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Abstract. We prove a maximal regularity result for operators corresponding to rota-
tion invariant (in space) symbols which are inhomogeneous in space and time. Symbols
of this type frequently arise in the treatment of half-space models for (free) boundary
value problems. The result is obtained by extending the Newton polygon approach
to variables living in complex sectors and combining it with abstract results on H

∞-
calculus and R-bounded operator families. As an application we derive maximal regu-
larity for the linearized Stefan problem with Gibbs-Thomson correction.

1. Introduction

In the theory of parabolic partial differential equations, Sobolev spaces connected to
the Newton polygon appear in a natural way if the underlying symbol structure has an
inherent inhomogeneity. A prominent example is the symbol P (ξ, λ) = λ+ |ξ|2

√
λ + |ξ|2

which arises in the analysis of the Stefan problem with Gibbs-Thomson correction (cf.
[11], see also Section 5 of this paper). The symbol P (ξ, λ) is not (quasi-)homogeneous in
ξ and λ which implies that standard parameter-elliptic and parabolic estimates are not
available.

Typical examples of equations with inhomogeneous symbol structure are mixed-order
systems ([17], [6]), free boundary value problems (see, e.g., [23], [22] for the Cahn-Hilliard
equation) and boundary value problems with dynamic boundary conditions ([10], [8]). A
general approach for such equations is the Newton polygon method which was developed
by Gindikin and Volevich ([12], [13]). It turns out that it is possible to establish a new
notion of parameter-ellipticity and parabolicity which is in fact equivalent to uniform a
priori-estimates and maximal regularity in L2-spaces. For results in this direction and
general discussion of the Newton polygon, see also [6], [27], [9] and the references therein.
The resulting class of equations were called N-elliptic with parameter and N-parabolic,
respectively.

However, to our knowledge there exist no general Lp-results on N-parabolicity. For
applications to nonlinear equations, as in the case of the Stefan problem, Lp-theory is
necessary. The present paper establishes the first steps in this direction.

The main result states that N-parabolic scalar operators have maximal regularity in
classes of Lp-Sobolev spaces anisotropic in space and time. Here maximal regularity
means that the operator induces an isomorphism between the Sobolev spaces corre-
sponding to the data and the solution of the equation. Due to the inhomogeneity of the
operator, the Sobolev spaces under consideration have an inhomogeneous structure, too.
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We point out that many results are known for quasi-homogeneous symbol structures and
related Sobolev spaces, the simplest example being the heat equation with symbol λ+|ξ|2
and the related solution space W 1

p ((0, T ), Lp(Rn)) ∩ Lp((0, T ), W 2
p (Rn)). In contrast to

this space, the Sobolev spaces considered in the present paper in general have neither
homogeneity nor quasi-homogeneity with respect to time and space derivatives.

Contrary to L2-theory, maximal regularity for Lp-Sobolev spaces does not follow di-
rectly from symbol estimates. We have to deal in a natural way with vector-valued spaces
as, for instance, W s

p ((0, T ), Lp(Rn)) where Mikhlin’s theorem cannot be applied. This
difficulty can be overcome by the concept of R-boundedness and R-sectorial operators,
see [18], [5]. We will briefly recall this concept in Section 2.

The operators under consideration will have rotation invariant symbols in space, i.e.,
they can be considered as a function of the Laplacian (more precisely, of the square root
of the negative Laplacian). Observe that this holds for all examples mentioned before. To
prove maximal regularity, we will essentially use H∞-calculus for the negative Laplacian
and the time derivative operator and apply an abstract result on joint H∞-calculus due
to Kalton and Weis [16]. In fact, this method works for general resolvent commuting
operators admitting a bounded H∞-calculus, and we will formulate our main result in
this setting (Theorem 3.2 below). The results are proved simultaneously for both scales
of spaces, Sobolev-Slobodeckij and Bessel potential.

In applications to boundary value problems, inhomogeneous scalar symbols often arise
as the determinant of the Lopatinskii matrix related to the problem, see e.g. [22]. There-
fore, the question of trace spaces of the Lp-Sobolev spaces related to the Newton polygon
appears. For p = 2, this question was answered in [7]: if the Sobolev space in the interior
of the domain is defined by the Newton polygon N then the trace space is defined by a
shifted version of N with shift length 1

2 . It turns out that a similar result holds in the

Lp-case where now the shift has length 1
p . The precise description of the trace space can

be found in Theorem 4.1. In the proof we give an explicit construction of a right inverse
to the trace operator.

The paper is organized as follows. In Section 2, we give some remarks on Lp-Sobolev
spaces with exponential weight in time and summarize basic facts on R-boundedness and
H∞-calculus including the properties of the Laplacian and the time derivative needed in
what follows. Section 3 contains the first main result in Theorems 3.2 and 3.3 which states
that an N-parabolic operator induces an isomorphism on the related inhomogeneous Lp-
Sobolev spaces, that is, on its natural domain. In this context we also slightly generalize
a result of [6], which gives an equivalent description of N-parabolicity. In Section 4 we
deal with the trace spaces connected to the Newton polygon. The description of these
spaces can be found in Theorem 4.1, the second main result of this article. In the final
Section 5, we apply these results to the Stefan problem, demonstrating the usefulness of
these concepts for linear and nonlinear parabolic partial differential equations.

2. Function spaces, R-boundedness, and H∞-calculus

Let us fix the notation used throughout this paper. First we introduce suitable function
spaces. Let Ω ⊆ R

m be open and X be an arbitrary Banach space. By Lp(Ω, X) and

Hk
p (Ω, X), for 1 ≤ p ≤ ∞, k ∈ N, we denote the X-valued Lebesgue and the Sobolev
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space of order k, respectively. We will also frequently make use of the fractional Sobolev-
Slobodeckij spaces W s

p (Ω, X), 1 ≤ p < ∞, s ∈ R, which are defined by W s
p (Ω, X) :=

Bs
pp(Ω, X) where Bs

pp(Ω, X) stands for the vector-valued Besov space. For a definition
and basic facts on vector-valued Besov spaces, we refer to [24]. We will only consider the
cases Ω = R

n and Ω = J where J ⊂ R is an interval.
For s > 0 an equivalent norm in W s

p (Ω, X) is given by

(2.1) ‖g‖W s
p (Ω,X) = ‖g‖W [s],p(Ω,X) + 〈〈g〉〉s−[s],p,X ,

where

〈〈g〉〉s−[s],p,X :=
∑

|α|=[s]

(∫

Ω

∫

Ω

‖∂αg(x) − ∂αg(y)‖p
X

|x − y|n+(s−[s])p
dxdy

)1/p

,

and where [s] denotes the largest integer smaller than s. Let T ∈ (0,∞] and J = (0, T ).
The zero time trace version of W s

p (J, X) at t = 0 is defined as

(2.2) 0W
s
p (J, X) :=





{u ∈ W s
p (J, X) : u(0) = u′(0) = . . . = u(k)(0) = 0},

if k + 1
p < s < k + 1 + 1

p , k ∈ N ∪ {0},
W s

p (J, X), if 0 < s < 1
p .

Next we collect some basic facts on corresponding spaces with exponential weight
e−ρpt. Recall that for m ∈ N0 the weighted Sobolev space is defined by

Hm
p,ρ(J, X) :=

{
u ∈ D′(J, X) : Ψρ

(
d

dt

)k

u ∈ Lp(J, X) (0 ≤ k ≤ m)

}

with canonical norm

‖u‖Hm
p,ρ(J,X) :=




m∑

k=0

∥∥∥∥∥Ψρ

(
d

dt

)k

u

∥∥∥∥∥

p

Lp(J,X)




1/p

,

where the operator Ψρ is defined by multiplication with e−ρt, that is,

(2.3) Ψρu(t) := e−ρtu(t), t ∈ J.

For s ∈ R+ we define the Bessel potential and Sobolev-Slobodeckij spaces by complex
and real interpolation, respectively. To be precise, for s ∈ R+ \ N and integer m > s we
set

(2.4) Hs
p,ρ(J, X) :=

[
Lp

ρ(J, X), Hm
p,ρ(J, X)

]
s/m

,

and for s ∈ R+ and integer m > s we set

(2.5) W s
p,ρ(J, X) :=

(
Lp

ρ(J, X), Hm
p,ρ(J, X)

)
s/m,p

.

In Lemma 2.1 we will see that under suitable assumptions on X, the right-hand sides
do not depend on the choice of m. Moreover, (2.4) holds also in the case s ∈ N. The
corresponding spaces with zero time trace at the origin 0H

s
p,ρ(J, X) and 0W

s
p,ρ(J, X) are

defined analogously to (2.2). The results proved in this paper are obtained simultaneously
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for both types of spaces, Bessel potential and Sobolev-Slobodeckij. This motivates the
introduction of the following notation: let r ∈ R, s ≥ 0 and

F ,K ∈ {H, W}.
Then by Kr

p,ρ we either mean the space Hr
p,ρ or the space W r

p , whereas Fs
p,ρ(J,Kr

p(Ω))
represents an element of the set

{
W s

p,ρ

(
J, W r

p (Ω)
)
, W s

p,ρ

(
J, Hr

p(Ω)
)
, Hs

p,ρ

(
J, W r

p (Ω)
)
, Hs

p,ρ

(
J, Hr

p(Ω)
)}

.

This holds for all s > 0 and r ∈ R. In the case s = 0, however, we always assume F = H,
so we will not consider the case W 0

p (J, X) = B0
pp(J, X).

Tacitly and without any further explanations in this note we make use of the following
facts.

