩ Lp(I;W 1−1/p
p (Rn)).

Proof. The proof of this result can be found in [27, pp. 39–40]. It is based on
maximal regularity and the implicit function theorem. �

As in the proof of Theorem 4.3 we set h∗(t) := et∆xH(v0, w0), t ∈ J, and we denote
by (v∗, ρ∗, ρ∗E) ∈ ET × E1

T the unique solution of
(∂t − c∆)v = 0 in J × Ṙn+1,

γv± = 0 on J × Rn,
∂tρ+ [cγ∂y(v − aρE)] = h∗ on J × Rn,

v(0) = v0 in Ṙn+1,
ρ(0) = ρ0 on Rn,

(5.1)

with ρ∗E the extension of ρ∗ satisfying equation (3.3) with ρ replaced by ρ∗.

Given µ ∈ Rn and f ∈ Lp(Ṙn+1), let τµf be defined by

(τµf)(x, y) := f(x+ µ, y), (x, y) ∈ Ṙn+1.

We note that the functions

v∗λ,µ(t) := τtµ v
∗(λt), ρ∗λ,µ(t) := τtµ ρ

∗(λt) and w∗λ,µ := τtµ ρ
∗
E(λt) (5.2)

are well-defined for all (λ, µ) ∈ (1− δ, 1 + δ)× Rn and all t ∈ I.
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Proposition 5.3. There exists a neighborhood Λ ⊂ (1−δ, 1+δ)×Rn of (1, 0) such
that [

(λ, µ) 7→ (v∗λ,µ, ρ
∗
λ,µ, w

∗
λ,µ)

]
∈ Cω(Λ,ET∗ × E1

T∗).

Proof. (i) Let Λ ⊂ (1− δ, 1 + δ)×Rn be the open neighborhood of (1, 0) obtained
in Lemma 5.2. We will first show that

(v∗λ,µ, ρ
∗
λ,µ, w

∗
λ,µ) ∈ ET∗ × E1

T∗ , (λ, µ) ∈ Λ. (5.3)

Let (λ, µ) ∈ Λ be fixed. As in the proof of [27, Lemma 8.2] one verifies that

u∗λ,µ ∈W 1
p (I;Lp(Ṙn+1)) ∩ Lp(I;W 2

p (Ṙn+1)), u ∈ {v, w},

and
d

dt
u∗λ,µ(t) = λτtµ

d

dt
u∗(λt) + 〈µ|∇xu

∗
λ,µ(t)〉, u ∈ {v, w} (5.4)

in Lp(Ṙn+1) a.e. on I.
Moreover, we also have

ρ∗λ,µ ∈W 1
p (I;W 1−1/p

p (Rn)) ∩ Lp(I;W 2−1/p
p (Rn)), (5.5)

and
d

dt
ρ∗λ,µ(t) = λτtµ

d

dt
ρ∗(λt) + 〈µ|∇xρ

∗
λ,µ(t)〉, (5.6)

a.e. on I.
In order to verify that ρ∗λ,µ ∈W

3/2−1/2p
p (I;Lp(Rn)) it suffices to show that

d

dt
ρ∗λ,µ ∈W 1/2−1/2p

p (I;Lp(Rn)).

Equation (5.5) and Lemma 6.3 yield ρ∗λ,µ ∈ W
1/2−1/2p
p (I;W 1

p (Rn)). Thus, thanks
to (5.6), it remains to show that

(t 7→ τtµρ̇
∗(λt)) ∈W 1/2−1/2p

p (I;Lp(Rn)),

where we set ρ̇∗ := d
dtρ

∗. In order to do so we use, as in section 4, the intrinsic
norm

‖g‖
W

1/2−1/2p
p (I;Lp(Rn))

= ‖g‖Lp(I;Lp(Rn)) +

(∫
I

∫
I

‖g(t)− g(s)‖pLp(Rn)

|t− s|p/2+1/2
dsdt

)1/p

.

We have

‖ρ̇∗λ,µ(t)− ρ̇∗λ,µ(s)‖pLp
≤ C(‖τtµ(ρ̇∗(λt)− ρ̇∗(λs))‖pLp

+ ‖(τtµ − τsµ)ρ̇∗(λs)‖pLp
)

≤ C(‖ρ̇∗(λt)− ρ̇∗(λs)‖pLp
+ ‖(τtµ − τsµ)ρ̇∗(λs)‖pLp

),

and, recalling that ρ̇∗ ∈W 1/2−1/2p
p (I;Lp(Rn)), we readily conclude∫

I

∫
I

‖ρ̇∗(λt)− ρ̇∗(λs)‖pLp(Rn)

|t− s|p/2+1/2
ds dt <∞.

Using Lemma 5.1 and interpolation theory we obtain

‖(τtµ − τsµ)ρ̇∗(λs)‖Lp(Rn) ≤ C |t− s|(1−1/p) ‖ρ̇∗(λs)‖
W

1−1/p
p (Rn)
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for allmost all s ∈ I. Thus∫
I

∫
I

‖(τtµ − τsµ)ρ̇∗(λs)‖pLp

|t− s|p/2+1/2
dsdt ≤ C

∫
I

∫
I

|t− s|(p/2−3/2)‖ρ̇∗(λs))‖p
W

1−1/p
p

dsdt

≤ C
∫

I

‖ρ̇∗(λs))‖p
W

1−1/p
p (Rn)

ds <∞.

