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Abstract

We prove time-local existence and uniqueness of solutions to a boundary
layer problem in a rotating frame around the stationary solution called
Ekman spiral. We choose initial data in the vector-valued homogeneous
Besov space Ḃ0

∞,1,σ(R2;Lp(R+)) for 2 < p < ∞. Here the Lp-integrability is
imposed in the normal direction, while we may have no decay in tangential
components, since the Besov space Ḃ0

∞,1 contains nondecaying functions
such as almost periodic functions. A crucial ingredient is theory for vector-
valued homogeneous Besov spaces. For instance we provide and apply an
operator-valued bounded H∞-calculus for the Laplacian in Ḃ0

∞,1(R
n;E) for

a general Banach space E.
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1. Introduction

We study the initial-boundary value problem for the three-dimensional
rotating Navier-Stokes equations in a half-space R

3
+ = {x = (x1, x2, x3);

x3 > 0} with initial data nondecreasing at infinity:

∂tU + (U · ∇)U + Ωe3 × U + νcurl2U = −∇p, ∇ · U = 0, (1.1)

U(t, x)|x3=0 = (U1(t, x), U2(t, x), U3(t, x))|x3=0 = (0, 0, 0), (1.2)
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U(t, x)|t=0 = U0(x) (1.3)

where x = (x1, x2, x3), U(t, x) = (U1, U2, U3) is the velocity field and p is the
pressure. In Eqs. (1.1) e3 denotes the vertical unit vector, ν > 0 is a constant
viscosity parameter. The constant Ω ∈ R is called Coriolis parameter and
equals to twice the frequency of rotation around x3 axis. Eqs. (1.1)-(1.3)
are the 3D Navier-Stokes equations written in a rotating frame. The initial
velocity field U0(x) depends on three variables x1, x2 and x3. We require
the velocity field U(t, x) to satisfy Dirichlet (no slip) boundary conditions
on the plane {x3 = 0}.

Ekman spiral is the famous exact solution (time-independent) of the
full nonlinear problem (1.1)-(1.2). It describes rotating boundary layers in
geophysical fluid dynamics (atmospheric and oceanic boundary layers cf.
[11], [19], [14], [5], [17]). The boundary layer in the theory of rotating fluids
known as the Ekman layer is between a geostrophic flow and a solid bound-
ary at which the no slip condition applies. In the geostrophic flow region
corresponding to large x3 (far away from the solid boundary at x3 = 0),
there is a uniform flow with velocity U∞ in the x1 direction. Associated
with U∞, there is a pressure gradient in the x2 direction. The Ekman spiral
solution in R

3
+ matches this uniform velocity for large x3 with the no slip

boundary condition at x3 = 0. The corresponding velocity field UE(x3) :
UE(x3) = (UE

1 (x3), U
E
2 (x3), 0) depends only on the vertical variable x3:

UE
1 (x3) = U∞

(
1 − e−

x3
δ cos(

x3

δ
)
)

, UE
2 (x3) = U∞e−

x3
δ sin(

x3

δ
), (1.4)

where δ is the rotating boundary layer (Ekman layer) thickness:

δ =

(
2ν

|Ω|

)1/2

. (1.5)

The corresponding pressure field pE(x2) depends only on x2 and it is given
by

pE(x2) = −ΩU∞x2. (1.6)

Clearly, the nonlinear term in (1.1) is zero for U = UE(x3) and, therefore,
the pair of (UE(x3), p

E(x2)) which is called ‘Ekman spiral’, is an exact so-
lution of the full nonlinear problem. Remarkable persistent (stability) of the
Ekman spiral in atmospheric and oceanic rotating boundary layers has been
noticed in geophysical literature. Observe that the velocity field satisfies

lim
x3→+∞

UE(x3) = (U∞, 0, 0). (1.7)

We make a trivial remark that will be important for future estimates of
norms. We note that the velocity field corresponding to the Ekman spiral
solution is bounded

|UE(x3)| ≤ 2U∞. (1.8)
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In spite of the importance of the Ekman layer in geophysics it seems
that a mathematical treatment of the phenomenon has not been given so
far. Our aim is to give a mathematical theory for time-local solvability of the
nonstationary problem around the stationary Ekman spiral solution. Since
the Ekman spiral has velocity field nondecreasing at infinity, it is essential
in the theory of geophysical rotating boundary layers to study solvability of
(1.1)-(1.3) for initial data in spaces of functions nondecreasing at infinity.

We write

U(t, x1, x2, x3) = UE(x3) + V(t, x1, x2, x3), (1.9)

p(t, x1, x2, x3) = pE(x2) + q(t, x1, x2, x3). (1.10)

Since the Ekman spiral is an exact solution of the full nonlinear problem,
the vector field V(t, x1, x2, x3) satisfies the following equations

∂tV + (V · ∇)V + (UE(x3) · ∇)V + V3
∂UE

∂x3

+Ωe3 × V + νcurl2V = −∇q, (1.11)

∇ · V = 0, (1.12)

V(t, x)|x3=0 = (V1(t, x), V2(t, x), V3(t, x))|x3=0 = (0, 0, 0), (1.13)

V(t, x)|t=0 = V0(x). (1.14)

Let J be the matrix such that Ja = e3 × a for any vector field a, i.e.

J =




0 −1 0
1 0 0
0 0 0


 . (1.15)

Let P+ be the Helmholtz projection operator on solenoidal fields in R
3
+. We

define the Stokes operator A(ν):

A(ν)V = νP+curl2V = −νP+∆V (1.16)

on solenoidal vector fields V. The operator P+ can be represented by

P+f = rPEf. (1.17)

Here, r is the restriction operator to the half-space and P is the Helmholtz
projection operator in the whole space, defined by

P = {Pij}i,j=1,2,3, Pij = δij + RiRj ; (1.18)

Rj(j = 1, 2, 3) are the Riesz operators ∂
∂xj

(−∆)−1/2 with the symbols
iξj

|ξ|

(see e.g. [26]). Besides, the operator E is defined as follows:
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Definition 1.1. (1) For a function h(x) on R
3
+ we define an extended func-

tion e±h by

(
e±h

)
(x) =

{
h(x) if x3 > 0,

±h(x∗) if x3 < 0,

where x∗ = (x1, x2,−x3) for x = (x1, x2, x3) ∈ R
3
+.

(2) For a vector field f(x) = (f1, f2, f3) on R
3
+ we define an extended vector

field Ef by

i–th component of (Ef) (x) =

{(
e+f i

)
(x) for 1 ≤ i ≤ 2,(

e−f3
)
(x) for i = 3.

That is, Ef = diag[e+, e+, e−]
(
T f

)
, where diag represents a diagonal ma-

trix, T f is a transposed vector field of f .

By employing the Helmholtz projection operator P+, we transform sys-
tem (1.11)-(1.14) into an abstract operator differential equation for V,

Vt + A(ν)V + ΩSV + CEV + P+(V · ∇)V = 0, (1.19)

V|t=0 = V0,

where

S = P+JP+, CEV = P+

(
(UE(x3) · ∇)V + V3

∂UE

∂x3

)
(1.20)

and we have used P+JV = P+JP+V on solenoidal vector fields. Let us
compare the situation here with the one in the whole space as treated in
[10]. The main difference between the problem in a half-space R

3
+ with the

problem in R
3 is that the Stokes operator A = A(ν) and the operator

S = P+JP+ do not commute in R
3
+ and there is an additional ‘Ekman

operator’ CE in Eqs. (1.19). Motivated by real physical applications, where
physical fields are a superposition of non-monochromatic modes having dif-
ferent horizontal wavenumbers (periodicity and almost periodicity in the
variables x1 and x2), we consider initial data V0(x) for Eqs. (1.19) in
spaces of solenoidal vector fields nondecreasing at infinity in x1, x2. The
consideration of solutions not decaying at infinity in x1, x2 is essential in
the development of rigorous mathematical theory of the Ekman rotating
boundary layer problem. In view of (1.7) it is natural to consider vector
fields V, which belong to Lp, 1 < p < +∞ in x3.

The first step in the analysis of the nonlinear problem (1.19) is to show
that the corresponding linear operator generates a semigroup in appropriate
spaces (Lp, 1 < p < +∞ or L∞). We note that the Lp, 1 < p < +∞ case
is usually simpler than the L∞ case due to the fact that Riesz operators
are bounded operators in Lp but not in L∞. We recall that for Ω = 0
(non-rotating case) Green’s function of the Stokes operator in R

3 and R
3
+

(half-space) belong to L1(R3) implying that the corresponding operator
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generates a semigroup in L∞(R3) and L∞(R3
+). On the other hand, for

Ω 6= 0 Green’s function of the (Stokes+Coriolis) problem in R
3 does not

belong to L1(R3) (see [10]). Moreover, it behaves as |x|−3 for large |x| and
the corresponding integral operator is not a bounded operator in L∞(R3).
One needs to restrict initial data on a subspace of L∞(R3) ([10, Appendix
A]). Similar situation of unboundedness in L∞(R2) (for horizontal x1, x2

planes) holds for the linear (Stokes+Coriolis) problem in a half-space. One
needs to restrict initial data on a subspace of L∞(R2) where Riesz operators
and, consequently, the operator P+JP+ are bounded. The natural space for
this purpose for initial data V0 is the space X = Ḃ0

∞,1(R
2;Lp(R+)), the

space of all Lp(R+)-valued Ḃ0
∞,1 functions in R

2. Here, R+ := (0,∞), and

Ḃ0
∞,1 is the homogeneous Besov space which is strictly smaller than L∞.