2.1. Lemma. Let 1 < p < ∞, s, s1, s2 ≥ 0, ρ ≥ 0 such that s2 > s1, X be a UMD space
(see the lines below this lemma for the definition), and J ⊆ R be an interval such that
J ⊆ [0,∞) if ρ > 0. Then the space Fs

p,ρ(J, X) is well-defined and we have
[
Fs1

p,ρ(J, X),Fs2
p,ρ(J, X)

]
θ

= Fs
p,ρ(J, X), s = s1 + θ(s2 − s1),(

Fs1
p,ρ(J, X),Fs2

p,ρ(J, X)
)
θ,p

= W s
p,ρ(J, X), s = s1 + θ(s2 − s1).

The assertions remain valid if F is replaced by 0F .

Proof. First observe that for m, ℓ ∈ N0 it is well-known that

(2.6) [Lp(I, X), Wm,p(I, X)]ℓ/m = W ℓ,p(I, X).

(For J = R this, e.g., is a consequence of ∂t ∈ H∞(Hk
p (J, X)), which is shown in the

first part of the proof of Proposition 2.7. The case of general J then easily follows by
an extension and restriction argument.) Relation (2.6) remains true for the spaces with
weight e−ρpt, since Ψρ : Hk

p,ρ(I, X) → Hk
p (I, X) is an isomorphism for all k ∈ N0. Note

that the UMD property of X implies the space Fs
p,ρ(I, X) to be reflexive. But then the

assertion follows by the reiteration theorem for complex and real interpolation functors,
respectively by the following two mixed reiteration results valid for reflexive interpolation
couples E, F :

[(E, F )θ0,p, (E, F )θ1,p]σ = (E, F )θ,p,

([E, F ]θ0 , [E, F ]θ1)σ = (E, F )θ,p,

where 1 < p < ∞, 0 < θ0 < θ1 < 1, 0 < σ < 1 such that θ = (1 − σ)θ0 + σθ1 (cf. [26,
page 66], see also [19], [15]). ¤

Recall that a Banach space X is UMD, or equivalently of class HT , if the Hilbert
transform F−1[iξ/|ξ|]F acts as a bounded operator on Lp(R, X) for some (and therefore
all) p ∈ (1,∞), where F denotes the Fourier transform. Note that the reflexive Lebesgue,
Sobolev, Sobolev-Slobodeckij, Besov, and Bessel potential spaces are known to enjoy this
property. Furthermore, if X is UMD, an easy argument based on Fubini’s theorem shows

that also W k,p
ρ (Ω, X) for k ∈ N and 1 < p < ∞ is UMD. By an interpolation argument

this property transfers to the space Fs
p,ρ(Ω, X) for s, ρ ≥ 0 and 1 < p < ∞. Therefore all

spaces used in this paper are UMD.
Also the next lemma is quite standard, hence we omit its proof.
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2.2. Lemma. Let 1 < q < ∞, s, ρ, ω ≥ 0, and X be an UMD space. Further, let
F ∈ {H, W}, T ∈ (0,∞), and J ⊆ R be an interval such that J = (0, T ) if ρ > 0. We
have that

(i) ‖ · ‖Lp
ρ(J,X) ≤ ‖ · ‖Lp

ω(J,X) ≤ e(ρ−ω)T ‖ · ‖Lp
ρ(J,X) (T > 0, 0 ≤ ω ≤ ρ),

(ii) Ψρ ∈ Isom(Fs
p,ρ((0, T0), X),Fs

p((0, T0), X)) for each T0 ∈ (0,∞]. Furthermore,
the norms

‖ · ‖W s
p,ρ((0,T0),X), ‖Ψρ · ‖W s

p ((0,T0),X),

and ‖ · ‖
H

[s]
p,ρ((0,T0),X)

+ 〈〈Ψρ(d/dt)[s]u〉〉s−[s],p,X

are equivalent,
(iii) Fs

p,ρ(J, X) = Fs
p(J, X) for T < ∞ with equivalent norms,

(iv) Fs
p,ω(R+, X) →֒ Fs

p,ρ(R+, X) for 0 ≤ ω ≤ ρ,
(v) there exists a bounded extension operator

E : Fs
p,ρ(J, X) → Fs

p,ω(R+, X)

simultaneously for all 1 < p < ∞, s, ρ, ω ≥ 0, and UMD spaces X,
(vi) statements (i) to (v) remain valid if F is replaced by 0F .

Next we clarify the notions of R-boundedness and H∞-calculus. Let X, Y be Banach
spaces. By L (X, Y ) we denote the class of all bounded operators from X to Y . The
class Isom(X, Y ) ⊆ L (X, Y ) denotes the subclass of isomorphisms. If X = Y we write
shortly L (X) and Isom(X).

2.3. Definition. A family T ⊆ L (X, Y ) is called R-bounded, if there exist a C > 0 and
a p ∈ (1,∞) such that for all N ∈ N, Tj ∈ T , xj ∈ X, and all independent symmetric
{−1, 1}-valued random variables εj on a probability space (Ω, M , µ) for j = 1, . . . , N we
have that

(2.7)

∥∥∥∥∥∥

N∑

j=1

εjTjxj

∥∥∥∥∥∥
Lp(Ω,Y )

≤ C

∥∥∥∥∥∥

N∑

j=1

εjxj

∥∥∥∥∥∥
Lp(Ω,X)

.

The smallest C such that (2.7) holds is called R-bound of the family T and denoted by
R(T ).

It is easy to see that R-boundedness implies uniform boundedness. Note that the converse
in general is only true in Hilbert spaces. We refer to [2] and [5] for a comprehensive
introduction to the notion of R-bounded operator families.

We denote the domain and the range of an operator A in X by D(A) and R(A)
respectively. A sectorial operator here we define as follows:

2.4. Definition. A closed operator A on a complex (or real) Banach space X is called

sectorial, if it is injective, D(A) = R(A) = X, (−∞, 0) ⊂ ρ(A), and, if there is some
C ≥ 0 such that ‖λ(λ + A)−1‖ ≤ C for all λ > 0.

In this case (Taylor expansion) there is some φ ∈ (0, π) and a Cφ such that the sector

Σπ−φ := {z ∈ C \ {0} : | arg z| < π − φ}
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is contained in ρ(−A), and such that sup
{
‖λ(λ + A)−1‖ : λ ∈ Σπ−φ

}
≤ Cφ. The infimum

of all such φ is called the spectral angle of A and is denoted by φA. Observe that
σ(A) \ {0} ⊂ ΣφA

. Moreover, if A is sectorial and φA ≤ π
2 , −A generates a bounded

and holomorphic C0-semigroup on X. If additionally the above set is R-bounded, i.e., if
there is a ϕ ∈ (0, π) such that

(2.8) R
{
λ(λ + A)−1 : λ ∈ Σπ−ϕ

}
< ∞,

then A is called R-sectorial. The infimum over all ϕ such that (2.8) holds is called the
R-angle of A and denoted by φR

A . Since the result of Weis [28], it is well-known that
R-sectoriality with φR

A < π/2 is equivalent to the important maximal regularity if the
underlying Banach space X is a UMD space. In particular it implies

(∂t + A) ∈ Isom
(
W 1,p((0, T ), X) ∩ Lp((0, T ), D(A)), Lp((0, T ), X)

)
,

for T > 0, 1 < p < ∞.
A special class of sectorial operators which will frequently appear throughout this

article is the set of operators admitting a bounded H∞-calculus. In order to recall this
notion, which goes back to McIntosh (see [20], [3]), we define for φ ∈ (0, π) the space

H∞(Σφ) := {h : Σφ → C : h is holomorphic and bounded}
equipped with the norm ‖ · ‖∞ = ‖ · ‖L∞(Σφ) as well as its subspace H∞

0 (Σφ) given by

(2.9) H∞
0 (Σφ) :=

{
h ∈ H∞(Σφ) : |h(z)| ≤ C

|z|s
1 + |z|2s

for some C ≥ 0, s > 0

}
.

Let A be a sectorial operator on X with spectral angle φA, and let φ ∈ (φA, π) and
θ ∈ (φA, φ). The path

(2.10) Γ : R → C, γ(r) :=

{
−reiθ , r < 0,
re−iθ , r ≥ 0,

stays in the resolvent set of A with the only possible exception at r = 0. In view of
Cauchy’s integral formula, for h ∈ H∞

0 (Σφ), we define h(A) by the Bochner integral

(2.11) h(A) :=
1

2πi

∫

Γ
h(λ)(λ − A)−1dλ,

which gives rise to a bounded operator on X in view of (2.9). Observe that the map

ΦA : H∞
0 (Σφ) → L (X), h 7→ h(A),

is an algebra homomorphism.

2.5. Definition. We say that A admits a bounded H∞-calculus, if ΦA is bounded.

The class of all operators having this property we denote by H∞(X) and the infimum of
all angles φ such that ΦA is bounded is called H∞-angle and denoted by φ∞

A . Now put
g(z) := z(1 + z)−2 and let h ∈ H∞(Σφ). Then g, g · h ∈ H∞

0 (Σφ) and we may set

h(A) = (hg)(A)g(A)−1,

initially defined on the dense subspace D(A) ∩ R(A) of X. It is easily checked that this
definition coincides with the former one in case that h ∈ H∞

0 (Σφ). Furthermore, the
set H∞

0 (Σφ) is dense in H∞(Σφ) with respect to the topology induced by local uniform
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convergence. This implies that ΦA extends to a bounded algebra homomorphism from
H∞(Σφ) to L (X). Observe that it is well known that H∞(X) is contained in the class
of R-sectorial operators (see [5]).