Combining all the steps we arrive at (5.3).

(ii) Next we observe that τµ0(∆f) = ∆(τµ0f) and τµ0 [∂yf ] = [∂y(τµ0f)] for any
µ0 ∈ Rn and f ∈ W 2

p (Ṙn+1). Combining these facts with (5.4) and (5.6), we
conclude that (u, σ, w) = (v∗λ,µ, ρ

∗
λ,µ, w

∗
λ,µ) is a solution of

(∂t − λc∆)u = 〈µ|∇xu〉 in I × Ṙn+1,
γu± = 0 on I × Rn,

∂tσ + λ[cγ∂y(u− aw)] = λh∗λ,µ + 〈µ|∇xσ〉 on I × Rn,

u(0) = v0 in Ṙn+1,
σ(0) = ρ0 on Rn,

(5.7)

and 
(∂t − λc∆)w = 〈µ|∇xw〉 in I × Ṙn+1,

γw± = σ on I × Rn,

w(0) = e−|y|(1−∆x)
1
2 σ(0) in Ṙn+1.

(5.8)

(iii) Given (σ, λ, µ) ∈ E2
T∗ × Λ, let w = T (σ, λ, µ) be the solution of (5.8). Then

one shows that
[(σ, λ, µ) 7→ T (σ, λ, µ)] ∈ Cω(E2

T∗ × Λ,E1
T∗),

D1T (σ, 1, 0)[σ̃] = σ̃E ,
(5.9)

where, as usual, σ̃E is the extension of σ̃ satisfying (3.3), and where D1T denotes
the derivative of T with respect to σ. The proof can, for instance, be based on
maximal regularity and the implicit function theorem.

We now define the mapping

Ψ : Eγ,T∗ × Λ→ GT∗ := FT∗ ×W 2−2/p
p (Ṙn+1)×W 2−2/p

p (Rn)

Ψ((u, σ), (λ, µ)) :=


(∂t − λc∆)u− 〈µ|∇xu〉
∂tσ + λ[cγ∂y(u− aT (σ, λ, µ))]− λh∗λ,µ − 〈µ|∇xσ〉
u(0)− v0
σ(0)− ρ0

 .

It follows from (the sufficient part of) Theorem 3.4 and from Lemma 6.3 that Ψ
is well-defined. Moreover, Lemma 5.2 and (5.9) imply that Ψ is analytic. Further,
writing D1Ψ for the derivative of Ψ with respect to (u, σ) we find

D1Ψ((v∗, ρ∗), (1, 0))[ũ, σ̃] =
(

(∂t − c∆)ũ, ∂tσ̃ + [cγ∂y(ũ− aσ̃E)], ũ(0), σ̃(0)
)
.

Since D1Ψ((v∗, ρ∗), (1, 0)) ∈  L(Eγ,T∗ ,GT∗) we infer from Theorem 3.4 and the open
mapping theorem that

D1Ψ((v∗, ρ∗), (1, 0)) ∈ Isom(Eγ,T∗ ,GT∗).

Since Ψ((u, σ), (λ, µ)) = 0 holds true if, and only if, (u, σ) is a solution in ET∗ to
(5.7), the implicit function theorem gives the assertion for (v∗λ,µ, ρ

∗
λ,µ) for an open
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neighborhood of (1, 0) in Λ, which we will again denote by Λ. Finally we observe
that w∗λ,µ = T (ρ∗λ,µ, λ, µ), and it follows from (5.9) that [(λ, µ) 7→ w∗λ,µ] is analytic
as well. �

Theorem 5.4. There exists an open neighborhood Λ of (1, 0) in (1− δ, 1 + δ)×Rn

such that
[(λ, µ) 7→ (vλ,µ, ρλ,µ, wλ,µ)] ∈ Cω(Λ,ET∗ × E1

T∗)

where (v, ρ) is the solution of (2.5), and w = ρE.

Proof. (i) It follows from the proof of Theorem 4.3 that the solution (v, ρ) of (2.5)
admits the representation

(v, ρ) = (v̄, ρ̄) + (v∗, ρ∗) with (v̄, ρ̄) ∈ 0B̄1
T (0, r)× 0B̄2

T (0, r),

where (v̄, ρ̄) is the solution of (4.26) and 0B̄j
T (0, r) ⊆ 0Ej

T , j = 1, 2, denotes, as
before, the closed ball with radius r and center 0. Using Lemma 5.1 it is not difficult
to verify that there is an open neighborhood Λ of (1, 0) in (1− δ, 1 + δ)× Rn such
that

(v̄λ,µ, ρ̄λ,µ) ∈ 0B1
T∗(0, 2r)× 0B2

T∗(0, 2r), (λ, µ) ∈ Λ.

Let w = T (σ, λ, µ) be the solution of (∂t − λc∆)w = 〈µ|∇xw〉 in I × Ṙn+1,
γw± = σ on I × Rn,
w(0) = 0 on Rn.