Related to the Navier-Stokes equations, the space Ḃ0
∞,1 was first used

in Sawada-Taniuchi [23] to solve the Boussinesq equations for nondecay-
ing initial data. It is known [27] that ∇f ∈ Ḃ0

∞,1 if f and ∇2f are in

L∞, hence, the space Ḃ0
∞,1 contains nondecreasing functions such as al-

most periodic functions of the form
∑∞

j=1 αj exp(
√
−1λj ·x) with {αj}∞j=1 ∈

l1, {λj} ⊂ R
3 \ {0}. Since our space X is an Lp-valued Besov space, it in-

cludes functions nondecreasing in tangential direction x1, x2, and decreasing
in the normal direction x3. Moreover, we can prove, as shown in Corollary
2.12, that the Riesz operators are bounded in vector-valued Besov spaces
Ḃs

p,q(R
N ;Lp(R+)) for all indices 1 ≤ p, q ≤ ∞, s ∈ R, and every space

dimension N = 1, 2, 3, . . .. The boundedness is essentially a consequence of
Theorem 2.5 in Section 2 that is an extension of the Mikhlin type multi-
plier theorem, obtained by Amann [1] in the inhomogeneous Besov spaces
Bs

p,q(R
N ;E) for a general Banach space E, to the homogeneous Besov spaces

Ḃs
p,q(R

N ;E).
In order to estimate the nonlinear term we also employ the spaces

Ḃ0
∞,∞(Rn−1;Lp(R+)) and BUC(Rn−1;Lp(R+)), where the latter one de-

notes the space of all Lp(R+)-valued bounded uniformly continuous func-
tions on R

n−1. Note that we always work in general space dimension n ≥ 2,
as long as the Coriolis and Ekman operators are not involved. The key for the
nonlinear estimate is the embedding between the above spaces (see Lemma
2.3). However, homogeneous Besov spaces are usually defined as a quotient
spaces (modulo polynomials), which are not suitable for the study of partial
differential equations (PDE). This is the reason why we use rather ”script”
Besov spaces, Ḃs

r,q(R
n−1;Lp(R+)) instead of Ḃs

r,q(R
n−1;Lp(R+)) (see Defi-

nition 2.1). The key embedding result (for E-valued functions, where E is a
Banach space) now reads as

Ḃ0
∞,1 →֒ BUC →֒ Ḃ0

∞,∞.

Here, BUC is the subspace of BUC such that BUC = BUC ⊕{1}, where {1}
denotes the space of constant functions. By Ḃ0

∞,1,σ(Rn−1;Lp(R+)) we de-

note the solenoidal part of Ḃ0
∞,1(R

n−1;Lp(R+)) (see (2.13) and what follows
for the definition).
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In this paper we construct a local-in-time solution of the rotating Navier-
Stokes equations (1.1)-(1.3) in the space BC([0, T0);BUCσ(R2;Lp(R+))) un-
der the condition that the initial velocity V0 ∈ Ḃ0

∞,1(R
2;Lp(R+)), 2 < p <

+∞. Here, BUCσ denotes a solenoidal part of BUC (see definition (2.4)).
Also, we denote by BC(I;E) the space of all bounded continuous E-valued
functions on the interval I ∈ R. In particular, the current work is concerned
with the so-called mild solutions, the solutions of the corresponding integral
equation to (1.19).

For the linear Stokes problem we employ the solution formula derived in
Desch-Hieber-Prüss [7] for the Stokes resolvent in terms of the resolvent of
the Dirichlet Laplacian and certain remainder terms. Detailed information
on the full linear problem (Stokes + Coriolis + Ekman) is then used to
construct a (local-in-time) mild solution to the nonlinear rotating Navier-
Stokes equations in R

3
+. To derive the estimates for the linear part we will

employ theory for E-valued Besov spaces. The main ingredient will be an
operator-valued version of Mikhlin’s multiplier result. It will be the basis
for an operator-valued bounded H∞-calculus for the Laplacian on E-valued
homogeneous Besov spaces, which serves as a useful tool in estimating the
formulas for the Helmholtz projection and the resolvent of the Stokes oper-
ator. The generation result for the Stokes operator and a standard pertur-
bation argument will then lead to the generation result for the full linear
operator (Stokes+Coriolis+Ekman).

Our main result reads as

Theorem 1.2. Let 2 < p < ∞. For each V0 ∈ Ḃ0
∞,1,σ(R2;Lp(R+)) there

exist T0 > 0 and a unique mild solution V of (1.19) such that

(t 7→ V(t)) ∈ BC([0, T0);BUCσ(R2;Lp(R+))), (1.21)

(t 7→ t1/2∇V(t)) ∈ BC([0, T0);BUC(R2;Lp(R+))). (1.22)

Furthermore, the solution V satisfies

t1/2||∇′V(t)||BUC(R2;Lp(R+)) → 0 as t → 0. (1.23)

Here, ∇′ = (∂x1
, ∂x2

).

Remark 1.3. (i) As lower estimate for existence time T0 we get for every
ϕ0 ∈ (0, 2π) and every δ ∈ (0, 1/2] that

T0 ≥ min



1,

(
1

Cϕ0,δ,pe2ω1 ||V0||Ḃ0
∞,1(R

2;Lp(R+))

) 1
−(1/2p)−δ+(1/2)



 . (1.24)

Here, the constants Cϕ0,δ,p > 0 and ω1 > 0 are determined in Proposition
4.5 -Lemma 5.1 and Proposition 4.5, respectively, and depend on the Coriolis
parameter Ω and ||UE ||W 1,∞ , where W 1,∞ = W 1,∞(R3

+) := {u ∈ L∞(R3
+) :

∇u ∈ L∞(R3
+)}.
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(ii) If we assume that ∇jV0 ∈ BUC for some positive integer j, then the
solution V satisfies

∇jV, t1/2∇j+1V ∈ BC([0, T0);BUC(R2;Lp(R+))).

For j = 1 this fact can be shown by applying ∇ to the corresponding integral
equation to (1.19) and using (1.22). The inductive procedure j → j + 1 is
similarly shown by applying ∇j to the integral equation.
(iii) We also get higher regularity on the interval [ǫ, T0) with arbitrary small
ǫ > 0, namely that

∇kV ∈ BC([ǫ, T0);BUC(R2;Lp(R+))) for any positive integer k. (1.25)

This follows by an iterative use of remark (ii) and (1.21)-(1.22).

Note that in general we do not expect the solutions of the nonlinear
equations to be an element of the space of initial data Ḃ0

∞,1(R
2;Lp(R+)).

This is essentially due to the fact that normal derivatives act merely on
the Lp part of the space Ḃ0

∞,1(R
2;Lp(R+)) (see Remark 4.2). To overcome

this problem we apply the contraction mapping principle in the larger space
BUC(R2;Lp(R+)). The unboundedness of the Helmholtz projection in that
space is handled by using a splitting of P+∂3 in a term with pure nor-
mal derivative and terms containing only tangential derivatives and Riesz
operators. This leads to the slightly technical Section 4.

In what follows we write vector fields in small letters as u, v instead of
U, V except the Ekman spiral solution UE .

The plan of the paper is as follows. In Section 2 we prepare the definition
of the vector-valued homogeneous Besov spaces Ḃs

r,q(R
n−1;Lp(R+)) , and

ensure boundedness of the Helmholtz projection in this space by modifying
Mikhlin’s theorem for the inhomogeneous spaces obtained by Amann [1].
We also set up the notion of an operator-valued bounded H∞-calculus in
the vector-valued Besov spaces Ḃs

r,q(R
n−1;E) for a general Banach space

E, and prove that the Laplacian admits this property. The operator-valued
bounded H∞-calculus will play a key role in Section 4. In Section 3 we will
give resolvent estimates for the full linear part (Stokes+Coriolis+Ekman)
based on estimates for the resolvent of the Stokes operator and a standard
perturbation argument. The resolvent estimates for the Stokes operator are
obtained by applying the results of Section 2 to an explicit representation
for the Stokes resolvent. As a consequence, the full operator is proved to
generate a holomorphic semigroup in our vector-valued Besov space. In the
technical Section 4 we first collect some basic facts about the Laplacian in
the considered spaces. Using this, we then proceed by providing estimates for
the semigroup generated by the full linear operator, which will represent the
basis for the application of the contraction mapping principle. In Section 5
we prove Theorem 1.2 utilizing the estimates obtained in the sections before.
Finally, in the appendix we give a characterization of the vector-valued
solenoidal Besov space defined in Section 2 and an estimate for fractional
powers of the Laplacian applied to the heat kernel.
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2. Basic ingredients

In this section we define E-valued homogeneous Besov spaces and provide
the required basics for the treatment of the linear and nonlinear problems
in the subsequent sections.

In standard monographs, see e.g. [28], the homogeneous Besov space
Ḃs

r,q(R
N ) for N ∈ N is defined as

Ḃs
r,q(R

N ) := {f ∈ Z ′(RN ) : ‖f‖Ḃs
r,q(RN ) < ∞},

where ‖f‖Ḃs
r,q(RN ) =

(∑
j∈Z

(2sj‖φj ∗ f‖Lr(RN ))
q
)1/q

for 1 ≤ r, q ≤ ∞,

s ∈ R. (see also [3]). Here Z ′(RN ) denotes the topological dual of

Z(RN ) := {f ∈ S(RN ) : Dαf̂(0) = 0, α ∈ N
N
0 := N ∪ {0}},

where Dα := ∂α1
x1

. . . ∂αN
xN

for α = (α1, . . . , αN ). By Z we denote the set
of all integers and by N the set of all natural numbers. The space Z ′(RN )
can be identified with S ′(RN ) modulo all polynomials in R

N , where S ′(RN )
denotes the dual of the Schwartz space S(RN ). Hence Ḃs

r,q(R
N ) is a space of

equivalence classes whose elements in general possess different derivatives.
This leads to the fact that it is not appropriate to construct solutions of a
concrete PDE in such a space. In such a situation it is desirable to have a
space of functions, which motivates the alternative definition given below.

Recall that a Littlewood-Paley decomposition is given by a family of

functions φj ∈ S(RN ) satisfying
∑

j∈Z
φ̂j(ξ) = 1 for ξ ∈ R

N \ {0}, where

φ̂j(ξ) := φ̂0(2
−jξ) and 0 6= φ0 ∈ S(RN ) such that suppφ̂0 ⊆ {1/2 ≤ |ξ| ≤

2}. Moreover, for a Banach space E, we denote by S ′(RN ;E) the space



The Ekman Boundary Layer Problem 9

of all E-valued linear continuous functionals on S(RN ), i.e. S ′(RN ;E) :=
L(S(RN );E). Note that then

S(RN ;E) →֒ Lq(RN ;E) →֒ S ′(RN ;E), q ∈ [1,∞].

Being aware of these facts we can proceed with a rigorous definition of E-
valued homogeneous Besov spaces. The authors are not sure about the fact
of who introduced these spaces first. Our definition follows the approach for
inhomogeneous E-valued Besov spaces of Amann in [1]. The inhomogeneous
versions were introduced first by Grisvard [12] and Muramatu [18].

Definition 2.1. Let E be a Banach space, 1 ≤ r, q ≤ ∞, s ∈ R, and {φj}j∈Z

a Littlewood-Paley decomposition. If

either s < N/r or s = N/r and q = 1, (2.1)

then the E-valued homogeneous Besov space Ḃs
r,q(R

N ;E) is defined by

Ḃs
r,q(R

N ;E) :=

{f ∈ S ′(RN ;E) : ‖f‖Ḃs
r,q(RN ;E) < ∞, f =

∑

j∈Z

φj ∗ f in S ′(RN ;E)},

where

‖f‖Ḃs
r,q(RN ;E) :=




∑

j∈Z

(2sj‖φj ∗ f‖Lr(Rn;E))
q




1/q

.