In analogy to the definition of R-sectoriality we say that an operator A admits an
R-bounded H∞-calculus, if there is a ϕ ∈ (0, π) such that

(2.12) R
{
h(A) : h ∈ H∞(Σϕ), ‖h‖L∞(Σϕ) ≤ 1

}
< ∞,

and write A ∈ RH∞(X). The infimum of all angles such that (2.12) holds is called

R-H∞-angle and denoted by φR,∞
A . The relation between the different angles which

appeared for a sectorial operator A in the definitions above is

(2.13) φA ≤ φR
A ≤ φ∞

A ≤ φR,∞
A .

Another notion which will appear in the next proposition is the so-called property α.

2.6. Definition. A Banach space X is said to have property α, if there exists a C > 0 and
a p ∈ (1,∞) such that for all N ∈ N, ajk ∈ C with |αjk| ≤ 1, xjk ∈ X, and all independent
symmetric {−1, 1}-valued random variables ε1

j on a probability space (Ω1, M1, µ1) and ε2
k

on a probability space (Ω2, M2, µ2) for j, k = 1, . . . , N , we have that

(2.14)

∥∥∥∥∥∥

N∑

j,k=1

ε1
jε

2
kajkxjk

∥∥∥∥∥∥
Lp(Ω1×Ω2,X)

≤ C

∥∥∥∥∥∥

N∑

j,k=1

ε1
jε

2
kxjk

∥∥∥∥∥∥
Lp(Ω1×Ω2,X)

.

By the orthogonality of the random variables it is easy to see that Hilbert spaces
enjoy this property. Moreover, Fubini’s theorem implies that Hk

p (Ω) for 1 ≤ p < ∞
and k ∈ N0 has property α. Furthermore, in view of the fact that property α is stable
under interpolation, it can be shown that all Bessel potential and Sobolev-Slobodeckij
spaces used in this note enjoy property α, too. By similar arguments as for the property
UMD, it can be seen that Fs

p,ρ(Ω, X) enjoys property α, if X does so. Therefore, all
spaces appearing in this articles have this property. Note that, compared to UMD, the
condition of property α is relatively weak. For instance, UMD implies reflexive, whereas
the space L1(Ω) still enjoys property α. However the two properties are completely
independent, i.e., neither one implies the other.

We refer to [5] and [16] for more on H∞-calculus, property α, and relations between
the notions appearing above.

Two important examples admitting an H∞-calculus are in order. First we consider
the time derivative operator

(2.15) Gu =
d

dt
u, u ∈ D(G) := 0Fs+1

p,ρ (R+, X)

in the space 0Fs
p,ρ(R+, X).

2.7. Proposition. Let 1 < p < ∞, s, ρ ≥ 0, F ∈ {H, W}, and X be a UMD space. Then
we have G ∈ H∞(0Fs

p,ρ(R+, X)) with H∞-angle φ∞
G = π/2.

If X additionally has property α, then we even have G ∈ RH∞(0Fs
p,ρ(R+, X)), i.e., G

admits an R-bounded H∞-calculus on 0Fs
p,ρ(R+, X) with R-H∞-angle φR,∞

G = π/2.
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2.8. Remark. Observe that it would be sufficient to show G ∈ H∞(0Fs
p,ρ(R+, X)). This is

a consequence of the fact that an H∞-calculus is equivalent to an R-bounded H∞-calculus
on Banach spaces enjoying property α, see [16, Theorem 5.3]. But, since the expenditure
is quite the same, we prove here directly G to admit an R-bounded H∞-calculus.

Proof. First we consider the operator G̃ = d/dt in the space Y := Hk
p (R, X). Let

φ ∈ (π/2, π) and h ∈ H∞
0 (Σφ). Formally we obtain

(Fh(G̃)f)(τ) =
1

2πi

∫

Γ
h(λ)(F (λ − G̃)−1f)(τ)dλ

=
1

2πi

∫

Γ
h(λ)(λ − iτ)−1f̂(τ)dλ

= h(iτ)f̂(τ), τ ∈ R, f ∈ Y,

where the path Γ is chosen as

Γ = {reiθ : 0 ≤ r < ∞} ∪ {re−iθ : 0 < r < ∞}

passing from θ∞ to −θ∞ for some θ ∈ (π/2, φ). In order to prove τ 7→ h(iτ) to be a
multiplier on Y , we have to show that the set

{
τ ℓ(d/dτ)ℓh(iτ) : τ ∈ R \ {0}, ℓ = 0, 1

}

is R-bounded in L (X). In view of the second statement in the theorem we will show
that even the set

M :=
{

τ ℓ(d/dτ)ℓh(iτ) : τ ∈ R \ {0}, ℓ = 0, 1, h ∈ H∞
0 (Σφ), ‖h‖∞ ≤ 1

}

is R-bounded in L (X). To this end set r(τ) := |τ | sin(φ− π/2)/2, τ ∈ R. Then the ball
Br(τ)(iτ) lies completely in the sector Σφ. By Cauchy’s formula this implies that

| d

dτ
h(iτ)| ≤ 1

r(τ)
max

|z|=r(τ)
|h(z)| ≤ Cφ

‖h‖L∞(Σφ)

|τ | ≤ Cφ
1

|τ | (τ ∈ R \ {0}).

Thus, the set M is uniformly bounded. By Kahane’s contraction principle (see [5]) this
implies the R-boundedness of M . Indeed, if N ∈ N, τj ∈ R\{0}, ℓj ∈ {0, 1}, hj ∈ H∞

0 (Σφ)
such that ‖hj‖∞ ≤ 1, xj ∈ X, and εj are independent symmetric {−1, 1}-valued random
variables on a probability space (Ω, M , µ) for j = 1, . . . , N , we obtain by Kahane that

∥∥∥
N∑

j=1

εjτ
ℓj

j (d/dτ)ℓjh(iτ)xj

∥∥∥
Lp(Ω,X)

≤ 2
∥∥∥

N∑

j=1

εjCφ‖hj‖∞xj

∥∥∥
Lp(Ω,X)

≤ 2Cφ

∥∥∥
N∑

j=1

εjxj

∥∥∥
Lp(Ω,X)

.

Consequently, we deduce for the R-bound that

R(M) ≤ 2Cφ.
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By the operator-valued version of Mikhlin’s multiplier result of Weis [28] this yields the
uniform boundedness of the set

M1 :=
{

h(G̃) : h ∈ H∞
0 (Σφ), ‖h‖∞ ≤ 1

}

in L (Lp(R, X)), consequently G̃ ∈ H∞(Y ). Since φ > π/2 was arbitrary, we also have

φ∞
eG ≤ π/2. On the other hand G̃ is the generator of the translation group on Hk

p (R, X),

which implies that φ eG = π/2. Relation (2.13) then yields φ∞
eG = π/2. If X additionally

admits property α then the result of Weis in the form as given in [14] even yields the set
M1 to be R-bounded in L (Lp(R, X)). Since R-boundedness is preserved with respect
to the strong operator topology we also have R(M1) < ∞ and therefore that

G̃ ∈ RH∞(Y ), φR,∞
eG = π/2.

Next consider G in 0H
k
p(R+, X) for k ∈ N0. Observe that

(2.16) (λ − G)−1 = r(λ − G̃)−1E0, −λ ∈ Σϕ0 , ϕ0 ∈ (0, π/2),

where r : R → R+ denotes the restriction operator and E0 : R+ → R the extension by
zero. Indeed, by the representation

(λ − G̃)−1f =

∫ t

−∞
eλ(t−s)f(s)ds

it can be easily seen that r(λ − G̃)−1E0f ∈ D(G) for all f ∈ C∞
c (R+, X). This implies

(2.17) (λ − G)r(λ − G̃)−1E0f = f

and

(2.18) r(λ − G̃)−1E0(λ − G)f = f

for all f ∈ C∞
c (R+, X). The fact that C∞

c (R+, X) lies dense in 0H
m
p (R+, X) for all m ∈

N0 and 1 < p < ∞ then shows that (2.17) and (2.18) remain valid for all f ∈ 0H
k
p(R+, X)

or f ∈ D(G) respectively. By virtue of

h(G)f = rh(G̃)E0f (f ∈ 0H
k
p(R+, X))

we obtain G ∈ H∞(0H
k
p(R+, X)) with φ∞

G = π/2, and, if X has property α, even that

G ∈ RH∞(0H
k
p(R+, X)) with φR,∞

G = π/2.
Now, for ρ ≥ 0 let Ψρ be the operator as given in (2.3) and recall that by Lemma 2.2 (ii)

Ψρ : 0H
k
p,ρ(R+, X) → 0H

k
p(R+, X) is an isomorphism. We denote the operator G in the

space 0H
k
p,ρ(R+, X) by Gρ. Observe that

(λ − Gρ)Ψ
−1
ρ u = Ψ−1

ρ (λ − pρ − G0)u (u ∈ D(G0)),

which implies that

(λ − Gρ) = Ψ−1
ρ (λ − pρ − G0)Ψρ.