As in Proposition 5.3, one verifies that

[(σ, λ, µ) 7→ T (σ.λ, µ)] ∈ Cω(0E2
T∗ × Λ, 0E1

T∗),

D1T (σ, 1, 0)[σ̃] = σ̃E .
(5.10)

Moreover, for a suitable neighborhood Λ ⊆ (1− δ, 1 + δ)× Rn we have

‖T (σ, λ, µ)‖E1
T∗
≤ 2N‖σ‖E2

T∗
, σ ∈ 0E2

T∗ , (λ, µ) ∈ Λ, (5.11)

where N is the constant introduced in (4.43). Due to (5.11) and (4.34) we may
assume, by possibly making Λ smaller, that

(u+ v∗λ,µ, T (σ, λ, µ) + w∗λ,µ) ∈ E1
γ,T∗ × E1

T∗,1/2 (5.12)

for all (λ, µ) ∈ Λ and all (u, σ) ∈ 0B1
γ,T∗(0, 2r) × 0B2

T∗(0, 2r), where v∗λ,µ and w∗λ,µ

are defined in (5.2).
Given (λ, µ) ∈ Λ and (u, σ) ∈ 0B1

T∗(0, 2r)× 0B2
T∗(0, 2r) we set

Fλ,µ(u, σ) := λF (u+ v∗λ,µ, T (σ, λ, µ) + w∗λ,µ) + 〈µ|∇xu〉,
Hλ,µ(u, σ) := λH(u+ v∗λ,µ, T (σ, λ, µ) + w∗λ,µ)− λh∗λ,µ + 〈µ|∇xσ〉.

It follows from (5.10), (5.12), Proposition 4.1(a), Lemma 5.2, and Proposition 5.3
that [

((u, σ), (λ, µ)) 7→ (Fλ,µ(u, σ),Hλ,µ(u, σ))
]

∈ Cω(0B1
T∗(0, 2r)× 0B2

T∗(0, 2r)× Λ, 0FT∗).
(5.13)

(ii) As in the proof of Proposition 5.3 one shows that (u, σ, w) = (v̄λ,µ, ρ̄λ,µ, w̄λ,µ)
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is a solution of
(∂t − λc∆)u = Fλ,µ(u, σ) in I × Ṙn+1,

γu± = 0 on I × Rn,
∂tσ + λ[cγ∂y(u− aw)] = Hλ,µ(u, σ) on I × Rn,

u(0) = 0 in Ṙn+1,
σ(0) = 0 on Rn,

(5.14)

and  (∂t − λc∆)w = 〈µ|∇xw〉 in I × Ṙn+1,
γw± = σ on I × Rn,
w(0) = 0 on Rn.

(5.15)

Indeed, the assertion follows from equation (4.26) since ∆, [cγ∂y ] and the nonlinear
mappings (F,H) commute with translations, i.e. we have

τµ∆v = ∆τµv, τµ[cγ∂y(v − aw)] = [cγ∂yτµ(v − aw)],

τµF (v, w) = F (τµv, τµw), τµH(v, w) = H(τµv, τµw),

for (v, w) and µ suitable.

(iii) Next, we introducde the nonlinear mapping

Ψ0 : 0B1
γ,T∗(0, 2r)× 0B2

T∗(0, 2r)× Λ→ 0FT∗

Ψ0((u, σ), (λ, µ)) :=

(
(∂t − λc∆)u− Fλ,µ(u, σ)

∂tσ + λ[cγ∂y(u− aT (σ, λ, µ))]−Hλ,µ(u, σ)

)
.

We infer from (v∗λ,µ(0), w∗λ,µ(0)) = (v0, w0), (u(0), σ(0), ∂tσ(0)) = (0, 0, 0) and the
definition of h∗ that Ψ0((u, σ), (λ, µ)) ∈ 0FT∗ , and this shows that Ψ0 is well-
defined. It follows from (5.10) and (5.13) that

Ψ0 ∈ Cω(0B1
γ,T∗(0, 2r)× 0B2

T∗(0, 2r)× Λ, 0FT∗). (5.16)

Next, writing D1Ψ0 for the derivative of Ψ0 with respect to (u, σ) we find

D1Ψ0((v̄, ρ̄), (1, 0))[ũ, σ̃] = U [ũ, σ̃]− (DF0(v̄, ρ̄
E

), DH0(v̄, ρ̄
E

))[ũ, σ̃
E

]

for (ũ, σ̃) ∈ 0Eγ,T∗ , where

U [ũ, σ̃] :=
(
(∂t − c∆)ũ, ∂tσ̃ + [cγ∂y(ũ− aσ̃

E
)]
)
,

and where the mappings (F0,H0) are defined in (4.27). It follows from Theorem 3.4
and (4.31) that

U ∈ Isom( 0Eγ,T∗ , 0FT∗), ‖U−1‖ L(0FT∗ , 0Eγ,T∗ ) = ‖ST∗‖ L(0FT∗ , 0Eγ,T∗ ) ≤M.

(5.17)
Next we obtain from (4.38), (4.40), and (4.43) that

‖(DF0(v̄, ρ̄
E

), DH0(v̄, ρ̄
E

))‖ L(0ET∗γ , 0FT∗ ) < 1/(2M). (5.18)

Combining (5.17) and (5.18) yields

D1Ψ0((v̄, ρ̄), (1, 0)) ∈ Isom(0Eγ,T∗ , 0FT∗).