On the other hand, if E is additionally the dual space of a Banach space F,
s ∈ R, 1 < r, q ≤ ∞, and

either s > N/r or s = N/r and q 6= 1, (2.2)

we set
Ḃs

r,q(R
N ;E) := (Ḃ−s

r′,q′(R
N ;F))′. (2.3)

Remark 2.2. (1) Definition 2.1 relies on the fact that under condition
(2.1) the series

∑
j∈Z

φj ∗ f converges in S ′(RN ;E) for f ∈ S ′(RN ;E) with
‖f‖Ḃs

r,q(RN ;E) < ∞. For E = C, the set of all complex numbers, a proof of this

fact can be found in [3], [16]. We omit the proof here, since the one given in
[16] directly transfers to the E-valued case. Note that ‖f‖Ḃs

r,q(RN ;E) < ∞ is

not sufficient for the convergence of
∑

j∈Z
φj ∗ f in S ′(RN ;E), if the param-

eters s, r, q satisfy the inverse condition (2.2). Therefore we used definition
(2.3) in that case. Also note that the first ones who made use of definition
(2.2) in the case E = C for the space Ḃ0

∞,1(R
N ) related to the Navier-Stokes

equations were O. Sawada and Y. Taniuchi in [23] and O. Sawada in [22].

(2) By standard arguments it can be easily shown that Ḃs
r,q(R

N ;E) is a
Banach space.

(3) Requiring f to have the representation f =
∑

j∈Z
φj ∗ f ensures that
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(E-valued) constants are not element of Ḃ0
∞,1(R

N ;E). This yields the con-
tinuous embedding

Ḃ0
∞,1(R

N ;E) →֒ BUC(RN ;E).

(Observe that ‖c‖Ḃ0
∞,1(R

N ;E) = 0 for c ∈ E!)

(4) In this work we do not make use of Ḃs
r,q(R

N ;E) for r, q, s satisfying
(2.2) with r = 1 or q = 1. Therefore we skipped a proper definition of those
spaces.

(5) In the scalar-valued case E = C for all values of the parameters s, r, q
as in Definition 2.1 the space Ḃs

r,q(R
N ) is isomorphic to Ḃs

r,q(R
N ), see [3],

[16].

The embedding in Remark 2.2 (3) is of crucial importance for estimating
the nonlinear term in Section 4. But, since the Helmholtz projection P+ is
expected to be unbounded in BUC(R2;Lp(R+)), it is necessary to employ
the larger space Ḃ0

∞,∞(R2;Lp(R+)), which admits the boundedness of P+.
For this purpose we define

BUC(RN ;E) := {f ∈ BUC(RN ;E); f =
∑

j∈Z

φj ∗ f in S ′(RN ;E)}.

Since the series
∑

j∈Z
φj ∗f converges in S ′(RN ;E) for f ∈ BUC(RN ;E) this

space is well-defined and it is isomorphic to BUC(RN ;E) modulo constants.
We also define the solenoidal part of BUC by

BUCσ(RN ;E) := {f ∈ BUC(RN ;E); divf = 0, f |∂RN
+

= 0}. (2.4)

An essential ingredient for the calculations in Section 4 will be

Lemma 2.3. Let N ∈ N and E be the dual of a Banach space F. Then

Ḃ0
∞,1(R

N ;E) →֒ BUC(RN ;E) →֒ Ḃ0
∞,∞(RN ;E).

Proof. The first embedding can be proved along the line of Remark 2.2(3).
It remains to prove the second embedding. To this end let f ∈ BUC(RN ;E)
and ϕ ∈ Ḃ0

1,1(R
N ;F). Since Ḃ0

1,1(R
N ;F) ⊆ L1(RN ;F), we can form the dual

pairing of f and ϕ and compute

|〈f, ϕ〉| = |
∫

RN

〈f(x),
∑

j∈Z

φj ∗ ϕ(x)〉F,Edx|

≤
∑

j∈Z

∫

RN

‖f(x)‖E‖φj ∗ ϕ(x)‖Fdx

≤ ‖f‖L∞(RN ;E)‖ϕ‖Ḃ0
1,1(R

N ;F).

Thus, by definition, f ∈ Ḃ0
∞,∞(RN ;E) and we have

‖f‖Ḃ0
∞,∞(RN ;E) = sup

ϕ∈Ḃ0
1,1(R

N ;F),‖ϕ‖
Ḃ0
1,1(RN ;F)

=1

|〈f, ϕ〉| ≤ ‖f‖BUC(RN ;E).
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¤

Next we state some density results of certain subspaces of smooth functions.
This will turn out to be helpful in proving the strong continuity of the
semigroups derived in Section 3.

Lemma 2.4. Let n ∈ N, 1 ≤ p < ∞ and D ⊆ R be an open set. Let E be a
Banach space and s, r, q be as in condition (2.1). Then

(1)
{

u ∈ Ḃs
r,q(R

n;E) : Dαu ∈ Ḃs
r,q(R

n;E), α ∈ N
n
0

}
d→֒ Ḃs

r,q(R
n;E).

(2) Ḃs
r,q(R

n−1;
⋂

k∈N0
W k,p(D))

d→֒ Ḃs
r,q(R

n−1;Lp(D)).

(3)
{

u ∈ Ḃs
r,q(R

n−1;Lp(D)) : Dαu ∈ Ḃs
r,q(R

n−1;Lp(D)), α ∈ N
n
0

}

d→֒ Ḃs
r,q(R

n−1;Lp(D)).

Proof. (1) Choose a mollifier ϕε, i.e. ϕε(x) = 1
εn ϕ0(x/ε) with 0 6= ϕ0 ∈

C∞
c (Rn), ϕ0 ≥ 0, and

∫
Rn ϕ0(x)dx = 1. We claim that ϕε ∗ u → u in

Ḃs
r,q(R

n;E) if ε → 0 for each u ∈ Ḃs
r,q(R

n;E). Indeed,

‖ϕε ∗ u − u‖r
Ḃs

r,q(Rn;E)

≤
∑

k∈Z




k+2∑

j=k−2

2ks‖(ϕε ∗ φj − φj) ∗ φk ∗ u‖Lq(Rn;E)




r

≤
∑

k∈Z


2ks‖φk ∗ u‖Lq(Rn;E)

k+2∑

j=k−2

‖ϕε ∗ φj − φj‖L1(Rn)




r

, (2.5)

where we applied the vector-valued version of Young’s inequality, see [1, page

13]. Since
∑k+2

j=k−2 ‖ϕε ∗ φj − φj‖L1(Rn) ≤ ∑k+2
j=k−2(‖ϕε ∗ φj‖1 + ‖φj‖1) ≤

10‖φ0‖1, ε ∈ (0, 1), it is easy to see, that the series in (2.5) converges
uniformly in ε ∈ (0, 1). Thus, we may interchange passing to the limit and
summation, which yields φε ∗ u → u, due to ‖ϕε ∗ φj − φj‖L1(Rn) → 0 if
ε → 0. This implies (1) in view of

‖Dαϕε ∗ u‖Ḃs
r,q(Rn;E) ≤

∑

k∈Z




k+2∑

j=k−2

2ks‖φj ∗ Dαϕε‖1‖φk ∗ u‖Lq(Rn;E)




r

≤ 5‖φ0‖1‖Dαϕε‖1‖u‖Ḃs
r,q(Rn;E), α ∈ N

n
0 .

(2) First suppose D = R. Here we choose a mollifier in the last component,
i.e. a function ψδ := 1

δ ψ0(xn/δ) with 0 6= ψ0 ∈ C∞
c (R), ψ0 ≥ 0, and∫

R
ψ0(xn)dxn = 1. By similar arguments as in the proof of (1) we obtain

ψδ ∗xn
u → u in Ḃs

r,q(R
n−1;Lp(R)) if δ → 0 for each u ∈ Ḃs

r,q(R
n−1;Lp(R)),

(here ∗xn
denotes the convolution w.r.t. the last component xn). For u ∈

Ḃs
r,q(R

n−1;Lp(D)) we set
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uδ := rψδ ∗xn
E0u ∈ Ḃs

r,q(R
n−1;

⋂
k∈N0

W k,p(D)), δ > 0,

where rD : R
n → D is the restriction and E0 : D → R

n the trivial extension.
We compute

‖uδ − u‖Ḃs
r,q(Rn−1;Lp(D)) = ‖rDψδ ∗xn

E0u − rDE0u‖Ḃs
r,q(Rn−1;Lp(D))

≤ ‖ψδ ∗xn
E0u − E0u‖Ḃs

r,q(Rn−1;Lp(R)) −→ 0

if δ → 0, which yields (2).

(3) This follows by combining the mollifier arguments in the proof of (1)
and (2), i.e. here it can be shown that ϕε ∗x′ rDψδ ∗xn

E0u → u if (ε, δ) → 0
for each u ∈ Ḃs

r,q(R
n−1;Lp(D)). ¤

The following operator-valued Mikhlin type multiplier result is funda-
mental for the treatment of the linearized equations in Section 3. Although
it is not explicitly included there, essentially it is a consequence of results
obtained by Amann in [1]. (Observe that Amann does not deal with homo-
geneous Besov spaces. The dotted spaces appearing in [1] have a different
meaning.)

Theorem 2.5. Let N ∈ N, E be a Banach space. Let s ∈ R, 1 ≤ r, q ≤ ∞
be satisfying condition (2.1). Furthermore, let m ∈ CN+1(RN \ {0},L(E))
such that

‖m‖M(E) := max
|α|≤N+1

sup
ξ∈RN\{0}

|ξ||α|‖Dαm(ξ)‖L(E) < ∞. (2.6)

Then F−1mF is a bounded operator on Ḃs
r,q(R

N ;E) and we have

‖F−1mF‖L(Ḃs
r,q(RN ;E)) ≤ C‖m‖M(E), (2.7)

where C = C(n) > 0 is independent of r,q,s and m.

Remark 2.6. If E is the dual of a Banach space F, by definition the assertion
is also valid for Ḃs

r,q(R
N ;E), if s, r, q satisfy condition (2.2).

A function m : R
n\{0} → L(E), satisfying the assumptions of Theorem 2.5,

is called an operator-valued multiplier on Ḃs
r,q(R

N ;E). Easy examples of
operator-valued multipliers are given by scalar-valued multipliers, i.e. func-
tions m : R

n \ {0} → C that satisfy the assumptions of Theorem 2.5 with
E = C. Indeed, by the identification m = m · I, where I is the identity on
E, it is easy to verify that m is also an operator-valued multiplier. The key
for the proof of Theorem 2.5 is the following lemma.