From G0 ∈ H∞(0H
k
p(R+, X)) it follows that G0 + ρ ∈ H∞(0H

k
p(R+, X)) and φ∞

G0+ρ =

φ∞
G0

= π/2. The fact that a bounded H∞-calculus is invariant under conjugation with
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isomorphisms implies that Gρ ∈ H∞(0H
k
p,ρ(R+, X)) and φ∞

Gρ
= π/2. In view of defini-

tions (2.4) and (2.5) an interpolation argument shows that Gρ ∈ H∞(0Fs
p,ρ(R+, X)) with

φ∞
Gρ

= π/2 for arbitrary ρ, s ≥ 0 and 1 < p < ∞. Finally, if X also admits property α

the set
{h(G0) : h ∈ H∞(Σφ), ‖h‖∞ ≤ 1}

is R-bounded in L (0H
k
p(R+, X))). Since h ∈ H∞(Σφ) implies that hρ ∈ H∞(Σφ) for

ρ ≥ 0, where hρ(z) := h(z + ρ), we immediately see that also the set

{h(G0 + ρ) : h ∈ H∞(Σφ), ‖h‖∞ ≤ 1}
is R-bounded in L (0H

k
p(R+, X))). Then, the assertion follows by an interpolation argu-

ment and in view of the facts that also the property of R-boundedness is invariant under
conjugation with isomorphisms and stable under complex and real interpolation. ¤

We continue with a corresponding result for the Laplacian

−∆ : D(−∆) → Kr
p(R

n), D(−∆) := Kr+2
p (Rn).

2.9. Proposition. Let 1 < p < ∞, r ∈ R, ρ ≥ 0, and K ∈ {H, W}. Then −∆ ∈
RH∞(Kr

p(R
n)) and φR,∞

−∆ = 0.

Proof. This is analogous to the first part of the proof of Proposition 2.7. In fact, for
φ ∈ (0, π) arbitrarily small and h ∈ H∞(Σφ) we obtain

(Fh(−∆)f)(ξ) = h(|ξ|2)f̂(ξ), ξ ∈ R
n, f ∈ Hk

p (Rn).

Cauchy’s formula also here implies the set

M :=
{
ξαDαh(|ξ|2) : ξ ∈ R

n \ {0}, α ∈ N
n
0 , h ∈ H∞(Σφ), ‖h‖∞ ≤ 1

}

to be uniformly bounded on the Hilbert space C. By virtue of the fact that R-boundedness
and uniform boundedness are equivalent on Hilbert spaces, the set M in this case au-
tomatically is R-bounded. Thus, by the n-dimensional version of the operator valued
Mikhlin type multiplier result of Weis (see [14] or [5]) we have that

M1 := {h(−∆) : h ∈ H∞(Σφ), ‖h‖∞ ≤ 1}
is R-bounded, which yields the result on the space Hk

p (Rn), k ∈ N0, 1 < p < ∞. An
interpolation argument implies the assertion. ¤

We denote by

(2.19) Dn := (−∆)1/2, D(Dn) := 0Fs
p,ρ(R+,Kr+1

p (Rn))

the natural extension of (−∆)1/2 to the space 0Fs
p,ρ(R+,Kr

p(R
n)). The fact that for

arbitrary 1 < p < ∞ and r ∈ R the space Kr
p(R

n) has property α, immediately implies
the following result.

2.10. Corollary. Let 1 < p < ∞, r ∈ R, ρ, s ≥ 0, and F ,K ∈ {H, W}. Then we have

(i) G ∈ RH∞
(
0Fs

p,ρ(R+,Kr
p(R

n))
)
, φR,∞

G = π/2,

(ii) Dn ∈ RH∞
(
0Fs

p,ρ(R+,Kr
p(R

n))
)
, φR,∞

G = 0,

for the operator G as defined in (2.15) and Dn as defined in (2.19).
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Proof. (i) is an immediate consequence of Proposition 2.7. For a sectorial operator A
in a Banach space X it is not difficult to see that A ∈ RH∞(X) implies that Aα ∈
RH∞(X) and φR,∞

Aα ≤ φR,∞
A for α ∈ (0, 1]. Hence Proposition 2.9 yields Dn = (−∆)1/2 ∈

RH∞(Kr
p(R

n)) and φR,∞
Dn

= 0. By Fubini’s theorem we therefore easily deduce Dn ∈
RH∞(0H

k
p,ρ(R+,Kr

p(R
n))) for k ∈ N0 and 1 < p < ∞. Then, an interpolation argument

yields (ii). ¤

3. Maximal regularity for inhomogeneous symbols

Here we prove the main result, that is, the maximal regularity for inhomogeneous
symbols in Bessel potential and Sobolev-Slobodeckij classes. We will restrict our consid-
erations to rotation invariant symbols in space as they appear frequently in whole-space
and half-space model problems. For fixed θ ∈ (0, π) and ǫ ∈ (0, π−θ

2 ) we will consider

polynomial symbols P : Σǫ × Σθ → C of the form

(3.1) P (z, λ) =
∑

m∈I

amzm1λm2ω(z, λ)m3
(
(z, λ) ∈ Σǫ × Σθ

)

with am ∈ C \ {0}, ω(z, λ) :=
√

λ + z2, and I ⊂ N
3
0 being a finite set of exponents. To

analyze this symbol, we will follow the Newton polygon approach described in [12] and
[6].

For this purpose, we define the Newton polygon N(P ) ⊂ [0,∞)2 as the convex hull of
the set

{(0, 0)} ∪
⋃

m∈I

{
(m1 + m3, m2), (m1, m2 + m3

2 ), (m1 + m3, 0), (0, m2 + m3
2 )

}
.

Denote the vertices of N(P ) by v0 := (0, 0), v1, . . . , vJ+1, numbered in counter-clockwise
direction. Then for vj = (rj , sj) the vector 1q

1+γ2
j

(1, γj) with

γj :=
rj − rj+1

sj+1 − sj
(j = 1, . . . , J)

is an exterior normal to the edge [vjvj+1] connecting vj and vj+1.
For simplicity, we assume that N(P ) has no edge parallel to the coordinate axes but

not lying on the axis. More precisely, we assume

0 < γ1 < · · · < γJ < ∞.

In this case, we have N(P ) = conv(Ĩ) with

Ĩ := {(0, 0)} ∪
⋃

m∈I

{
(m1 + m3, m2), (m1, m2 + m3

2 )
}
.

The main idea of the Newton polygon approach is to deal with different inhomo-
geneities by assigning a weight γ > 0 to the co-variable λ with respect to z, i.e., to set
|λ| ≈ |z|γ . In a natural way, for γ > 0 the γ-degree dγ(P ) is defined as

dγ(P ) := max{m1 + γm2 + m3 max{1, γ/2} : m ∈ I}.
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Note that in the same way for ω(z, λ) =
√

λ + z2 the γ-degree is given by

dγ(ω) =

{
1, γ ≤ 2,

γ/2, γ ≥ 2.

Furthermore, the γ-principal part of P is defined as

Pγ(z, λ) := lim
ρ→∞

ρ−dγ(P )P (ρz, ργλ)
(
(z, λ) ∈ Σǫ × Σθ

)
.

Obviously the “leading exponents” for weight γ are given by

Iγ := {m ∈ I : m1 + γm2 + m3 max{1, γ/2} = dγ(P )}.
This yields

(3.2) Pγ(z, λ) =
∑

m∈Iγ

amzm1λm2ωγ(z, λ)m3

with

ωγ(z, λ) =





√
λ, γ > 2,√
λ + z2, γ = 2,

z, γ < 2.

Geometric observations show that Iγj consists of all m ∈ I for which one of the points
(m1 + m3, m2) or (m1, m2 + m3

2 ) lies on [vjvj+1], so the weights γj correspond to the
edges of the Newton polygon. Similarly, for γj−1 < γ < γj the set Iγ consists of all
points m ∈ I for which one of the points (m1 + m3, m2) or (m1, m2 + m3

2 ) are equal to
vj . These values of γ correspond to the vertices of the Newton polygon.

3.1. Theorem. Let θ ∈ (0, π) and ǫ ∈ (0, π−θ
2 ). Assume that in the situation above we

have

(3.3) Pγ(z, λ) 6= 0 (z ∈ Σǫ \ {0}, λ ∈ Σθ \ {0}, γ > 0).

Then there exist constants λ0 > 0 and C > 0 such that the inequality

(3.4) |P (z, λ)| ≥ C W (z, λ) (z ∈ Σǫ, λ ∈ Σθ, |λ| ≥ λ0)

holds, where the weight function W is defined by

W (z, λ) :=
∑

(n1,n2)∈Ĩ

|z|n1 |λ|n2 .

Proof. The proof follows the lines of [6], Section 2.4, and we will omit some details. Fix
η > 0. It was shown in [12], Section 4.2, that there exists a λ0 > 0 and a partition of the
form

{
(z, λ) ∈ Σǫ × Σθ : |λ| ≥ λ0

}
⊂

J⋃

j=1

Gj ∪
J+1⋃

j=1

G̃j

with the following properties:
(i) Let j ∈ {1, . . . , J}. Then for each n = (n1, n2) ∈ Ĩ \ [vjvj+1] we have

|z|n1 |λ|n2 ≤ η
∑

(n′

1,n′

2)∈[vjvj+1]∩Ĩ

|z|n′

1 |λ|n′

2
(
(z, λ) ∈ Gj

)
.
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(ii) Let j ∈ {1, . . . , J + 1}. Then for every (n1, n2) ∈ Ĩ \ {vj} we have

|z|n1 |λ|n2 ≤ η|z|rj |λ|sj
(
(z, λ) ∈ G̃j

)
.

The symbol |P (z, λ)| is estimated in each subdomain Gj , G̃j separately. We will

restrict ourselves to the case (z, λ) ∈ Gj . The case (z, λ) ∈ G̃j can be done in a similar
way.

Let j ∈ {1, . . . , J}. We will additionally assume γj < 2 and thus ωγ(z, λ) = z, the
cases γj = 2 and γj > 2 can be treated analogously.