Again it is easily verified that (u, σ) ∈ 0B1
γ,T∗(0, 2r) × 0B2

T∗(0, 2r) is a solution to
the system (5.14) if, and only if, the equation Ψ0((u, σ), (λ, µ)) = 0 holds true.
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Thus the implicit function theorem implies that there exists an open neighborhood
of (1, 0) in (1− δ, 1 + δ)× Rn, again denoted by Λ, such that

[(λ, µ) 7→ (v̄λ,µ, ρ̄λ,µ)] ∈ Cω(Λ, 0ET∗).

Observing that w̄λ,µ = T (ρ̄λ,µ, λ, µ) we obtain from (5.10) that

[(λ, µ) 7→ w̄λ,µ] ∈ Cω(Λ, 0E1
T∗).

(iv) Combining the results in step (iii) with Proposition 5.3 yields the assertion. �

As an immediate consequence we get the following result.

Corollary 5.5. The function ρ belongs to Cω((0, T )× Rn).

Proof. Pick (t0, x0) ∈ (0, T ) × Rn. From the embedding E2
T∗ ↪→ C(I; BUC(Rn))

and Theorem 5.4 we conclude that

[(λ, µ) 7→ ρλ,µ] ∈ Cω(Λ, C(I; BUC(Rn)).

Thus
[(λ, µ) 7→ ρ(λt0, x0 + t0µ)] ∈ Cω(Λ,R)

and this implies the assertion. �

Proof of Theorem 1.1: Theorem 4.3 guarantees the existence of a unique solution
(v, ρ) ∈ ET of (2.5)–(2.6) and Corollary 5.5 implies that

M =
⋃

t∈(0,T )

({t} × Γ(t)) is a real analytic manifold. (5.19)

Moreover, Corollary 5.5 and well-known regularity results for linear parabolic equa-
tions show that the solution ρE of (2.6) is analytic, that is,

ρ±E ∈ C
ω
(

(0, T )× Rn+1
±

)
. (5.20)

This information, in turn, can now be used to conclude that v is analytic as well.
Indeed, we observe that v solves the linear parabolic equation

∂tv
± −A±v± = 0 in (0, T )× Rn+1

± ,
γv± = 0 on (0, T )× Rn,

v±(0) = v±0 in Rn+1
± ,

where

A± = c±∆− c±
(

1 + |∇xρ
±
E |2

(1 + ∂yρ
±
E)2
− 1
)
∂2

y + c±
2〈∇xρ

±
E |∇x∂y · 〉

1 + ∂yρ
±
E

+
c±

1 + ∂yρ
±
E

{(
1 + |∇xρ

±
E |2

(1 + ∂yρ
±
E)2
− 1
)
∂2

yρ
±
E −

2〈∇xρ
±
E |∇x∂yρ

±
E〉

1 + ∂yρ
±
E

}
∂y

is an elliptic differential operator with analytic coefficients. Hence we conclude once
more from regularity theory for linear parabolic equations that

v± ∈ Cω
(

(0, T )× Rn+1
±

)
. (5.21)
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It follows from (2.1)–(2.2) and (5.20) that

Θ
∣∣∣
(0,T )×Rn+1

±

∈ Diffω
(
(0, T )× Rn+1

± , Ω
±
T

)
. (5.22)

Let u := Θ∗v. The assertions of Theorem 1.1 are now a consequence of Theorem 4.3
and of (5.19)–(5.21). �

Remark 5.6. The idea to introduce parameters and use the implicit function
theorem to obtain regularity results for solutions of parabolic equations was first
conceived by Masuda [42], and later rediscovered independently by Angenent [2].
Translations were first introduced in Escher-Simonett [24] to obtain spacial regu-
larity for solutions to a free boundary problem. This approach has been generalized
in various directions [25, 26].

6. Appendix

Here we establish some basic and important facts about extension operators and
embeddings that we used in our calculations in the previous sections. We start with
a result on the existence of an extension operator E : 0W

r
p (J ;X)→ 0W

r
p (R+;X).

The cruical point here is the independence of the norm of the operator of the length
of the interval J .

Proposition 6.1. Let X be a Banach space. Suppose T0 > 0 is a fixed number
and r ∈ (1/p, 1]. Then there exists an extension operator

EJ,r : 0W
r
p (J ;X)→ 0W

r
p (R+;X)

and a constant c0 = c0(r, p, T0) such that

‖EJ,ru‖0W r
p (R+;X) ≤ c0‖u‖0W r

p (J;X) (6.1)

for every u ∈ 0W
r
p (J ;X) and T ≤ T0, where J = [0, T ]. The family {EJ,r}r∈(1/p,1]

is compatible, i.e. for r, s ∈ (1/p, 1] we have

EJ,ru = EJ,su, u ∈ 0W
r
p (J ;X) ∩ 0W

s
p (J ;X).

Proof. Let T ∈ (0, T0) and u : J → X be given. We set

Eu(t) := EJ,ru(t) :=


u(t) if 0 ≤ t ≤ T,
u(2T − t) if T ≤ t ≤ 2T,
0 if 2T ≤ t.