Lemma 2.7. [1, Lemma 4.2(i)] Let N ∈ N, s ∈ R, 1 ≤ r, q ≤ ∞, and E

be a Banach space. Given j ∈ Z, suppose that m ∈ CN+1(RN \ {0},L(E))
such that

µj := max
|α|≤N+1

sup
2j−1≤|ξ|≤2j+1

|ξ||α|||Dαm(ξ)||L(E) < ∞. (2.8)
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Then F−1(mφ̂j) ∈ L1(RN ;L(E)) and

||F−1(mφ̂j)||L1(RN ;L(E)) ≤ Cµj ,

where C = C(n) > 0 is independent of m and j.

Proof of Theorem 2.5. Since
∑

j∈Z
φ̂j = 1 (except at 0) and suppφ̂j ∩

suppφ̂k = ∅ for |j − k| ≥ 3, we calculate

||F−1mFf ||q
Ḃs

r,q(RN ;E)
=

∞∑

k=−∞

(2ks||φk ∗ (F−1mFf)||r)q

≤
∞∑

k=−∞




k+2∑

j=k−2

2ks||φj ∗ (F−1mFf) ∗ φk||r




q

.

It follows from φj ∗ (F−1mFf) = φj ∗ (F−1m) ∗ f = (F−1(mφ̂j)) ∗ f that

||F−1mFf ||q
Ḃs

r,q(RN ;E)
≤

∞∑

k=−∞




k+2∑

j=k−2

2ks||φj ∗ (F−1mφ̂j) ∗ f ∗ φk||r




q

.

Lemma 2.7 and again Young’s inequality in the general form as given in
[1, page 13] yield

||F−1mFf ||q
Ḃs

r,q(RN ;E)

≤
∞∑

k=−∞




k+2∑

j=k−2

2ks||F−1(mφ̂j)||L1(RN ;L(E))||f ∗ φk||r




q

≤
∞∑

k=−∞




k+2∑

j=k−2

2ksC(n)µj ||f ∗ φk||r




q

,

where µj is defined by (2.8). Since assumption (2.6) implies that supj∈Z µj ≤
||m||M(E), we have

||F−1mFf ||Ḃs
r,q(RN ;E) ≤ 5C(n)||m||M(E)

( ∞∑

k=−∞

(2ks||f ∗ φk||r)q
)1/q

≤ 5C(n)||m||M(E)||f ||Ḃs
r,q(RN ;E).

We have proved Theorem 2.5. ¤

In the sequel we will also make use of the following type of an operator-
valued bounded H∞-calculus.
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Definition 2.8. Let N ∈ N, φ ∈ (0, π), and E be a Banach space. Let s ∈ R,
1 ≤ r, q ≤ ∞ be as in condition (2.1). Let A be a sectorial operator in
Ḃs

r,q(R
N ;E), i.e., A is a closed operator in Ḃs

r,q(R
N ;E) with a dense domain

D(A) and dense range R(A) satisfying

||(λ + A)−1||L(E) ≤ C/|λ|, λ ∈ Σθ

for some θ ∈ (0, π) with C > 0 independent of λ, where Σθ is the sector
{z ∈ C\{0}; | arg z| < θ}. We say that A admits an (L(E)-) operator-valued
bounded H∞-calculus on Ḃs

r,q(R
N ;E) if there exists a Cφ > 0 such that

‖h(A)‖L(Ḃs
r,q(RN ;E)) ≤ Cφ‖h‖L∞(Σφ;L(E)) (2.9)

for all h ∈ H∞(Σφ;KA(E)) := {h : Σφ → KA(E) : h bounded and
holomorphic}, where

KA(E) := {T ∈ L(E) : T (λ + A)−1 = (λ + A)−1T, λ ∈ ρ(−A)}. (2.10)

We denote the class of all operators admitting an operator-valued bounded
H∞-calculus on Ḃs

r,q(R
N ;E) by H∞

Op(Ḃs
r,q(R

N ;E)). The angle

φ∞
Op(A) := inf{φ ∈ (0, π) : there is a Cφ > 0 such that (2.9) holds}

is called the (operator-valued) H∞-angle of A in Ḃs
p,q(R

N ;E).

We would like to note the following facts about this definition.

Remark 2.9. (a) For a comprehensive introduction to an operator-valued
bounded H∞-calculus we refer to [15] and [13], for the scalar-valued case
see [4] and [6]. But we also emphasize that Definition 2.8 is different from
the definition in [15] and [13]. There operator-valued means on the whole
space X (here X = Ḃs

r,q(R
N ;E)), whereas in our definition operator-valued

is just with respect to the E part of the space. Of course the definition
in [15] and [13] is more general but therefore also stronger in our specific
situation (estimate (2.9) has to be satisfied for a larger class of bounded
holomorphic functions).

(b) It is clear that the definition above extends to arbitrary E-valued Banach
spaces.

(c) Setting E = C, we see that A ∈ H∞
Op(Ḃs

r,q(R
N ;E)) in particular implies

a scalar bounded H∞-calculus, i.e. A ∈ H∞(Ḃs
r,q(R

N )).

(d) Set g(z) := zs, s ∈ [0, 1]. Then g : Σφ → Σφ for φ ∈ (0, π). This
shows that h ◦ g ∈ H∞(Σφ;KA(E)) for h ∈ H∞(Σφ;KA(E)). Assuming

that A ∈ H∞
Op(Ḃs

r,q(R
N ;E)), it is not too difficult to see that As = g(A) is

sectorial on Ḃs
r,q(R

N ;E) (see e.g. [6]) and that h(g(A)) = h ◦ g(A). Thus

‖h(g(A))‖L(Ḃs
r,q(RN ;E)) = ‖h ◦ g(A)‖L(Ḃs

r,q(RN ;E))

≤ Cφ‖h ◦ g‖L∞(Σφ;L(E))

≤ Cφ‖h‖L∞(Σφ;L(E))
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for h ∈ H∞(Σφ;KA(E)). Consequently we see that the property of having
an operator-valued bounded H∞-calculus transfers to fractional powers,
i.e., A ∈ H∞

Op(Ḃs
r,q(R

N ;E)) implies As ∈ H∞
Op(Ḃs

r,q(R
N ;E)) with φ∞

Op(A
s) ≤

φ∞
Op(A) for s ∈ [0, 1].

Note that for

h ∈ H∞
0 (Σφ;KA(E)) :=

{
h ∈ H∞(Σφ;KA(E)) :

‖h(z)‖L(E) ≤ C
|z|s

(1 + |z|)2s
, z ∈ Σφ, for some C, s > 0

}

the operator h(A) is defined by

h(A) :=
1

2πi

∫

Γ

h(λ)(λ − A)−1dλ,

where Γ is the path Γ := {reiθ;∞ > r ≥ 0} ∪ {re−iθ; 0 ≤ r < ∞} for
θ ∈ (0, φ), passing from ∞eiθ to ∞e−iθ. This representation explains the
restriction of the values of the functions h to the subalgebra KA(E). Other-
wise there would be a second, possibly different, way to define h(A), namely
by the integral

h(A) :=
1

2πi

∫

Γ

(λ − A)−1h(λ)dλ.

This differs from the scalar-valued case, where these two definitions always
coincide. Thus, in order to obtain a compatible definition for the operator-
valued case it is reasonable to use this restriction.

By the additional decay in 0 and ∞ it is obvious that h(A) belongs to the
class L(Ḃs

p,q(R
N ;E)) for h ∈ H∞

0 (Σφ;KA(E)). To define h(A) for arbitrary
h ∈ H∞(Σφ;KA(E)) we take z 7→ g(z) := z/(1+z)2 ∈ H∞

0 (Σφ;KA(E)) and
set

h(A) := (hg)(A)g(A)−1

initially defined on D(A) ∩ R(A). Since the convergence lemma (see [4])
is still true for operator-valued holomorphic functions (see [13]), as in the
scalar-valued case it suffices to prove (2.9) for all h ∈ H∞

0 (Σφ;KA(E)) in
order to obtain the validity of (2.9) for all h ∈ H∞(Σφ;KA(E)).

Examples of operators that admit an operator-valued bounded H∞-
calculus on Ḃs

r,q(R
N ;E) are in order. The first one is the Laplacian ∆ =∑N

j=1 ∂2
j , ∂j = ∂/∂xj .

Proposition 2.10. Let N ∈ N and E be a Banach space. Let s ∈ R, 1 ≤
r, q ≤ ∞ satisfy condition (2.1). The Laplacian −∆ in Ḃs

r,q(R
N ;E) with

domain D(−∆) = {u ∈ Ḃs
r,q(R

N ;E) : Dαu ∈ Ḃs
r,q(R

N ;E), α ∈ N
N
0 , |α| ≤ 2}

admits an operator-valued bounded H∞-calculus on Ḃs
r,q(R

N ;E) with H∞-
angle φ∞

Op(−∆) = 0.
By duality, estimate (2.9) still holds for A = −∆, if E is a dual space and
s, r, q satisfy (2.2).
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Remark 2.11. Observe that this result can not be obtained as a trivial
consequence of results in the previous literature, as for instance the results
proved in [6]. This is due to the fact that related to Mikhlin type estimates in
[6] the authors, forced by their theoretical approach, always have to assume
that E is a space of class HT (or equivalently that E is a UMD space),
whereas in our situation E is an arbitrary Banach space with no further
restriction. Moreover, in [6] there are no results on Besov spaces.

Proof. Note that the sectoriality of −∆ in Ḃs
r,q(R

N ;E) with spectral angle
φ−∆ = 0 is an immediate consequence of Theorem 2.5 and Lemma 2.4 (1).
Indeed, it is well-known that Fλ(λ−∆)−1F−1 = λ(λ+ |ξ|2)−1 satisfies the
scalar Mikhlin conditions also for |α| ≤ N + 1 (instead of |α| ≤ [N/2] + 1)
and for all λ ∈ Σπ−ϕ0

, and arbitrary ϕ0 ∈ (0, π).
Now let φ ∈ (0, π) and h ∈ H∞

0 (Σφ;KA(E)). Taking Fourier transform
yields

Fh(−∆) =
1

2πi

∫

Γ

h(λ)F(λ − (−∆))−1dλ = h(| · |2),

and by assumption obviously

sup
ξ∈RN\{0}

‖h(|ξ|2)‖L(E) ≤ C.

We will prove now that ξ 7→ h(|ξ|2) satisfies the Mikhlin condition of Theo-
rem 2.5. To this end one can copy the proof for scalar valued h (i.e. E = C,
see e.g. [20]) verbatim, simply replacing absolute value | · | by the operator
norm ‖ · ‖L(E). But for the readers convenience we give the proof here.