From (3.2) we obtain

(3.5) Pγj (z, λ) =
∑

m∈Iγj

amzm1+m3λm2 .

Note that all exponents are integer, and Pγj (z, λ) is a polynomial in (z, λ). As vj = (rj , sj)
and vj+1 = (rj+1, sj+1) with rj > rj+1 and sj < sj+1, we see that all terms on the right-
hand side of (3.5) have the common factor zrj+1λsj , i.e., we have

Pγj (z, λ) = zrj+1λsj P̃γj (z, λ)

with

P̃γj :=
∑

m∈Iγj

amzm1+m3−rj+1λm2−sj .

Because all exponents in Pγj lie on [vjvj+1], the reduced polynomial P̃γj can be written
as

P̃γj (z, λ) =

rj−rj+1∑

k=0

ckz
kλsj+1−sj−k/γj

with complex coefficients ck. We have

c0z
rjλsj = Pγ(z, λ) (γj−1 < γ < γj),

and from (3.3) we conclude c0 6= 0. In the same way we get crj−rj+1 6= 0. With this and
(3.3) for γ = γj we obtain

P̃γj (z, λ) 6= 0
(
(z, λ) ∈ Σǫ × Σθ \ {(0, 0)}

)
.

As P̃γj is homogeneous in (z, λγj ), we obtain an estimate of the form

|P̃γj (z, λ)| ≥ C0

(
|z|rj−rj+1 + |λ|sj+1−sj

)
.

Consequently, we have

(3.6)

|Pγj (z, λ)| ≥ C0

(
|z|rj |λ|sj + |z|rj+1 |λ|sj+1

)

≥ C1

∑

(n1,n2)∈Ĩ∩[vjvj+1]

|z|n1 |λ|n2

with constants C0, C1 > 0.
Now we take advantage of the fact that Gj may be defined in the form

Gj = {(z, λ) ∈ Σǫ × Σθ, C
−1
2 |z|γj ≤ |λ| ≤ C2|z|γj}
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with a constant C2 > 0 (see [12] for details). Therefore

lim
|λ|→∞, (z,λ)∈Gj

ω(z, λ) − ωγj (z, λ)

ωγj (z, λ)
= lim

|λ|→∞, (z,λ)∈Gj

(√
λ

z2
+ 1 − 1

)
= 0.

Here we used γj < 2. Consequently,
∣∣∣Pγj (z, λ) −

∑

m∈Iγj

amzm1λm2ω(z, λ)m3

∣∣∣ ≤ C1

4

∑

(n1,n2)∈Ĩ∩[vjvj+1]

|z|n1 |λ|n2

for all (z, λ) ∈ Gj satisfying |λ| ≥ λ0 for sufficiently large λ0. Now we can estimate, using
property (i),

|P (z, λ)| ≥ |Pγj (z, λ)| −
∣∣∣Pγj (z, λ) −

∑

m∈Iγj

amzm1λm2ω(z, λ)m3

∣∣∣

−
∣∣∣

∑

m∈I\Iγj

amzm1λm2ω(z, λ)m3

∣∣∣

≥
(
C1 −

C1

4
− ηC3

) ∑

(n1,n2)∈Ĩ∩[vjvj+1]

|z|n1 |λ|n2

≥ C1

2

∑

(n1,n2)∈Ĩ∩[vjvj+1]

|z|n1 |λ|n2
(
(z, λ) ∈ Gj , |λ| ≥ λ0

)
(3.7)

for λ0 sufficiently large and η sufficiently small, where we have set

C3 := card(Ĩ) · max{|am| : m ∈ I}.
For (z, λ) ∈ Gj the weight function W can be estimated by

W (z, λ) =
∑

(n1,n2)∈Ĩ

|z|n1 |λ|n2 ≤
(
1 + η card(Ĩ)

) ∑

(n1,n2)∈Ĩ∩[vjvj+1]

|z|n1 |λ|n2 .

This fact and (3.7) imply the desired inequality (3.4) for (z, λ) ∈ Gj . ¤

In the next result we show how symbols satisfying condition (3.3) give rise to isomor-
phic operators on their natural domain arising from the vertices of the Newton polygon.

3.2. Theorem. Let 1 < p < ∞, r ∈ R, ρ, s ≥ 0, and let A, B be resolvent commuting
operators such that for each γ ∈ R, σ ≥ 0,

(i) D(A) = 0Fσ
p,ρ(R+,Kγ+1

p (Rn)) and D(B) = 0Fσ+1
p,ρ (R+,Kγ

p(Rn)),

(ii) A, B ∈ H∞(0Fσ
p,ρ(R+,Kγ

p(Rn))) with φ∞
A , φ∞

B independent of γ, σ, p, and ρ.

Furthermore, let P be a symbol as defined in (3.1) and let vj = (rj , sj), j = 0, . . . , J + 1
be the vertices of the Newton polygon corresponding to P . Suppose that there exist θ ∈
(φ∞

B , π) and ǫ ∈ (φ∞
A , π−θ

2 ) such that P satisfies condition (3.3). Then there exists a
λ0 > 0 such that

P (A, B + λ0) : D(P (A, B + λ0)) → 0Fs
p,ρ(R+,Kr

p(R
n)).
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is invertible, where

D(P (A, B + λ0)) =
J+1⋂

j=1

0Fs+sj
p,ρ (R+,Kr+rj

p (Rn))

Proof. By the assumption on P and Theorem 3.1 it follows that for appropriate λ0 > 0
the functions

(3.8) mj(z, λ) :=
(1 + z)[rj ](1 + zrj−[rj ])(1 + λ)[sj ](1 + λsj−[sj ])

P (z, λ + λ0)
, j = 0, 1, . . . , J + 1,

are uniformly bounded on Σǫ × Σθ, where [s] denotes the largest integer smaller than
s ∈ R. Since Fs

p,ρ(R+,Kr
p(R

n)) has property α, as mentioned in Remark 2.8 we know
by [16, Theorem 5.3] that A even admits the stronger property of an R-bounded H∞-

calculus. Replacing z by A in mj , which is possible in view of φR,∞
A < ǫ, we therefore

obtain that

R
({

mj(A, λ), λ ∈ Σθ

})
≤ C

for j = 0, . . . , J + 1. Since A and B are resolvent commuting, φ∞
B < θ and by virtue of

B ∈ H∞(0Fs
p,ρ(R+,Kr

p(R
n))), we may apply Theorem 4.4 in [16] to the result

(3.9) ‖mj(A, B)‖L (0F
s
p,ρ(R+,Kr

p(Rn))) ≤ C, j = 0, . . . , J + 1.

Note that we cannot argue directly that

1 + Bα : 0Fσ+α
p,ρ (R+,Kγ

p(Rn)) → 0Fσ
p,ρ(R+,Kγ

p(Rn))

is an isomorphism for arbitrary α > 0. This is due to the fact that possibly φ∞
B > 0 and

we therefore do not have enough information on the spectrum of Bα for large α > 0.
Therefore, we split the powers in a fractional part less than 1 and an integer part. Since
condition (i) is supposed to be valid for all γ ∈ R and σ ≥ 0 we have that

(1 + B)k : 0Fσ+k
p,ρ (R+,Kγ

p(Rn)) → 0Fσ
p,ρ(R+,Kγ

p(Rn))

is an isomorphism for all k ∈ N0, γ ∈ R, and σ ≥ 0. Furthermore, condition (ii) implies
that

D(Bα) = [0Fσ
p,ρ(R+,Kγ

p(Rn)), D(B)]α = 0Fσ+α
p,ρ (R+,Kγ

p(Rn))

(cf. [26]) and that φ∞
Bα ≤ φ∞

B for α ∈ [0, 1]. Hence we have that

1 + Bα : 0Fσ+α
p,ρ (R+,Kγ

p(Rn)) → 0Fσ
p,ρ(R+,Kγ

p(Rn))

is an isomorphism for all α ∈ [0, 1], γ ∈ R, and σ ≥ 0. This yields that

(1 + B)[sj ](1 + Bsj−[sj ]) : 0Fs+sj
p,ρ (R+,Kr

p(R
n)) → 0Fs

p,ρ(R+,Kr
p(R

n))

is an isomorphism. An analogous argumentation for the operator A shows that also

(1 + Arj−[rj ])(1 + A)[rj ] : 0Fσ
p,ρ(R+,Kγ+rj

p (Rn)) → 0Fσ
p,ρ(R+,Kγ

p(Rn))

is an isomorphism. Summarizing, we obtain that

(1 + Arj−[rj ])(1 + A)[rj ](1 + B)[sj ](1 + Bsj−[sj ]) : 0Fs+sj
p,ρ (R+,Kr+rj

p (Rn))

→ 0Fs
p,ρ(R+,Kr

p(R
n))
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is an isomorphism as well for all j = 1, . . . , J + 1. In combination with (3.8) and (3.9)
this yields the assertion. ¤

By employing the shift e−λ0t and Lemma 2.2 we immediately obtain the following
result.

3.3. Theorem. Let r ∈ R, s, ρ ≥ 0 and 1 < p < ∞. Let G be the time derivative operator
as defined in (2.15) and A an operator such that for each γ ∈ R, σ ≥ 0,

(i) D(A) = 0Fσ
p,ρ(R+,Kγ+1

p (Rn)),

(ii) A ∈ H∞(0Fσ
p,ρ(R+,Kγ

p(Rn))) with φ∞
A independent of γ, σ, ρ, and p.