(6.2)

It is clear that ‖Eu‖Lp(R+;X) ≤ 2‖Eu‖Lp(J;X) for u ∈ Lp(J ;X). Let u ∈ 0W
r
p (J ;X)

be given. In order to prove the assertion for r ∈ (1/p, 1) we only need to show that

〈Eu〉I1×I2,r,p : =
∫

I2

∫
I1

‖Eu(t)− Eu(s)‖pX
|t− s|1+rp

dsdt

≤ c0
∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+rp

dsdt
(6.3)

for I1 = I2 = R+, see (3.1). It is clear that

〈Eu〉I×I,r,p = 〈u〉J×J,r,p for I = J and I = (T, 2T ). (6.4)
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An easy computation shows that

〈Eu〉(0,T )×(T,2T ),r,p =
∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t+ s− 2T |1+rp

dsdt

≤
∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+rp

dsdt.

(6.5)

Next we have

〈Eu〉(0,T )×(2T,∞),r,p =
∫ T

0

∫ ∞

2T

‖u(t)‖pX
|t− s|1+rp

dsdt ≤ 1
rp

∫ T

0

‖u(t)‖pX
trp

dt. (6.6)

Moreover

〈Eu〉(T,2T )×(2T,∞),r,p =
∫ T

0

∫ ∞

2T

‖u(t)‖pX
|2T − t− s|1+rp

dsdt

=
∫ T

0

∫ ∞

0

‖u(t)‖pX
(t+ s)1+rp

dsdt =
1
rp

∫ T

0

‖u(t)‖pX
trp

dt.

(6.7)

We now suppose that u is smooth with compact support contained in (0, T ]. Then(∫ T

0

1
trp
‖u(t)‖pX dt

)1/p

≤

(∫ T

0

[∫ t

0

‖u(t)−u(s)‖X ds+
∫ t

0

‖u(s)‖X ds
]p

dt
t(1+r)p

)1/p

≤

(∫ T

0

tp/p′

t(1+r)p

∫ t

0

‖u(t)−u(s)‖pX dsdt

)1/p

+

(∫ T

0

1
t(1+r)p

[∫ t

0

‖u(s)‖X ds
]p

dt

)1/p

≤

(∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+rp

dsdt

)1/p

+

(∫ T

0

1
t(1+r)p

∫ t

0

‖u(s)‖pX dsdt

)1/p

where we first used Minkowski’s inequality on (0, T ) with respect to the measure
dt/t(1+r)p and then Hölder’s inequality on (0, t) with respect to ds in the second
line. For the last term we may use Hardy’s inequality to the result(∫ T

0

1
t(1+r)p

[∫ t

0

‖u(s)‖X ds
]p

dt

)1/p

≤ 1
(1 + r − 1/p)

(∫ T

0

1
trp
‖u(t)‖pX dt

)1/p

and combining the last estimates yields(∫ T

0

1
trp
‖u(t)‖pX dt

)1/p

≤ (1 + r − 1/p)
(r − 1/p)

(∫ T

0

∫ T

0

‖u(t)− u(s)‖pX
|t− s|1+rp

dsdt

)1/p

(6.8)

provided that r > 1/p. By an approximation argument inequality (6.8) remains
true for every function u ∈ 0W

r
p ([0, T ], X) with r > 1/p.

By symmetry it is now clear that the estimates (6.4)–(6.8) yield (6.3). The case
r = 1 is not difficult to verify, and this completes the proof. �
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Proposition 6.1 is an essential ingredient in order to prove the independence
of the embedding constants on J in the following embeddings in case we assume
vanishing time trace at t = 0.

Proposition 6.2. Suppose T0 ∈ (0,∞] is a fixed number, and I := [0, T0].
(a) Let r ∈ (1/p, 1] and let X be a Banach space. Then

W r
p (I;X) ↪→ BUC(I;X)

and there is a constant c0 = c(T0) such that

‖u‖ 0BUC(J;X) ≤ c0‖u‖ 0W r
p (J;X) (6.9)

for every u ∈ 0W
r
p (J ;X) and T ≤ T0, where J = [0, T ].

(b) Let Ω ⊂ Rm be a smooth domain. Then

W 1
p (I;Lp(Ω) ∩ Lp(I;W 2

p (Ω)) ↪→ BUC(I;W 2−2/p
p (Ω))

and there is a constant c0 = c0(T0) such that

‖u‖
0BUC(J;W

2−2/p
p (Ω))

≤ c0‖u‖0W 1
p (J;Lp(Ω)∩Lp(J;W 2

p (Ω)) (6.10)

for every u ∈ 0W
1
p (J ;Lp(Ω))∩Lp(J ;W 2

p (Ω)) and T ≤ T0, where J = [0, T ].

(c) Let p > n+ 3. Then

W 1/2−1/2p
p (I;Lp(Rn)) ∩ Lp(I;W 1−1/p

p (Rn)) ↪→ BUC(I × Rn)

and there exists a constant c0 = c0(T0) such that

‖g‖BUC(J×Rn) ≤ c0‖g‖
0W

1/2−1/2p
p (J;Lp(Rn))∩Lp(J;W

1−1/p
p (Rn))

(6.11)

for every g ∈ 0W
1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)) and T ≤ T0,
where J = [0, T ].