We have to calculate Dαh(| · |2) for any multi index α satisfying |α| ≤
N + 1. By induction we deduce for arbitrary m ∈ N

Dm
j h(|ξ|2) =

[m
2 ]∑

k=0

akh(m−k)(|ξ|2)ξm−2k
j , ξ ∈ R

N \ {0}, j = 1, . . . , N,

with certain coefficients ak ∈ N0 for k ∈ {0, . . . ,
[

m
2

]
}, where [r] := max{ℓ ∈

N0 : ℓ ≤ r} for r ≥ 0. For an arbitrary multi index α ∈ N
N
0 iterative

application of Dα then leads to

Dαh(|ξ|2) = DαN

N · · ·Dα2
2 Dα1

1 h(|ξ|2)
=

∑

β≤[α
2 ]

aβh(|α|−|β|)(|ξ|2)ξα−2β , ξ ∈ R
N \ {0}, (2.11)

where β ≤ α and [α] for multi indices α, β ∈ N
N
0 has to be understood

componentwise. In order to estimate the derivatives of the holomorphic
function h we define

r(t) :=
t

2
sin(φ), t ∈ (0,∞).
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Then the ball Br(t)(t) is contained in the sector Σφ for each t ∈ (0,∞).
Thus, by Cauchy’s formula we may conclude

‖h(k)(t)‖L(E) ≤ C
k!

r(t)k
max

|z|=r(t)
‖h(z)‖L(E)

≤ C(k, φ)

tk
‖h‖∞, t ∈ (0,∞), k ∈ N0,

where we put ‖ · ‖∞ := ‖ · ‖L∞(Σφ;L(E)) for simplicity. This fact applied to
(2.11) for Dαh(| · |2) yields

|ξ||α|‖Dαh(|ξ|2)‖L(E) ≤ C‖h‖∞
∑

β≤[α
2 ]

aβ |ξ||α||ξ|−2(|α|−|β|)|ξα−2β |

≤ C‖h‖∞
∑

β≤[α
2 ]

aβ
|ξ||α−2β|

|ξ||α|−2|β|

= C‖h‖∞
∑

β≤[α
2 ]

aβ ≤ C‖h‖∞, ξ ∈ R
N \ {0}, (2.12)

since |α−2β| = |α|−2|β| for β ≤
[

α
2

]
. Hence, the conditions of Theorem 2.5

are satisfied and in view of (2.7) and (2.12) we obtain

‖h(−∆)‖L(Ḃs
r,q(RN ;E)) = ‖F−1h(| · |2)F‖L(Ḃs

r,q(RN ;E)) ≤ C‖h‖∞

for all h ∈ H∞
0 (Σφ;L(E)) which proves the claim. ¤

By the preparations above we are in the situation to give an elegant proof
of the boundedness of the Helmholtz projection on Ḃs

r,q(R
n−1;Lp(R+)).

Corollary 2.12. Let n ∈ N, n ≥ 2, 1 < p < ∞. Let s ∈ R, 1 ≤ r, q ≤
∞ be as in Definition 2.1. The Helmholtz projection P+ is bounded on
Ḃs

r,q(R
n−1;Lp(R+)).

Proof. We use the representation

P+ = r(I + RRT )E

as given in (1.17) and (1.18). Obviously r ∈ L(Ḃs
r,q(R

n−1;Lp(R)), Ḃs
r,q(

R
n−1;Lp(R+))) and E ∈ L(Ḃs

r,q(R
n−1;Lp(R+)), Ḃs

r,q(R
n−1;Lp(R))). It re-

mains to prove the boundedness of R = (R1, . . . , Rn) on Ḃs
r,q(R

n−1;Lp(R)).
For j = 1, . . . , n − 1 we write formally

Rj = ∂j(−∆)−1/2 = R′
jh(−∆′),

where R′
j := ∂j(−∆′)−1/2 is the tangential Riesz operator and

h : Σφ → K−∆′(Lp(R)), h(z) := [z(z − ∆n)−1]1/2
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for some φ ∈ (0, π) and ∆n := ∂2
n. Theorem 2.5 easily yields R′

j =

F−1
[

iξj

|ξ′| · I
]
F ∈ L(Ḃ0

∞,q(R
n−1;Lp(R))), since

iξj

|ξ′| satisfies the scalar

Mikhlin conditions. Furthermore, from well-known resolvent estimates for
the Laplacian −∆n on Lp(R) we obtain

‖z(z − ∆n)−1‖L(Lp(R)) ≤ Cφ, z ∈ Σφ.

(This is easily proved by applying the standard Mikhlin’s theorem.) This
implies h ∈ H∞(Σφ,K−∆′(Lp(R))) and therefore h(−∆′) ∈ L(Ḃs

r,q(R
n−1;

Lp(R))) by Proposition 2.10, which proves the boundedness of Rj for j =
1, . . . , n − 1.

In the case j = n we directly write Rn = g(−∆′) with

g : Σφ → K−∆′(Lp(R)), g(z) = ∂n(z − ∆n)−1/2.

Again by well-known estimates for −∆n we deduce g ∈ H∞(Σφ;K−∆′(

Lp(R))) implying Rn ∈ L(Ḃ0
∞,q(R

n−1;Lp(R))) and the proof is complete. ¤

Corollary 2.12 allows us to define the solenoidal part of Ḃs
r,q(R

n−1;Lp(R+))
as

Ḃs
r,q,σ(Rn−1;Lp(R+)) := P+(Ḃs

r,q(R
n−1;Lp(R+))). (2.13)

Since P+ is a bounded projection, this is a closed subspace of
Ḃs

r,q(R
n−1;Lp(R+)). At least for the most important case in this note we

will prove in the Appendix (Lemma A.2) the validity of the usual charac-
terization

Ḃ0
∞,1,σ(Rn−1;Lp(R+))

= {u ∈ Ḃ0
∞,1(R

n−1;Lp(R+)); divu = 0, u · ν|∂Rn
+

= 0}

for 1 < p < ∞. The crucial step will be to give a meaning to the trace
u · ν|∂Rn

+
= 0.

As another consequence of Proposition 2.10 and Remark 2.9 (c) we ob-
tain the following operator-valued bounded H∞-calculus for the Poisson
operator. It will turn out to be the key-ingredient in the proof of the resol-
vent estimates of the Stokes operator in Theorem 3.1.

Corollary 2.13. Let N ∈ N, E be a Banach space, and s ∈ R, 1 ≤ r, q ≤ ∞
be as in (2.1). The Poisson operator |∇| := (−∆)1/2 admits an operator-
valued bounded H∞-calculus on Ḃs

r,q(R
N ;E) with H∞-angle φ∞

Op(|∇|) = 0.
By duality, estimate (2.9) still holds for A = |∇|, if E is a dual space and
s, r, q satisfy (2.2).
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3. The linear problem

In this section we consider the linear problem (Stokes + Coriolis +
Ekman):




∂tΦ − ν∆Φ + Ωe3 × Φ + (UE(x3) · ∇)Φ + Φ3
∂UE

∂x3
= −∇π,

∇ · Φ = 0,
Φ(t, x)|x3=0 = 0,
Φ(t, x)|t=0 = Φ0(x),

(3.1)

for x ∈ R
n
+ and t ∈ (0,∞). After applying the Helmholtz projection P+,

the above equation (3.1) can be written in operator form as follows

Φt + AΦ + ΩSΦ + CEΦ = 0, Φ(t)|t=0 = Φ0, (3.2)

where A is the Stokes operator in a half-space, S = P+JP+ is the Coriolis
operator in R

3
+, and CE is the Ekman operator. Most of the results below

are stated in arbitrary dimension n ≥ 2. Only if the Coriolis and the Ekman
operators come into play we restrict dimension to the case n = 3. Since the
results here are based on the results in Section 2 the proofs work simulta-
neously in all homogeneous Besov spaces Ḃs

r,q(R
n−1;Lp(R+)) as defined in

Definition 2.1. Therefore, throughout this section we assume 1 < p < ∞
and s, r, q to be given as in condition (2.1) or condition (2.2) and set for
simplicity X := Ḃs

r,q(R
n−1;Lp(R+)) and Xσ := Ḃs

r,q,σ(Rn−1;Lp(R+)) =

P+(Ḃs
r,q(R

n−1;Lp(R+))). We start by stating the generation result for the
Stokes operator. Without the loss of generality we may assume ν = 1 for
the viscosity parameter. By the equality (λ + νA)−1 = 1

ν (λ
ν + A)−1 all the

proved results for A easily follow also for the operator νA and any fixed
ν > 0. Hence the Stokes operator is given as

A = ARn
+

= −P+∆,

D(A) = D(∆D) ∩ Xσ

= {u ∈ X : Dαu ∈ X,α ∈ N
n
0 , |α| ≤ 2, u|∂Rn

+
= 0} ∩ Xσ,

where ∆D denotes the Dirichlet Laplacian in X and α ∈ N
n
0 is a multi index.

By a standard perturbation argument we will show afterwards that also

AE := A + ΩP+JP+ + CE

D(AE) = D(A)

is the generator of a holomorphic semigroup on Xσ.

Theorem 3.1. The Stokes operator A is the generator of a bounded holo-
morphic semigroup on Xσ, which is strongly continuous if condition (2.1) is
satisfied. For each ϕ0 ∈ (0, π) there is a Cϕ0

such that we have the resolvent
estimates

2∑

k=0

|λ|k/2‖∇2−k(λ + A)−1‖L(X) ≤ Cϕ0
, λ ∈ Σπ−ϕ0

. (3.3)
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The proof of this result requires some preparations. First let us recall a
suitable representation for the solution of the Stokes resolvent problem

(SRP )u0,λ





(λ − ∆)u + ∇p = u0 in R
n
+,

∇ · u = 0 in R
n
+,

u = 0 in R
n−1.