Furthermore, let P be a symbol satisfying the assumptions of Theorem (3.2), in par-
ticular condition (3.3) for some θ ∈ (π

2 , π) and ǫ ∈ (φ∞
A , π−θ

2 ). Then, if λ0 is the
constant obtained in Theorem 3.2, for ω ≥ λ0 the operator P (A, G) : D(P (A, G)) →
0Fs

p,ω+ρ(R+,Kr
p(R

n)) is invertible, where

D(P (A, G)) :=
J+1⋂

j=1

0Fs+sj

p,ω+ρ(R+,Kr+rj
p (Rn)).

Proof. Denote by Gρ the time derivative operator in the space 0Fs
p,ρ(R+,Kr

p(R
n)). We

have that

(λ − Gω)Ψ−1
ω u = Ψ−1

ω (λ − ω − Gρ)u (u ∈ D(Gρ)),

which implies that

(λ − Gω)−1 = Ψ−1
ω (λ − (Gρ + ω))−1Ψω.

The Cauchy integral representation for the bounded holomorphic function λ 7→ P (A, λ)−1

then gives us

P (A, Gω)−1 = Ψ−1
ω P (A, Gρ + ω)−1Ψω.

By the assumption ω ≥ λ0, the result now follows from Theorem 3.2 with B = Gρ,
Theorem 2.7, and from the fact that

Ψω ∈ Isom(Fs
p,ρ+ω(R+, X),Fs

p,ρ(R+, X)),

which is an obvious consequence of Lemma 2.2(ii) for arbitrary UMD spaces X. ¤

4. The trace operator to the Newton polygon spaces

Theorem 3.3 is the key ingredient to obtain maximal regularity for model problems in
zero time trace spaces. However, for a suitable treatment of related nonlinear problems
maximal regularity of the corresponding fully inhomogeneous systems without the zero
time trace assumption is required. In many applications these general systems can be
reduced to zero time trace systems, if the existence of suitable extension operators for the
time traces are established. In other words, it is important to have the surjectivity of the
time trace operator related to the function classes determined by the Newton polygon.
The purpose of this section is to derive a general result in this direction.

Before we turn our attention to the trace of the Newton polygon we need to prepare
embedding results for anisotropic spaces. The first one will be obtained as a application
of the mixed derivative theorem, which goes back to Sobolevskii [25] and reads as follows:
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4.1. Lemma. Suppose X is a UMD space which has property α. Let A and B be resolvent
commuting operators satisfying A, B ∈ H∞(X) and φ∞

A + φ∞
B < π. Then, there is a

constant C > 0 such that

‖AσB1−σx‖X ≤ C‖Ax + Bx‖X (x ∈ D(A) ∩ D(B), σ ∈ [0, 1]).

Proof. Let θ, ǫ ∈ (0, π) such that θ > φ∞
B , ǫ > φ∞

A , and θ + ǫ < π. We set

mσ(z, λ) := λσz1−σ(λ + z)−1.

By employing Youngs’s inequality we easily find that

|mσ(z, λ)| ≤ |λ|σ|z|1−σ|λ + z|−1

≤ (σ|λ| + (1 − σ)|z|) |λ + z|−1

≤ C ((z, λ) ∈ Σǫ × Σθ, σ ∈ [0, 1]) .

Since X has property α we obtain A ∈ RH∞(X) and φR,∞
A = φ∞

A . Thus, the set

{mσ(A, λ) : λ ∈ Σθ, σ ∈ [0, 1]}
is R-bounded on X. By [16, Theorem 4.4] we conclude

‖mσ(A, B)‖X ≤ C (σ ∈ [0, 1]),

which proves the assertion. ¤

4.2. Remark. Note that Sobolevskii proved the above result under much less strict as-
sumptions, see also [11, Lemma 9.7].

As an application we obtain

4.3. Lemma. Let 1 < p < ∞, ρ ≥ 0, F ,K ∈ {H, W}, and J ⊆ R be an interval such
that J ⊆ R+ if ρ > 0. Suppose also that s, α, β ≥ 0, r ∈ R. Then for each σ ∈ [0, 1] the
following embedding holds:

Fs+α
p,ρ (J,Kr

p(R
n)) ∩ Fs

p,ρ(J,Kr+β
p (Rn)) →֒ Fs+σα

p,ρ (J,Kr+(1−σ)β
p (Rn)).

Proof. W.l.o.g. we will restrict ourselves to the case α ∈ [0, 1]. The general case then
follows by iterating. We will first assume that J = R (hence ρ = 0). We define the
operators A, B in X := Fs

p(R,Kr
p(R

n)) by

Au : = (1 − ∆)β/2u, u ∈ D(A) = Fs
p(R,Kr+β

p (Rn))

Bu : = (∂t + 1)αu, u ∈ D(B) = Fs+α
p (R,Kr

p(R
n)).

From the proof of Proposition 2.7 we know that B1/α ∈ H∞(Hk
p (R,Kr

p(R
n))) for k ∈ N0

and that φ∞
B1/α = π/2. By an interpolation argument we see that this result still holds on

the space X. Thus, we also have B ∈ H∞(X) and φ∞
B ≤ π/2. Analogously to the proof of

Corollary 2.10 we obtain by virtue of Proposition 2.9 that A ∈ H∞(X) and φ∞
A = 0. The

Dore-Venni theorem (cf. [21, Theorem 8.4]) or once again [16, Theorem 4.4] therefore
implies

(4.1) A + B : D(A) ∩ D(B) → X
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to be an isomorphism. Next we determine the domains of the operators Aσ, Bσ in X
for σ ∈ [0, 1]. Note that by the H∞-calculus of B on X and the operator (1 − ∆)β/2 on
Kr

p(R
n) we have that

D(Bσ) = [X, D(B)]σ and

D((1 − ∆)βσ/2) = [Kr
p(R

n),Kr+β
p (Rn)]σ = Kr+βσ

p (Rn)(4.2)

for all σ ∈ (0, 1). In view of the fact that
[
Fs

p(R,Kr
p(R

n)),Fs+α
p (R,Kr

p(R
n))

]
σ

= Fs+ασ
p (R,Kr

p(R
n)),

we therefore obtain

D(Bσ) = Fs+ασ
p (R,Kr

p(R
n)) (σ ∈ [0, 1]).

Furthermore, by the definition of fractional powers for sectorial operators given by
Cauchy’s formula it is clear that Aσ = (1 − ∆)βσ/2. Relation (4.2) therefore yields
that for k ∈ N0 the domain of Aσ in Hk

p (R,Kr
p(R

n)) obviously is represented as D(Aσ) =

Hk
p (R,Kr+βσ

p (Rn)). An interpolation argument therefore implies that in the space X we
have

D(Aσ) = Fs
p(R,Kr+βσ

p (Rn)) (σ ∈ [0, 1]).

The mixed derivative theorem, i.e. Lemma 4.1, and the invertibility of A : D(A) → X
and B : D(B) → X now yield

‖u‖
Fs+ασ

p (R,K
r+(1−σ)β
p (Rn))

≤ C‖Bσu‖
Fs

p(R,K
r+(1−σ)β
p (Rn))

≤ C‖A1−σBσu‖X

≤ C‖(A + B)u‖X ≤ C‖u‖D(A)∩D(B).(4.3)

This proves the assertion for J = R and ρ = 0.
Suppose now that J ⊆ R is an arbitrary interval and let

EJ ∈ L (Fs
p(J, Y ),Fs

p(R, Y ))

be an appropriate extension operator existing simultaneously for all p ∈ (1,∞), s ≥ 0, and
UMD spaces Y . Note that such an extension operator can be constructed by standard
methods as described in [26] or [1]. Then the result for J and ρ = 0 follows by first
extending the functions to R, using (4.3), and then restricting again to J . The result for
ρ 6= 0 then is an obvious consequence of Lemma 2.2 (ii). ¤

The next result is obtained as a consequence of a general trace result proved in [29].

4.4. Lemma. Let p, J, ρ,F ,K be as in Lemma 4.3. Suppose also that k ∈ N0 and
s1, s2, r1, r2 ∈ R such that

max{0, k − 1 + 1/p} ≤ s1 < k + 1/p < s2 < k + 1 + 1/p.

Then,

Fs2
p,ρ(J,Kr2

p (Rn)) ∩ Fs1
p,ρ(J,Kr1

p (Rn)) →֒ BUCk
ρ(J, W r1−γ(k+1/p−s1)

p (Rn)),

where γ := (r1 − r2)/(s2 − s1).
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Proof. Also here it is sufficient to consider the case ρ = 0 by virtue of Lemma 2.2 (ii).
Next we show that it suffices to consider the case k = 0. In fact, as a consequence of
Lemma 4.3 we may assume w.l.o.g. that s1 ≥ k. But then

Fs2−k
p (J,Kr2

p (Rn)) ∩ Fs1−k
p (J,Kr1

p (Rn)) →֒ BUC(J, W r1−γ(k+1/p−s1)
p (Rn))

yields that ∂tu ∈ BUC(J, W
r1−γ(k+1/p−s1)
p (Rn)), 0 ≤ ℓ ≤ k, for each u in the space

Fs2
p (J,Kr2

p (Rn))∩Fs1
p (J,Kr1

p (Rn)), and the assertion follows. Hence, it remains to prove
the case k = 0. To this end we assume that J = R. As in Lemma 4.3 the general result
then follows by extending and restricting.