Proof. (a) The first assertion is a consequence of Sobolev’s embedding theorem,
and the uniform estimate in (6.9) is obtained by the following commutative diagram

0W
r
p (J ;X) EJ−→ 0W

r
p (R+;X)

↓ ↓

0BUC(J ;X) RJ←− 0BUC(R+;X)

(6.12)

where EJ is the extension operator of Proposition 6.1, andRJ denotes the restriction
operator.

(b) The first assertion can, for instance, be found in [1, Theroem III.4.10.2], and
the uniform estimate in (6.10) can be proved along the same lines as in (a), with
0W

r
p (I;X) replaced by 0W

1
p (I;Lp(Ω) ∩ Lp(I;W 2

p (Ω)) for I = J, R+.

(c) The first assertion is contained in [27, Remark 5.3(d)], and the uniform estimate
in (6.11) can, once more, be obtained by an analogous argument as in (a). �

Lemma 6.3. Let J = [0, T ]. Then we have the following embedding

W 1
p (J ;W 1−1/p

p (Rn)) ∩ Lp(J ;W 2−1/p
p (Rn)) ↪→W 1/2−1/2p

p (J ;W 1
p (Rn)). (6.13)
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Proof. (i) We will first assume that J = R. Let K ∈ {H,W} and let r ∈ R. Then
we define the operators A, B in X := Lp(R;Kr

p(Rn)) by

Au : = (1−∆)1/2u, u ∈ D(A) = Lp(R;Kr+1
p (Rn))

Bu : = (∂t + 1)u, u ∈ D(B) = W 1
p (R;Kr

p(Rn)).

It is well-known that A,B ∈ BIP (X) with power angles θA = 0, θB = π/2. Thus,
by the Dore-Venni theorem, see for instance [47, Theorem 8.4],

A+B : W 1
p (R;Kr

p(Rn)) ∩ Lp(R;Kr+1
p (Rn))→ Lp(R;Kr

p(Rn)) (6.14)

is an isomorphism. Choosing K = H we also have

D(Aα) = [X,D(A)]α = Lp(R; [Hr
p(Rn),Hr+1

p (Rn)]α) = Lp(R;Hr+α
p (Rn)),

D(Bα) = [X,D(B)]α = Hα
p (R;Hr

p(Rn))

see [47, Theorem 8.1]. The mixed derivative theorem [27, Lemma 9.7], and the
invertibility of A : D(A)→ X and B : D(B)→ X now yield

‖u‖
Hs

p(R;H
r+(1−s)
p (Rn))

≤ C‖Bsu‖
Lp(R;H

r+(1−s)
p (Rn))

≤ C‖A1−sBsu‖X
≤ C‖(A+B)u‖X ≤ C‖u‖D(A)∩D(B).

In particular, we have

E0 := H1
p (R+;Hr0

p (Rn)) ∩ Lp(R+;Hr0+1
p (Rn)) ↪→ Hr0

p (R+;H1
p (Rn)),

E1 := H1
p (R+;Hr1

p (Rn)) ∩ Lp(R+;Hr1+1
p (Rn)) ↪→ Hr1

p (R+;H1
p (Rn)).

By interpolating these embeddings by the real method (· , ·)1/2,p with r0 = r − ε
and r1 = r + ε we obtain

(E0, E1)1/2,p ↪→W r
p (R;H1

p (Rn)). (6.15)

We can now infer from (6.14) and interpolation theory that

A+B : (E0, E1)1/2,p → Lp(R;W r
p (Rn))

A+B : W 1
p (R;W r

p (Rn)) ∩ Lp(R;W r+1
p (Rn))→ Lp(R;W r

p (Rn))

are isomorphisms. Consequently,

I := (A+B)−1(A+B) : (E0, E1)1/2,p →W 1
p (R;W r

p (Rn)) ∩ Lp(R;W r+1
p (Rn))

is an isomorphim as well, and we conclude from (6.15) that

W 1
p (R;W r

p (Rn)) ∩ Lp(R;W r+1
p (Rn)) ↪→W r

p (R;W 1
p (Rn)). (6.16)

Choosing r = 1− 1/p and using that

W 1−1/p
p (R;W 1

p (Rn)) ↪→W 1/2−1/2p
p (R;W 1

p (Rn))

we obtain (6.13) for J = R.
(ii) Suppose now that J = [0, T ] and let

Rc ∈  L(Fs
p(J ;X),Fs

p(R;X))

be an appropriate extension operator, where F ∈ {H,W}, X is a Banach space
and, say, 0 ≤ s ≤ 1. Then the result for J = [0, T ] follows by first extending the
functions to I = R, using (6.16), and then restricting again to J . �
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The reduction of problem (3.2)-(3.3) to the case of vanishing times traces at
t = 0 in the proof of Theorem 3.4 was based on the following result.

Lemma 6.4. Let 1 < p <∞, T ∈ (0,∞], and J = [0, T ].

(i) For each σ0 ∈W 2−2/p
p (Rn) there exists an extension

η1 ∈W 3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn))

such that η1(0) = σ0 and, if p > 3, also that ∂tη1(0) = 0.
(ii) Suppose p > 3. Then for each σ0 ∈ W

2−2/p
p (Rn) and σ1 ∈ W

1−3/p
p (Rn)

there exists an extension η2 with the same regularity properties as η1 satis-
fying η2(0) = σ0 and ∂tη2(0) = σ1.