In [7] (see also [21]) it was shown that u = (λ + A)−1u0 can be represented
as

u′ = (λ − ∆D)−1u′
0 − R′v,

un = (λ − ∆D)−1un
0 + v,

where R′ = (R′
1, . . . , R

′
n−1) and the Fourier transform of the remainder v is

given by

v̂(ξ′, xn) =
e−ω(|ξ′|)xn − e−|ξ′|xn

ω(|ξ′|) − |ξ′|

∫ ∞

0

e−ω(|ξ′|)sûn
0 (ξ′, s)ds, (ξ, xn) ∈ R

n
+,

where ω(|ξ′|) =
√

λ + |ξ′|2. Furthermore, the Fourier transform of the re-
lated pressure p is given as

p̂(ξ′, xn) =
iξ′

|ξ′| ·
ω(|ξ′|) + |ξ′|

ω(|ξ′|) e−|ξ′|xn

∫ ∞

0

e−ω(|ξ′|)sû′
0(ξ

′, xn)ds,

(ξ, xn) ∈ R
n
+. (3.4)

In order to estimate these formulae we follow the arguments in [21], i.e. we
will prove

‖∇p‖X ≤ C‖f‖X . (3.5)

Then, by plugging over ∇p to the right hand side of (SRP )f,λ it can
be regarded as a resolvent problem for the Dirichlet-Laplacian with data
u0 −∇p. The estimates for the solution of this problem, which are proved
first, in combination with (3.5) then yields the assertion. The essential in-
gredient for estimating the formulae for u and p in [21] is the bounded H∞-
calculus for the tangential Poisson operator |∇′| := (−∆′)1/2 = F−1[|ξ′|]F
on Lq(Rn−1). The corresponding ingredient in the situation considered here
will be the stronger property of an operator-valued bounded H∞-calculus
for |∇′| on Ḃs

r,q(R
n−1;Lp(R+)) as provided in Corollary 2.13. This is due to

the fact that here we have to deal with E-valued spaces in contrast to [21].
As a further application of Proposition 2.10 we start with proving the

desired resolvent estimates for the Dirichlet Laplacian ∆D.

Proposition 3.2. Let ϕ0 ∈ (0, π). There is a Cϕ0
> 0 such that the Dirich-

let Laplacian ∆D with domain D(∆D) = {u ∈ X : Dαu ∈ X,α ∈ N
n
0 , |α| ≤

2, u|∂Rn
+

= 0} admits the resolvent estimates

2∑

k=0

|λ|k/2‖∇2−k(λ − ∆D)−1‖L(X) ≤ Cϕ0
, λ ∈ Σπ−ϕ0

.
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If X = Ḃs
r,q(R

n−1;Lp(R+)) is such that condition (2.1) is satisfied, then
∆D is densely defined.

Proof. Observe that the resolvent of ∆D can be represented as

(λ − ∆D)−1f = r(λ − ∆)−1e−f (3.6)

with r the restriction on R
n
+, e− as given in Definition 1.1, and ∆ = ∆Rn

the Laplacian on R
n. Therefore it is sufficient to prove the corresponding

statements for ∆ on the space Ḃs
r,q(R

n−1;Lp(R)).
We have to estimate Dα(λ−∆)−1 for α ∈ N

n, |α| ≤ 2. For this purpose
we write Dα as Dα = Dβ∂k

n with |β| + k = |α| ≤ 2, where Dβ contains
tangential derivatives only. Next observe that the resolvent of ∆ can be
written as

(λ − ∆)−1 = (λ + (−∆′) − ∆n)−1,

where −∆′ denotes the tangential Laplacian, regarded as an operator in the
Lp(R)-valued space Ḃs

r,q(R
n−1;Lp(R)), and ∆n the Laplacian in the normal

component, i.e. in Lp(R). Hence we can rephrase Dα(λ− ∆)−1 formally as

Dα(λ − ∆)−1 = Dβ∂k
n(λ + (−∆′) − ∆n)−1

= Dβ(−∆′)−|β|/2hλ,β,k(−∆′),

with
hλ,β,k(−∆′) := ∂k

n(−∆′)|β|/2(λ + (−∆′) − ∆n)−1.

In the proof of Corollary 2.12 we already showed R′
j ∈ L(Ḃs

r,q(R
n−1;Lp(R)))

for the tangential Riesz operators R′
j = ∂j(−∆′)−1/2, j = 1, . . . , n−1. Hence

we may estimate

‖Dα(λ − ∆)−1‖L(Ḃs
r,q(Rn−1;Lp(R))) ≤ C‖hλ,β,k(−∆′)‖L(Ḃs

r,q(Rn−1;Lp(R))).

Now let φ ∈ (0, ϕ0/2). Obviously

hλ,β,k : Σφ → L(Lp(R)), µ 7→ hλ,β,k(µ) = ∂k
n(µ)|β|/2(λ + µ − ∆n)−1,

is holomorphic and we have

sup
µ∈Σφ

‖hλ,β,k(µ)‖L(Lp(R)) ≤ sup
µ∈Σφ

C(ϕ0)|µ||β|/2

|λ + µ|(2−k)/2

≤ C(ϕ0, φ)

|λ|(2−|α|)/2
, λ ∈ Σπ−ϕ0

, |β| + k = |α| ≤ 2,

by well known results for ∆n on Lp(R), and since Re
√

λ + µ ≥ cϕ0
(
√

|λ| +√
|µ|) for λ ∈ Σπ−ϕ0

, µ ∈ Σφ, and a certain cϕ0
> 0, by our choice φ ∈

(0, ϕ0/2). Let us remark, that this choice of φ is admissible, since we have
φ∞

Op(−∆′) = 0 according to Proposition 2.10. Thus, we conclude

‖Dα(λ − ∆)−1‖L(Ḃs
r,q(Rn−1;Lp(R)))
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≤ C‖hλ,β,k(−∆′)‖L(Ḃs
r,q(Rn−1;Lp(R)))

≤ Cϕ0

|λ|(2−|α|)/2
, λ ∈ Σπ−ϕ0

, |α| ≤ 2,

which proves the first assertion.
Thanks to the item (3) of Lemma 2.4,

D(∆) = {u ∈ Ḃs
r,q(R

n−1;Lp(R)) :

Dαu ∈ Ḃs
r,q(R

n−1;Lp(R)), α ∈ N
3, |α| ≤ 2}

lies dense in Ḃs
r,q(R

n−1;Lp(R)), if condition (2.1) is satisfied. This implies

λ(λ − ∆)−1f → f in Ḃs
r,q(R

n−1;Lp(R)) if λ → ∞.

Thus, by (3.6) it follows that also

λ(λ − ∆D)−1f → re−f = f in X if λ → ∞,

which proves D(∆D) to be dense in X. ¤

With the above preparations in hand we can turn to the proof of the
generation result for the Stokes operator.

Proof of Theorem 3.1
Regarding (SRP )u0,λ as the problem

{
(λ − ∆)u = u0 −∇p in R

n
+,

u = 0 on R
n−1,

Proposition 3.2 yields formally

2∑

k=0

|λ|k/2‖∇2−ku‖X ≤ Cϕ0
‖u0 −∇p‖X , λ ∈ Σπ−ϕ0

.

So, if we can show

‖∇p‖X ≤ Cϕ0
‖u0‖X , λ ∈ Σπ−ϕ0

,

the resolvent estimates for A follow. But this is an immediate consequence
of the next lemma for δ = 0. To complete the proof it remains to show that
A is densely defined in case that condition (2.1) is satisfied. To this end we
write

λ(λ + A)−1u0 = λ(λ − ∆D)−1(u0 − S(λ)u0), (3.7)

where
S(λ)u0 := ∇p, u0 ∈ X, (3.8)

and p is given by formula (3.4). So, if we can prove

S(λ)u0 → 0 in Xσ if λ → ∞ (3.9)
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for u0 ∈ Xσ we deduce in view of Proposition 3.2,

λ(λ + A)−1f → f in Xσ if λ → ∞,

which yields the assertion. But (3.9) follows from the next lemma as well.
¤

For later purposes we state the estimate for the pressure term, i.e. for

S(λ)u0 = ∇p

in a more general form.

Lemma 3.3. Let ϕ0 ∈ (0, π) and δ ∈ [0, 1/p′], where 1 = 1
p + 1

p′ . Then there

is a constant C = C(δ, ϕ0) such that

‖|∇′|−δS(λ)‖L(X) ≤
C

|λ|δ/2
, λ ∈ Σπ−ϕ0

. (3.10)

Furthermore, if r, q, s, p fulfill condition (2.1), then

S(λ)f → 0 in X if λ → ∞

for f ∈ Xσ.

Proof. Fix ϕ0 ∈ (0, π) and δ ∈ [0, 1/p′]. Let φ ∈ (0, ϕ0/4) and define
for f ∈ Lp(R+),

(hλ(z)f)(xn) :=

(
1 +

z

ω(z)

)
z1−δe−zxn

×
∫ ∞

0

e−ω(z)sf(s)ds, z ∈ Σφ, xn > 0.

Then, by representation (3.4) we see that |∇′|−δ(S(λ)u0)
n can be written

as

|∇′|−δ(S(λ)u0)
n = −R′ · hλ(|∇′|)u′

0, u0 ∈ X.

We already know that R′ ∈ L(X). Therefore, in view of Corollary 2.13,
it remains to show that hλ ∈ H∞(Σφ;L(Lp(R+))) with the upper bound
given in (3.10). But for f ∈ Lp(R+) we have

‖hλ(z)f‖Lp(R+) ≤
∣∣∣∣
(

1 +
z

ω(z)

)
z1−δ

∣∣∣∣ ‖e−zxn‖Lp(R+)

∫ ∞

0

|e−ω(z)sf(s)|ds

≤ C

∣∣∣∣
(

1 +
z

ω(z)

)
z1−δ

∣∣∣∣ |z|−1/p|‖e−ω(z)s‖Lp′ (R+)‖f‖Lp(R+)

≤ C

(
1 +

∣∣∣∣
z

ω(z)

∣∣∣∣
) ∣∣∣∣

z

ω(z)

∣∣∣∣

1
p′ −δ

1

|ω(z)|δ ‖f‖Lp(R+).
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Our choice φ ∈ (0, ϕ0/4) (which is possible in view of φ∞
|∇′| = 0) implies

the existence of a c1 = c1(ϕ0) > 0 such that Reω(z) ≥ c1(
√
|λ| + |z|) for

λ ∈ Σπ−ϕ0
, z ∈ Σφ. Then, it easily follows

∣∣∣∣
z

ω(z)

∣∣∣∣ ≤ Cϕ0
, λ ∈ Σπ−ϕ0

, z ∈ Σφ,

and
1

|ω(z)|δ ≤ Cϕ0

|λ|δ/2
, λ ∈ Σπ−ϕ0

, z ∈ Σφ.

Hence, since δ ∈ [0, 1/p′], i.e. 1
p′ − δ > 0,

‖hλ(z)‖L(Lp(R+)) ≤
Cϕ0

|λ|δ/2
, λ ∈ Σπ−ϕ0

, z ∈ Σφ.

Employing Corollary 2.13 we finally may conclude

‖|∇′|−δ(S(λ)u0)
n‖X = ‖R′ · hλ(|∇′|)u′

0‖X ≤ C

n−1∑

j=1

‖hλ(|∇′|)uj
0‖X

≤ (n − 1)C‖hλ‖L∞(Σφ;L(Lp(R+))‖u0‖X

≤ Cϕ0
|λ|−δ/2‖u0‖X , λ ∈ Σπ−ϕ0

, u0 ∈ Xσ.