From [29] it follows that

Hs2
p (R,Kr2

p (Rn)) ∩ Hs1
p (R, D(As2−s1)) →֒ BUC

(
R, (Kr2

p (Rn), D(A))s2−1/p

)

for A = (1−∆)γ/2 considered in the space Kr2
p (Rn). Actually in [29] this result is proved

for J = R+. But by a simple reflection argument it follows also for J = R. In view of

D(As2−s1) = D((1 − ∆)(r1−r2)/2) = Kr1
p (Rn)

and

(Kr2
p (Rn), D(A))s2−1/p = (Kr2

p (Rn),Kr2+γ
p (Rn))s2−1/p = W r2+γ(s2−1/p)

p (Rn)

= W r1−γ(1/p−s1)
p (Rn)

we obtain the assertion for the case F = H. Next, let 0 < ε < min{s1, 1/p− s1} and set

E± := Hs2±ε
p (R,Kr2

p (Rn)) ∩ Hs1±ε
p (R,Kr1

p (Rn))).

Analagously to the proof of Lemma 4.3 we deduce

A + B ∈ Isom
(
E±, Hs1±ε

p (R,Kr2
p (Rn))

)

for A = (1−∆)(r1−r2)/2 and B = (∂t+1)s2−s1 considered in the space Hs1±ε
p (R,Kr2

p (Rn)).
Interpolating by the real method then implies

A + B ∈ Isom
(
(E−, E+)1/2,p, W s1

p (R,Kr2
p (Rn))

)
.

From the fact that also

A + B ∈ Isom
(
W s2

p (R,Kr2
p (Rn)) ∩ W s1

p (R,Kr1
p (Rn))), W s1

p (R,Kr2
p (Rn))

)
,

we conclude
(E−, E+)1/2,p = W s2

p (R,Kr2
p (Rn)) ∩ W s1

p (R,Kr1
p (Rn))).

Since the trace operator γt0u := u|t=t0 is bounded from E± onto W
r1+γ(1/p−s1±ε)
p (Rn),

again by real interpolation we obtain

γt0 ∈ L

(
W s2

p (R,Kr2
p (Rn)) ∩ W s1

p (R,Kr1
p (Rn))), W r1+γ(1/p−s1)

p (Rn)
)

.

Strong continuity of the translation group then yields the assertion for F = W . ¤

Let N(P ) still be the Newton polygon with vertices v0, v1, . . . , vJ+1 as defined in the
last section. As before, for vj = (rj , sj) we set

γj :=
rj − rj+1

sj+1 − sj
, j = 1, . . . , J,
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and assume

(4.4) 0 < γ1 < γ2 < · · · < γJ < ∞,

i.e., we still avoid edges parallel to the coordinate axes, if not lying on one of the axes.
For the trace result, we additionally assume that sj 6= k + 1

p holds for all j ∈ 1, . . . , J

and k ∈ N0. For simplicity of notation, w.l.o.g. let us consider the case

(4.5) s1 = 0 <
1

p
< s2 < 1 +

1

p
< s3 < 2 +

1

p
< · · · < sJ < J − 1 +

1

p
< sJ+1.

Furthermore, since in the sequel 1 < p < ∞, ρ ≥ 0, and J = (0, T ) will always be fixed
and only the regularities r, s change, we introduce the notation

E(s, r) := Fs
p,ρ(J,Kr

p(R
n)),

where still F ,K ∈ {H, W}. By this notation the intersection space defined by the Newton
polygon N(P ) is of the form

E =
J+1⋂

j=1

E(sj , rj).

By Lemma 4.4 we obtain for each j = 1, . . . , J the sharp embedding

E(sj+1, rj+1) ∩ E(sj , rj) →֒ BUCj−1
ρ

(
J, W

rj−γj(j−1+1/p−sj)
p (Rn)

)
.

This implies that the trace operators

Tj : E → W
rj−γj(j−1−sj+1/p)
p (Rn), η 7→ Tjη := ∂j−1

t η(0), j = 1, . . . , J,

are bounded. We set

F := ΠJ
j=1W

rj−γj(j−1−sj+1/p)
p (Rn)

and define the full trace operator on E by

(4.6) T : E → F, η 7→ (Tjη)J
j=1 =

(
∂j−1

t η(0)
)J

j=1
.

For the treatment of boundary value problems with fully inhomogeneous right hand sides
the following result is of interest.

4.5. Theorem. The trace operator T as defined in (4.6) is surjective. More precisely,
there exists a bounded linear operator R : F → E such that T ◦ R = idF.

Proof. Let σ = (σ1, . . . , σJ) ∈ F. We set

ηj(t) :=

(
J∑

k=1

cjke
−ktAγj

)
A−(j−1)γjσj , t > 0, j = 1, . . . , J,

with A := (1 − ∆)−1/2. According to Corollary 2.10 we know that A admits a bounded
H∞-calculus on all spaces E(s, r) and therefore the semigroups appearing in the definition
of ηj are well-defined. Now determine the constants cjk by requiring the ηj to satisfy

(4.7) ∂m−1
t ηj(0) = δj−1,m−1σj (j, m = 1, . . . , J),
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with the Kronecker symbol δk,ℓ. In view of

∂m−1
t ηj(t) =

(
J∑

k=1

(−k)m−1cjke
−ktAγj

)
A−(j−m)γjσj ,

requirement (4.7) yields the linear systems

V cj = ej , j = 1, . . . , J,

for cj := (cj1, . . . , cjJ). Here ej is the j-th unit vector and V the Vandermonde matrix

V =
(
(−k)m−1

)J

m,k=1
.

By virtue of detV = Π1≤k<ℓ≤J(ℓ − k) 6= 0 this system is uniquely solvable. This implies
the existence of reals cjk, j, k = 1, . . . , J such that (4.7) is satisfied.

Next, we claim that

(4.8) ηj ∈ E(sj + rj/γj , 0) ∩ E(0, rj + γjsj), (j = 1, . . . , J).

Indeed, observe that

A−(j−1)γjσj ∈ W
rj−γj(

1
p
−sj)

p (Rn) =
(
Krj+γj(sj−1)

p (Rn), D(Aγj )
)

1−1/p,p

where D(Aγj ) denotes the domain of the operator Aγj in the space Krj+γj(sj−1)
p (Rn).

Hence, the maximal regularity of Aγj on the space Krj+γj(sj−1)
p (Rn) yields

e−ktAγj
A−(j−1)γjσj ∈ E(1, rj + γj(sj − 1)) ∩ E(0, rj + γjsj).

On the other hand, taking the m-th time derivative we obtain

∂m
t e−ktAγj

A−(j−1)γjσj = (−k)me−ktAγj
A(m+1−j)γjσj .

By virtue of A(m+1−j)γjσj ∈ W
rj−γj(m+ 1

p
−sj)

p (Rn), here the maximal regularity of Aγj on

the space Krj−γj(m+1−sj)
p (Rn) gives us

∂m
t e−ktAγj

A−(j−1)γjσj ∈ E(1, rj − γj(m + 1 − sj)) ∩ E(0, rj − γj(m − sj)).

An application of Lemma 4.3 shows that the latter space is continuously embedded in
E(τ, rj − γj(m − sj + τ)) for each τ ∈ [0, 1]. We can always find m ∈ N0 and τ ∈ [0, 1]
such that

rj − γj(m + τ − sj) = 0 ⇔ m + τ =
rj

γj
+ sj .

This implies that

e−ktAγj
A−(j−1)γjσj ∈ E(τ + m, 0) = E(rj/γj + sj , 0).

Summarizing, we obtain

‖ηj‖E(sj+rj/γj ,0)∩E(0,rj+γjsj) ≤ C
(
‖A(m+1−j)γjσj‖

W
rj−γj(m+1/p−sj)
p (Rn)

+‖A−(j−1)γjσj‖
W

rj−γj(1/p−sj)
p (Rn)

)

≤ C‖σj‖
W

rj−γj(j−1+1/p−sj)
p (Rn)

,(4.9)
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which proves the claimed regularity for ηj in (4.8).
Let

g(r) := −rj/γj + sj

rj + γjsj
r +

rj

γj
+ sj =

r − rj

rj+1 − rj
(sj+1 − sj) + sj , r ∈ [0, rj + γjsj ],

be the line connecting the points (0, rj/γj + sj) and (rj + γjsj , 0). By construction, it
is clear that the edge [vjvj+1] is a part of the graph of g. Thus, by the convexity of
the Newton polygon, we see that N(P ) is completely contained in each of the triangles
tr(0, rj + γjsj , rj/γj + sj), j = 1, . . . , J . These geometric observations show that

sk ≤ g(rk) (k = 1, . . . , J + 1).

On the other hand, Lemma 4.3 yields the embedding

E(sj + rj/γj , 0) ∩ E(0, rj + γjsj) →֒ E(g(r), r), r ∈ [0, rj + γjsj ].

Combining these two facts and having in mind that rk ∈ [0, rj+γjsj ] for all k = 1, . . . , J+
1 results in

E(sj + rj/γj , 0) ∩ E(0, rj + γjsj) →֒ E(sk, rk) (k = 1, . . . , J + 1).

Consequently,

(4.10) ηj ∈ E(sj + rj/γj , 0) ∩ E(0, rj + γjsj) →֒ E =

J+1⋂

k=1

E(sk, rk) (j = 1, . . . , J).

Finally, setting

η :=

J∑

j=1

ηj ,

we see that η ∈ E and that ∂k−1
t η(0) = σk, k = 1, . . . , J . Hence, we may define the

operator R by

R : F → E, σ 7→ η.