Proof. (i) Let 1 < p <∞. We claim that

η1(t) := (2e−t(1−∆x)
1
2 − e−2t(1−∆x)

1
2 )σ0 (6.17)

satisfies the properties asserted in (i). We have

e−kt(1−∆x)
1
2 σ0 ∈W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn))

for k = 1, 2. By Proposition 6.3 we know that the latter space is continuously
embedded in W

1/2−1/2p
p (J ;W 1

p (Rn)). This implies that

∂te−kt(1−∆x)
1
2 σ0 = −k(1−∆x)

1
2 e−kt(1−∆x)

1
2 σ0 ∈W 1/2−1/2p

p (J ;Lp(Rn)).

Consequently,

η1 ∈W 3/2−1/2p
p (J ;Lp(Rn)) ∩W 1

p (J ;W 1−1/p
p (Rn)) ∩ Lp(J ;W 2−1/p

p (Rn)).

Obviously η1(0) = σ0. If p > 3, the time trace at t = 0 of ∂tη1 is well defined and
we also have ∂tη1(0) = 0. This proves (i).
(ii) Now suppose p > 3. We set

η2(t) := η1(t) + (e−t(1−∆x) − e−2t(1−∆x))(1−∆x)−1σ1. (6.18)

Since (1−∆x)−1σ1 ∈W 3−3/p
p (Rn), we obtain

e−kt(1−∆x)(1−∆x)−1σ1 ∈W 1
p (J ;W 1−1/p

p (Rn)) ∩ Lp(J ;W 3−1/p
p (Rn))

for k = 1, 2. Furthermore,

∂tη2(t) = ∂tη1(t) + (2e−2t(1−∆x) − e−t(1−∆x))σ1.

It follows from

e−kt(1−∆x)σ1 ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)),

see [27, page 23], and from the regularity for η1 that

∂tη2 ∈W 1/2−1/2p
p (J ;Lp(Rn)) ∩ Lp(J ;W 1−1/p

p (Rn)).

Moreover, η2(0) = σ0 and ∂tη2(0) = σ1, which proves (ii). �

Remark 6.5. We would like to mention that the extension η was motivated by
[53, Lemma 1].

Finally, we collect some basic facts about the space F2
T , introduced in (4.2) and

frequently used in Section 4.
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Lemma 6.6. Let p > n+ 3. Then
(i)

F2
T ↪→ BUC(J × Rn). (6.19)

In particular, if we replace F2
T by 0F2

T , then there is a constant c0 = c0(T0)
such that

‖g‖BUC(J×Rn) ≤ c0‖g‖0F2
T
, g ∈ 0F2

T ,

for all T ≤ T0.

(ii) The space F2
T is a multiplication algebra.

(iii) The set

F2
T,b :=

{
g ∈ F2

T : ‖g‖L∞(J×Rn) < b
}
, b > 0,

is open in F2
T and

‖gh‖F2
T
≤ max{a, b} (‖g‖F2

T
+ ‖h‖F2

T
), (g, h) ∈ F2

T,a × F2
T,b.

(iv) There exists a constant c0 = c0(T0) such that

‖gh‖F2
T
≤ c0

(
‖g‖∞ + ‖g‖F2

T

)
‖h‖F2

T
, (g, h) ∈ F2

T × 0F2
T ,

for all T ≤ T0.

(v) We have∥∥∥∥ g

1 + h

∥∥∥∥
F2

T

≤ 2 (‖g‖F2
T

+ 2a‖h‖F2
T

), (g, h) ∈ F2
T,a × F2

T,b

for any b ≤ 1/2.

(vi) [(g, h) 7→ g/(1 + h)] ∈ Cω(F2
T × F2

T,1/2 ,F
2
T ).

Proof. (i) The assertion follows from Proposition 6.2(c).
(ii) Recall that the norm in W r

p (J ;Lp(Rn)) for r ∈ (0, 1) is given by

‖g‖r,p,Lp
:= ‖g‖W r

p (J;Lp(Rn)) = ‖g‖p + 〈g〉r,p,Lp
,

where ‖g‖p = ‖g‖Lp(J;Lp(Rn)) and

〈g〉r,p,Lp
=

(∫
J

∫
J

‖g(t)− g(s)‖pLp(Rn)

|t− s|1+rp
dtds

)1/p

.

By writing

g(t)h(t)− g(s)h(s) = (g(t)− g(s))h(t) + g(s)(h(t)− h(s)),

we deduce for r = 1/2− 1/2p in view of (i)

‖gh‖r,p,Lp
≤ ‖g‖∞‖h‖p + ‖h‖∞〈g〉r,p,Lp

+ ‖g‖∞〈h〉r,p,Lp

≤ CT ‖g‖F2
T
‖h‖F2

T
, g, h ∈ F2

T .
(6.20)

As the norm of Lp(J ;W s
p (Rn)), the second space of F2

T for s = 1− 1/p, is given by

‖g‖Lp(J;W s
p (Rn)) =

(∫
J

(
‖g(t)‖pLp(Rn) + 〈g(t)〉ps,p

)
dt
)1/p

,
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where

〈g(t)〉s,p =
(∫

Rn

∫
Rn

|g(t, x)− g(t, x′)|p

|x− x′|n+sp
dxdx′

)1/p

,

an analogous calculation as above gives

‖g(t)h(t)‖W s
p (Rn)) ≤ ‖g‖∞‖h(t)‖p + ‖h‖∞〈g(t)〉s,p + ‖g‖∞〈h(t)〉s,p, (6.21)

which implies

‖gh‖Lp(J;W s
p (Rn)) ≤ CT ‖g‖F2

T
‖h‖F2

T
, g, h ∈ F2

T . (6.22)

Combining (6.20) and (6.22) we arrive at (ii).