By the equality

iξ′p̂ =
iξ′

|ξ′| |ξ|p̂ = − iξ′

|ξ′|∂np̂,

we have
|∇′|−δ(S(λ)u0)

′ = −R′|∇′|−δ(S(λ)u0)
n.

Again in view of R′ ∈ L(X), we see that the corresponding estimate for
|∇′|−δ(S(λ)u0)

′ is reduced to the just proved estimate for |∇′|−δ(S(λ)u0)
n.

In order to see the second assertion note that for δ = 0 the function hλ

can also be written in the form

(hλ(z)f)(xn) :=
(

1 +
z

ω(z)

)
ω(z)1/p′

z
1− 1

p′ e−zxn

∫ ∞

0

e−ω(z)s

(
z

ω(z)

)1/p′

f(s)ds

for z ∈ Σφ, xn > 0. Consequently, by following the lines of the proof above
we derive the estimate

‖S(λ)f‖X ≤ C‖(−∆′)1/2p′

(λ − ∆′)−1/2p′

f‖X .

The operator on the right hand side can be written as

(−∆′)α(λ − ∆′)−α = (λα + (−∆′)α)(λ − ∆′)−α(−∆′)α(λα + (−∆′)α)−1

with α = 1/2p′. Now, in view of Proposition 2.10, (λα +(−∆′)α)(λ−∆′)−α

is bounded on Xσ even with an upper bound independent of λ. Moreover,
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since the sectoriality of −∆′ in Xσ implies also (−∆′)α to be sectorial in
Xσ (with φ(−∆′)α = 0), we have

(−∆′)α(σ + (−∆′)α)−1f → 0 if σ → ∞

for f ∈ Xσ. Consequently

‖S(λ)f‖Xσ
≤ C‖(−∆′)1/2p′

(λ1/2p′

+ (−∆′)1/2p′

)−1f‖Xσ
→ 0 if λ → ∞

for f ∈ Xσ. ¤

The boundedness of the operator P+ on X and of the Ekman spiral
solution UE now allows us to employ a standard perturbation argument for
proving the generation result for the full linear operator AE . Here we give
the detailed calculation, since we are also interested in the dependence on
Ω and UE of the shift of the growth bound of the semigroup e−tAE and
also since we would like to refer to some of the appearing formulas in the
following sections.

Theorem 3.4. Let ϕ0 ∈ (0, π/2]. There are constants K1 = K1(ϕ0) > 0,
K2 = K2(ϕ0) ≥ 1 such that for ω0 = ω0(ϕ0) := 2K2 max{1, [K1(Ω +
‖UE‖1,∞)]2} we have

Σπ−ϕ0
⊆ ρ(−(AE + ω0))

and

2∑

k=0

|λ|k/2‖∇2−k(λ + AE + ω0)
−1‖L(X) ≤ Cϕ0

, λ ∈ Σπ−ϕ0
,

for some Cϕ0
> 0. Hence, AE is the generator of a holomorphic semigroup

on Xσ with growth bound ωAE
≤ ω0(π/2). If s, r, q satisfy condition (2.1),

this semigroup is strongly continuous.

Proof. Set B := ΩP+JP+ + CE . For ω0 > 0 the resolvent of AE + ω0 =
A + B + ω0 can be written as

(λ + (ω0 + A + B))−1 = (λ + ω0 + A)−1[I + B(λ + ω0 + A)−1]−1. (3.11)

Next we estimate ‖B(λ + ω0 + A)−1‖L(X). Since UE depends only on xn

we obtain

‖CE(λ + ω0 + A)−1‖L(X) ≤ C

(
‖UE‖∞‖∇(λ + ω0 + A)−1‖L(X)

+ ‖∂nUE‖∞‖(λ + ω0 + A)−1‖L(X)

)

≤ Cϕ0√
|λ + ω0|

‖UE‖1,∞, |λ + ω0| ≥ 1,
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where we applied (3.3). This implies by the boundedness of P+ on X

‖B(λ + ω0 + A)−1‖L(X)

≤ Cϕ0

(
Ω‖(λ + ω0 + A)−1‖L(X) +

1√
|λ + ω0|

‖UE‖1,∞

)

≤ K1√
|λ + ω0|

(Ω + ‖UE‖1,∞), |λ + ω0| ≥ 1, (3.12)

where K1 = K1(ϕ0) depends on upper bounds for ‖P+‖L(X) and ‖λ(λ +
A)−1‖L(X) only. Note that there is a constant K2 = K2(ϕ0) ≥ 1 such

that |λ + ω0| ≥ K−1
2 ω0 for all λ ∈ Σπ−ϕ0

and ω0 > 0. Now we set ω0 :=
2K2 max{1, [K1(Ω+‖UE‖1,∞)]2}. Then we may employ the Neumann series
obtaining

‖∇k(λ + (ω0 + A + B))−1‖L(X)

≤ ‖∇k(λ + ω0 + A)−1‖L(X)‖[I + B(λ + ω0 + A)−1]−1‖L(X)

≤ C

|λ + ω0|(2−k)/2

∞∑

j=0

[(
ω0

2K2|λ + ω0|

)1/2
]j

≤ C

|λ + ω0|(2−k)/2

1

1 − (1/2)1/2

≤ C

|λ + ω0|(2−k)/2
, λ ∈ Σπ−ϕ0

, k ∈ {0, 1, 2},

where we applied again estimate (3.3) for the Stokes operator A.

The assertion about the strong continuity is obvious, since D(AE) =
D(A). ¤

4. Estimates for the nonlinear term

In this section we estimate the nonlinear term by utilizing the linear
estimates obtained in the last section. The goal of this section is Propo-
sition 4.5. To prove this result we will employ the Neumann series repre-
sentation obtained in the proof of Theorem 3.4. The difficulty is that the
normal derivative terms combined with Riesz operators as P+∂nf cannot be
estimated in the same way as the corresponding terms involving tangential
derivatives. As mentioned in the Introduction, we overcome this difficulty by
using a certain splitting of P+∂nf as it will be introduced in (4.5). We start
with some basic estimates for the semigroup associated to the Laplacian.
By BUC1(RN ;E) for an arbitrary Banach space E and N ∈ N we denote the
space of all E-valued BUC functions whose first derivatives belong to BUC.
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Lemma 4.1. Assume n ≥ 2, 1 < q ≤ p < ∞, δ ∈ (0, 1/2]. Then the
following four estimates hold for f ∈ BUC1(Rn−1;Lq(R+)) ∩ BUC(Rn−1;
W 1,q(R+)) such that f |∂Rn

+
= 0.

(1) ||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤ C(δ)t−δ− 1
2 (

1
q −

1
p )

(
||f ||Ḃ0

∞,∞(Rn−1;Lq(R+)) + ||∇′f ||Ḃ0
∞,∞(Rn−1;Lq(R+))

)

for j = 1, ..., n − 1 and any t > 0.

(2) ||et∆D∂nf ||L∞(Rn−1;Lp(R+)) ≤ Ct−δ− 1
2 (

1
q −

1
p )||f ||L∞(Rn−1;W 1,q(R+))

for any t > 0.

(3) ||∂je
t∆Df ||Ḃ0

∞,1(R
n−1;Lp(R+)) ≤ Ct−

1
2−

1
2 (

1
q −

1
p )||f ||Ḃ0

∞,∞(Rn−1;Lq(R+))

for j = 1, ..., n − 1 and any t > 0.

(4) ||∂net∆Df ||L∞(Rn−1;Lp(R+)) ≤ Ct−
1
2−

1
2 (

1
q −

1
p )||f ||L∞(Rn−1;Lq(R+))

for any t > 0.

The constants C(δ), C > 0 do not depend on f .

Remark 4.2. (a) Note that the trace f |∂Rn
+

always makes sense, due to

the fact that f(x′, ·) ∈ W 1,q(R+) →֒ BC(R+) and the trace operator acts
on the normal component only. Note also that here and in the sequel we
need the assumption f |∂Rn

+
= 0 in order to ensure the validity of

E∂nf = ∂nẼf. (4.1)

Here E = diag[e+, e+, e−] and Ẽ = diag[e−, e−, e+], see Definition 1.1.

(b) In the normal derivative case we cannot expect regularizing effect since
the normal derivative ∂n acts on the third component (Lp-part). Hence we
cannot replace the estimates (2) and (4) by Ḃ0

∞,∞(Rn−1;W 1,q(R+)) →
Ḃ0

∞,1(R
n−1;Lp(R+)) and Ḃ0

∞,∞(Rn−1;Lq(R+)) → Ḃ0
∞,1(R

n−1;Lp(R+)),
respectively.

(c) Since ∂j and et∆D commute for j = 1, . . . , n − 1, the estimates (1) and
(3) remain true for ∂je

t∆Df and et∆D∂jf , respectively.

(d) The properties of the Dirichlet Laplacian ∆D we use in the proof of
Lemma 4.1 are known also for the Neumann Laplacian ∆N . Hence all as-
sertions of Lemma 4.1 are valid for ∆N as well.

(e) Combining (c) and the fact that ∂net∆Df = et∆N ∂nf and et∆D∂nf =
∂net∆N f , the estimates (2) and (4) are still true for ∂net∆Df and et∆D∂nf ,
respectively.

Proof. (1) Since ∂j for 1 ≤ j ≤ n − 1, −∆′, and et∆′

act only on the
tangential direction we have

||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

=

∞∑

k=−∞

|| |φk ∗ et∆D∂jf |Lp(R+)||L∞(Rn−1)
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=

∞∑

k=−∞

|| |(−∆′)δet∆′

φk ∗ et∆D,n∂j(−∆′)−δf |p||∞,

where we used the splitting ∆D = ∆′+∆D,n and ∆D,n denotes the Dirichlet
Laplacian in the normal component. Note that φk = φk(x1, x2) for all k ∈ Z,
i.e. the convolution is with respect to the first two components. Multiplying
1 =

∑
l∈Z

φl∗, it follows from et∆D,n(φl ∗ f) = φl ∗ et∆D,nf that

||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

=
∑

k,l∈Z,|k−l|≤2

|| |et∆′

φk ∗ φl ∗ et∆D,n∂jf |p||∞

=
∑

k,l∈Z,|k−l|≤2

|| |(−∆′)δet∆′

φk ∗ et∆D,n(φl ∗ ∂j(−∆′)−δf)|p||∞.

Then vector-valued Young’s inequality yields (see page 13 in [1])

||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤
∑

k,l∈Z,|k−l|≤2

(||(−∆′)δet∆′

φk||L1(Rn−1)

×||et∆D,n(φl ∗ ∂j(−∆′)−δf)||L∞(Rn−1;Lp(R+))).