Then by construction the property T ◦ R = idF and the linearity of R are obvious.
Relations (4.9) and (4.10) further imply that

‖Rσ‖E ≤
J∑

j=1

‖ηj‖E ≤ C
J∑

j=1

‖ηj‖E(sj+rj/γj ,0)∩E(0,rj+γjsj)

≤ C
J∑

j=1

‖σj‖
W

rj−γj(j−1+1/p−sj)
p (Rn)

= C‖σ‖F (σ ∈ F),

which proves the boundedness of R. ¤
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5. Application to a mixed order system

We demonstrate the value of the results provided above by an application to the Stefan
problem with Gibbs-Thomson correction. In fact, we will be able to give a systematic
and relatively short proof of maximal regularity for the linearized model. Recall that
the Stefan problem is a model for phase transitions in liquid-solid systems and accounts
for heat diffusion and exchange of latent heat in a homogeneous medium. The linearized
one-phase model problem reads as

(5.1)





(∂t − ∆)v = f1 in (0, T ) × R
n+1
+ ,

v − ∆σ = f2 on (0, T ) × R
n,

∂tσ + ∂nv = f3 on (0, T ) × R
n,

v|t=0 = v0 in R
n+1
+ ,

σ|t=0 = σ0 in R
n.

Here the unknowns are the temperature v : (0, T ) × R
n+1
+ → R and the function σ :

(0, T ) × R
n → R, which corresponds to the free surface given by

Γ(t) := graph(σ(t)), t ∈ (0, T ).

By means of the Laplace-Fourier transform the above system is reduced to an ODE in
the normal component xn with Lopatinskii matrix

L(ξ, λ) =

(
1 |ξ|

−
√

λ + |ξ|2 λ

)

on the boundary. Consequently, its determinant

detL(ξ, λ) = λ + |ξ|2
√

λ + |ξ|2

is rotation invariant in ξ and inhomogeneous in λ and |ξ|. Replacing |ξ| by z and setting

P (z, λ) := λ + z2
√

λ + z2,

we easily find that the Newton polygon of P is given by

N(P ) = conv{(0, 0), (3, 0), (2, 1/2), (0, 1)}.
From this the γ-principal part of P is readily calculated to the result

Pγ(z, λ) =





z3, 0 < γ < 2,

z2
√

λ + z2, γ = 2,

z2
√

λ, 2 < γ < 4,

λ + z2
√

λ, γ = 4,
λ, γ > 4.

For θ ∈ (0, π) and ǫ ∈ (0, (π − θ)/2) we obviously obtain

Pγ(z, λ) 6= 0
(
(z, λ) ∈ Σθ × Σǫ, |λ| > 0, γ > 0

)
.

From Theorem 3.3 we conclude that there exists a λ0 > 0 such that for r ∈ R, s ≥ 0,
and ρ ≥ λ0 we have that

(5.2) P ∈ Isom
(
D(P ), 0Fs+1/2

p,ρ (R+,Kr
p(R

n))
)
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where

D(P ) = 0Fs+1
p,ρ (R+,Kr

p(R
n)) ∩ 0Fs+1/2

p,ρ (R+,Kr+2
p (Rn)) ∩ 0Fs

p,ρ(R+,Kr+3
p (Rn)).

Once (5.2) is proved, it is no longer difficult to derive maximal regularity for system (5.1)
in the canonical zero time trace spaces. More precisely, if p ∈ (1,∞), ρ ≥ 0, T ∈ (0,∞),
and J = (0, T ), we have that for each

f1 ∈ 0F1 := Lp
ρ(J, Lp(Rn+1

+ )),

f2 ∈ 0F2 := 0W
1−1/2p
p,ρ (J, Lp(Rn)) ∩ Lp

ρ(J, W 2−1/p
p (Rn)),

f2 ∈ 0F3 := 0W
1/2−1/2p
p,ρ (J, Lp(Rn)) ∩ Lp

ρ(J, W 1−1/p
p (Rn))

there is a unique solution

v ∈ 0E1 := 0H
1
p,ρ(J, Lp(Rn+1

+ )) ∩ Lp
ρ(J, H2

p (Rn+1
+ )),(5.3)

σ ∈ 0E2 := 0W
3/2−1/2p
p,ρ (J, Lp(Rn)) ∩ W 1−1/2p

p,ρ (J, H2
p (Rn)) ∩ Lp

ρ(J, W 4−1/p
p (Rn))(5.4)

of system (5.1). Indeed, relation (5.2) immediately implies maximal regularity for the
function σ describing the free surface on the time interval J = R+ and for ρ ≥ λ0 and
some λ0 > 0. Lemma 2.2 (iii) then yields (5.4) for arbitrary ρ ≥ 0 and finite time intervals
J = (0, T ). But then the maximal regularity for the temperature v follows easily from
the fact that v now can be regarded as the unique solution of the heat equation





(∂t − ∆)v = f1 in (0, T ) × R
n+1
+ ,

v = f2 + ∆σ on (0, T ) × R
n,

v|t=0 = 0 in R
n+1
+ ,

and by using well-known maximal regularity results for that equation.
In order to obtain the corresponding result in general spaces without zero time trace,

the result on the trace operator related to the Newton polygon Theorem 4.5 will play
a crucial role. With the help of this trace result we will reduce system (5.1) with gen-
eral right hand sides to a zero time trace problem. To this end, suppose (f1, f2, f3) ∈
F1 × F2 × F3, where E1, E2, F1, F2, F3 denote corresponding general classes, and let

u0 ∈ W
2−2/p
p (Rn+1

+ ), σ0 ∈ W
4−3/p
p (Rn). Without loss of generality we assume p > 3.

Then, for compatibility reasons the data have to satisfy

u0|∂R
n+1
+

− ∆σ0 = f2|t=0 and(5.5)

f3|t=0 + ∂nu0|∂R
n+1
+

∈ W 2−6/p
p (Rn).(5.6)

Next, we extend u0 to the whole space R
n+1 and denote the extension by ũ0. It is well

known that ũ0 can be chosen such that ũ0 ∈ W
2−2/p
p (Rn+1). Let w be the whole space

solution of the heat equation
{

wt − ∆w = f1 in J × R
n+1,

w|t=0 = ũ0 ∈ R
n+1.

Then u1 := w|
R

n+1
+

∈ E1. Furthermore, let σ1 ∈ E2 be an extension determined by the

trace

γσ1 := (σ1|t=0, ∂tσ1|t=0) = (σ0, f3|t=0 + ∂nu0|∂
R

n+1
+

) ∈ W 4−3/p
p (Rn) × W 2−6/p

p (Rn),
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which exists in view of the surjectivity of the trace operator

γ : E2 → W 4−3/p
p (Rn) × W 2−6/p

p (Rn)

given by Theorem 4.5. Now, assume (u, σ) is the desired solution of the fully inhomoge-
neous system (5.1). Then,

(u2, σ2) := (u, σ) − (u1, σ1)

satisfies the reduced system

(5.7)





(∂t − ∆)v = 0 in (0, T ) × R
n+1
+ ,

v − ∆σ = f2 − u1 − ∆σ1 on (0, T ) × R
n,

∂tσ + ∂nv = f3 − ∂tσ1 + ∂nu1 on (0, T ) × R
n,

v|t=0 = 0 in R
n+1
+ ,

σ|t=0 = 0 in R
n.

By the compatibility conditions on the data and the choice of the extension σ1, we
obviously have

f2 − u1 − ∆σ1 ∈ 0F2,

f3 − ∂tσ1 + ∂nu1 ∈ 0F3.

Thus, we may reverse the argument, i.e., we fix (u1, σ1) as defined above and require
(u2, σ2) to be the unique solution of system (5.7) given by (5.3) and (5.4). Then,

(u, σ) := (u1, σ1) + (u2, σ2)

is the unique solution to the fully inhomogeneous system (5.1) belonging to the desired
regularity classes. So, we have proved

5.1. Theorem. Let p > 3, ρ ≥ 0, T ∈ (0,∞), and J = (0, T ). Then for each

(f1, f2, f3, u0, σ0) ∈ F1 × F2 × F3 × W 2−2/p
p (Rn+1

+ ) × W 4−3/p
p (Rn)

satisfying condition (5.5) and (5.6), there is a unique solution

(u, σ) ∈ E1 × E2

of the linearized Stefan problem (5.1).

For ρ = 0 Theorem 5.1 was already obtained in [11, Theorem 1.4]. However, there
the authors used a more direct approach, which seems to be difficult to generalize to
symbols of more intricate structure. Our general approach also applies nicely to much
more complicate symbols, as e.g. to the symbol related to the spin-coating process. This
is demonstrated in [4].
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[5] R. Denk, M. Hieber, and J. Prüss. R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type. Mem. Amer. Math. Soc., 166:viii+114, 2003.

[6] R. Denk, R. Mennicken, and L. Volevich. The Newton polygon and elliptic problems with parameter.
Math. Nachr., 192:125–157, 1998.

[7] R. Denk, R. Mennicken, and L. Volevich. Boundary value problems for a class of elliptic operator
pencils. Integral Equations Operator Theory, 38:410–436, 2000.

[8] R. Denk, J. Prüss, and R. Zacher. Maximal L
p-regularity of parabolic problems with boundary dy-

namics of relaxation type. Konstanzer Schriften in Mathematik und Informatik, 241, 2008. Preprint,
31 pp.

[9] R. Denk and L. Volevich. Elliptic boundary value problems with large parameter for mixed order
systems. Amer. Math. Soc. Transl, 206(2):29–64, 2002.

[10] J. Escher. Quasilinear parabolic systems with dynamical boundary conditions. Commun. Partial
Differ. Equations, 18:1309–1364, 1993.
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