(iii) It is easy to see that the set F2
T,b is open in F2

T , and the estimate in (iii) follows
from the first line in (6.20) and from (6.21).

(iv) By (i) we immediately get

‖h‖BUC(J×Rn) ≤ C(T0)‖h‖
0F2

T
, h ∈ 0F2

T , T ≤ T0.

But then (iv) as well is a consequence of the first line in (6.20) and of (6.21).

(v) In order to see (v) note that h ∈ F2
T,b with b ≤ 1/2 implies∥∥∥∥ 1

1 + h

∥∥∥∥
∞
≤ 2.

Hence for r = 1/2− 1/2p we may compute∥∥∥∥ g

1 + h

∥∥∥∥
r,p,Lp

≤
∥∥∥∥ 1

1 + h

∥∥∥∥
∞
‖g‖p +

∥∥∥∥ 1
1 + h

∥∥∥∥
∞
〈g〉r,p,Lp + ‖g‖∞

〈
1

1 + h

〉
r,p,Lp

≤ 2 ‖g‖r,p,Lp
+ a

〈
1

1 + h

〉
r,p,Lp

.

Moreover,〈
1

1 + h

〉
r,p,Lp

=

(∫
J

∫
J

∥∥∥∥ h(s)− h(t)
(1 + h(t))(1 + h(s))

∥∥∥∥p

Lp(Rn)

dtds
|t− s|1+rp

)1/p

≤
∥∥∥∥ 1

1 + h

∥∥∥∥2

∞
〈h〉r,p,Lp

≤ 4 〈h〉r,p,Lp
,

which implies∥∥∥∥ g

1 + h

∥∥∥∥
r,p,Lp

≤ 2
(
‖g‖r,p,Lp

+ 2a‖h‖r,p,Lp

)
, (g, h) ∈ F2

T,a × F2
T,b. (6.23)

Similarly we can obtain∥∥∥∥ g(t)
1 + h(t)

∥∥∥∥
W s

p (Rn)

≤
∥∥∥∥ 1

1 + h

∥∥∥∥
∞
‖g(t)‖Lp(Rn) +

∥∥∥∥ 1
1 + h

∥∥∥∥
∞
〈g(t)〉s,p

+ ‖g‖∞
〈

1
1 + h(t)

〉
s,p

≤ 2
(
‖g(t)‖W s

p (Rn) + 2a‖h(t)‖W s
p (Rn)

)
.
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Consequently,∥∥∥∥ g

1 + h

∥∥∥∥
Lp(J;W s

p (Rn))

≤ 2
(
‖g‖Lp(J;W s

p (Rn)) + 2a‖h‖Lp(J;W s
p (Rn))

)
(6.24)

for all (g, h) ∈ F2
T,a × F2

T,b. The relations (6.23) and (6.24) then yield (v).

(vi) A formal calculation, based on the geometric series, shows that

g

1 + h
=

g

1 + h0
+

g

1 + h0

∞∑
k=1

(−1)k
(h− h0

1 + h0

)k
for h0, h ∈ F2

T,1/2. Given k ∈ N, k ≥ 1, we define

Pk(h1, . . . , hk) :=
( h1

1 + h0

)
· · ·
( hk

1 + h0

)
, h1, . . . , hk ∈ F2

T .

An inspection of the proof of Lemma 6.6(v), and (6.19), (6.22) show that there is
a constant M = M(T, h0) > 0 such that

‖Pk(h1, . . . , hk)‖F2
T
≤Mk ‖h1‖ · · · ‖hk‖, h1, . . . , hk ∈ F2

T .

This shows that the mapping Pk : F2
T ×· · ·×F2

T → F2
T is well-defined, k-multilinear,

symmetric, and continuous. Moreover, it shows that the series converges in F2
T ,

provided ‖h− h0‖F2
T
≤ r with r sufficiently small. We can now conclude that[

h 7→
∞∑

k=1

(−1)k
(h− h0

1 + h0

)k ]
∈ Cω(B(h0, r),F2

T ),

where B(h0, r) is the ball of radius r centered at h0 in F2
T . Using Lemma 6.6(ii),(v)

we obtain that[
(g, h) 7→ g

1 + h
=

g

1 + h0
+

g

1 + h0

∞∑
k=1

(−1)k
(h− h0

1 + h0

)k]
∈ Cω(F2

T × B(h0, r),F2
T ).

Since analyticity is a local property, the assertion follows. �

Remark 6.7. Let d be a given number. An inspection of the proof of Lemma 6.6(ii)
shows that

‖(g + d)h‖F2
T
≤ c0

(
‖g + d‖∞ + ‖g‖F2

T

)
‖h‖F2

T
, (g, h) ∈ F2

T × 0F2
T ,

where the constant c0 is independent of T for T ≤ T0.
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