Hence, we obtain

||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤ sup
l∈Z

||et∆D,n(φl ∗ ∂j(−∆′)−δf)||L∞(Rn−1;Lp(R+))

×
∑

|k−l|≤2

||(−∆′)δet∆′

φk||L1(Rn−1)

= 5 sup
l∈Z

||et∆D,n(φl ∗ ∂j(−∆′)−δf)||L∞(Rn−1;Lp(R+))

×
∑

k∈Z

||(−∆′)δet∆′

φk||L1(Rn−1).

The Lp − Lq-estimate of the operator et∆D,n yields

||et∆D,n(φl ∗ g)||L∞(Rn−1;Lp(R+)) = || |et∆D,n(φl ∗ g)|p||∞
≤ Ct−

1
2 (

1
q −

1
p )|| |φl ∗ g|q||∞

= Ct−
1
2 (

1
q −

1
p )||φl ∗ g||L∞(Rn−1;Lq(R+)). (4.2)

On the other hand, it follows for δ > 0 from Lemma A.1 (1) that

∑

k∈Z

||(−∆′)δet∆′

φk||L1(Rn−1;R) =
∑

k∈Z

||(−∆′)δGt(x
′) ∗ φk||L1(Rn−1;R)

= ||(−∆′)δGt(x
′)||Ḃ0

1,1(R
n−1) ≤ Ct−δ.
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Thus we conclude by applying (4.2) for g = ∂j(−∆′)−δf that

||et∆D∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤ Ct−δ− 1
2 (

1
q −

1
p ) sup

l∈Z

||φl ∗ ∂j(−∆′)−δf ||L∞(Rn−1;Lq(R+)) (4.3)

= Ct−δ− 1
2 (

1
q −

1
p )||∂j(−∆′)−1/2(−∆′)

1
2−δf ||Ḃ0

∞,∞(Rn−1;Lq(R+))

≤ Ct−δ− 1
2 (

1
q −

1
p )||(−∆′)

1
2−δf ||Ḃ0

∞,∞(Rn−1;Lq(R+)),

where we used R′
j ∈ L(Ḃ0

∞,∞(Rn−1;Lq(R+))) for the tangential Riesz op-

erator R′
j = ∂j(−∆′)−1/2 in the last inequality. By Proposition 2.10 the

operator (−∆′)
1
2−δ(1 − ∆′)−1/2 is bounded on Ḃ0

∞,∞(Rn−1;Lq(R+)) for

δ ∈ [0, 1
2 ]. Moreover, by general results for fractional powers of sectorial

operators we know that the norms ‖(1 − ∆′)1/2 · ‖Ḃ0
∞,∞(Rn−1;Lq(R+)) and

‖ · ‖Ḃ0
∞,∞(Rn−1;Lq(R+)) + ‖(−∆′)1/2 · ‖Ḃ0

∞,∞(Rn−1;Lq(R+)) are equivalent. This

implies

||(−∆′)
1
2−δf ||Ḃ0

∞,∞(Rn−1;Lq(R+))

= ||(−∆′)
1
2−δ(1 − ∆′)−1/2(1 − ∆′)1/2f ||Ḃ0

∞,∞(Rn−1;Lq(R+))

≤ C
(
‖f‖Ḃ0

∞,∞(Rn−1;Lq(R+)) + ‖(−∆′)1/2f‖Ḃ0
∞,∞(Rn−1;Lq(R+))

)
.

Combining this with (4.3) it remains to show

‖(−∆′)1/2f‖Ḃ0
∞,∞(Rn−1;Lq(R+)) ≤ C‖∇′f‖Ḃ0

∞,∞(Rn−1;Lq(R+)).

But this estimate follows easily from the representation (−∆′)1/2 =∑n−1
j=1 R′

j∂j by applying once again R′
j ∈ L(Ḃ0

∞,∞(Rn−1;Lq(R+))).

For (2), since et∆D = et∆′

et∆D,n and et∆D,n∂n = ∂net∆N,n , with ∆N,n

the Neumann Laplacian in the normal component, we see

||et∆D∂nf ||L∞(R2;Lp(R+)) = ||∂net∆N,net∆′

f ||L∞(Rn−1;Lp(R+))

= || |∂net∆N,net∆′

f |Lp(R+)||L∞(Rn−1).

The Lp − Lq-estimate of the Neumann Laplacian et∆N,n yields

||et∆D∂nf ||L∞(Rn−1;Lp(R+)) ≤ Ct−
1
2−

1
2 (

1
q −

1
p )|| |et∆′

f |Lq(R+)||L∞(Rn−1).

Since et∆′

is a positive operator, we get

||et∆D∂nf ||L∞(Rn−1;Lp(R+)) ≤ Ct−
1
2−

1
2 (

1
q −

1
p )|| et∆′ |f |Lq(R+)||L∞(Rn−1)

≤ Ct−
1
2−

1
2 (

1
q −

1
p )||f ||L∞(Rn−1;Lq(R+)), t > 0. (4.4)

On the other hand we can directly estimate

||et∆D∂nf ||L∞(Rn−1;Lp(R+)) ≤ Ct−
1
2 (

1
q −

1
p )||∂nf ||L∞(Rn−1;Lq(R+))
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≤ Ct−
1
2 (

1
q −

1
p )||f ||L∞(Rn−1;W 1,q(R+)), t > 0.

Combining the above two estimates results

||et∆D∂nf ||L∞(Rn−1;Lp(R+)) ≤ Ct−δ− 1
2 (

1
q −

1
p )||f ||L∞(Rn−1;W 1,q(R+)), t > 0.

The remaining two inequalities (3) and (4) are consequences of estimates
we already derived above. Indeed, setting δ = 1/2 and having in mind that
R′

j ∈ L(Ḃ0
∞,∞(Rn−1;Lq(R+))), it follows easily from (4.3) that

||∂je
t∆Df ||Ḃ0

∞,1(R
n−1;Lp(R+)) = ||et∆D∂jf ||Ḃ0

∞,1(R
n−1;Lp(R+))

≤ Ct−
1
2−

1
2 (

1
q −

1
p )||f ||Ḃ0

∞,∞(Rn−1;Lq(R+))

for j = 1, ..., n− 1 and t > 0. Furthermore, in the same way as we obtained
(4.4) we can show (4) in view of ∂ne−t∆D = e−t∆N ∂n and by interchanging
the roles of ∆D and ∆N . This completes the proof. ¤

From Lemma 4.1 we will derive estimates for terms of the form ∂je
t∆DP+f

for 1 ≤ j ≤ n. The crucial term here is the one with normal derivative ∂n.
The idea is to split P+∂n and ∂nP+ into a normal derivative term without
Riesz operators and terms including only tangential derivatives and Riesz
operators.

Lemma 4.3. Let n ≥ 2, 1 < q ≤ p < ∞, δ ∈ (0, 1/2], and f ∈ BUC1(Rn−1;
Lq(R+))∩BUC(Rn−1;W 1,q(R+)) such that f |∂Rn

+
= 0. Then there are con-

stants Cδ, C > 0 independent of f such that for j = 1, . . . , n − 1 and
k = 1, . . . , n we have

(1) ||et∆DP+∂jf ||L∞(Rn−1;Lp(R+))

≤ Cδt
−δ− 1

2 (
1
q −

1
p )||f ||W 1,∞(Rn−1;Lq(R+)), t > 0,

(2) ||et∆DP+∂nf ||L∞(Rn−1;Lp(R+))

≤ Cδt
−δ− 1

2 (
1
q −

1
p )

(
||f ||L∞(Rn−1;W 1,q(R+))

+ ‖f‖W 1,∞(Rn−1;Lq(R+))

)
, t > 0,

(3) ||∂ket∆DP+f ||L∞(Rn−1;Lp(R+))

≤ Ct−
1
2−

1
2 (

1
q −

1
p )||f ||L∞(Rn−1;Lq(R+)), t > 0.

Proof. In the case that 1 ≤ j ≤ n− 1 we have P+∂jf = ∂jP+f. Moreover,

by Corollary 2.12 the operator P+ is bounded on Ḃ0
∞,∞(Rn−1;Lp(R+)).

Hence, Lemma 4.1 (1) implies for t > 0,

||et∆DP+∂jf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤ Cδt
−δ− 1

2 (
1
q −

1
p )

(
||f ||Ḃ0

∞,∞(Rn−1;Lq(R+)) + ||∇′f ||Ḃ0
∞,∞(Rn−1;Lq(R+))

)
,
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yielding (1) in virtue of Lemma 2.3.
In order to see (2) first recall that P+ = rPE by (1.17) and (4.1). Now

we use the following splitting of P+∂nf :

P+∂nf = rPE∂nf = rP∂nẼf

= r∂n((Ẽf)′, 0) +
n−1∑

j=1

r∂jR(Rn(Ẽf)j) +

r(∇′, 0)R2
n(Ẽf)n −

n−1∑

j=1

r∂jRjRn(Ẽf)nen

= ∂nQ0f +

n−1∑

j=1

∂jQjf (4.5)

=: I + II,

where the operators Qj , j = 0, . . . , n − 1, are defined by

Q0g = r((Ẽg)′, 0) = (g′, 0), (4.6)

Qjg = rR(Rn(Ẽg)j) + rR2
n(Ẽg)nej − rRjRn(Ẽg)nen. (4.7)

Here we denote by ej the unit vector whose j-th component is 1 and Rh =
(R1h, . . . , Rnh) for scalar function h. To derive (4.5) we also used the facts
that

∂nRj = ∂n∂j(−∆)−1/2 = ∂j∂n(−∆)−1/2 = ∂jRn, 1 ≤ j ≤ n,

R2
n = −I −

n−1∑

j=1

R2
j ,

where I denotes the identity operator. By the boundedness of r, Ẽ
and in view of R ∈ L(Ḃ0

∞,∞(Rn−1;Lq(R))) this implies that Qj ∈
L(Ḃ0

∞,∞(Rn−1;Lq(R+))), j = 1, . . . , n − 1. Applying Lemma 4.1 (2) to
I and Lemma 4.1 (1) to II then yields

||et∆DP+∂nf ||L∞(Rn−1;Lp(R+))

≤ ||et∆D∂nQ0f ||L∞(Rn−1;Lp(R+)) +

n−1∑

j=1

||et∆D∂jQjf ||Ḃ0
∞,1(R

n−1;Lp(R+))

≤ Cδt
−δ− 1

2 (
1
q −

1
p )

[
||Q0f ||L∞(Rn−1;W 1,q(R+))

+

n−1∑

j=1

(
||Qjf ||Ḃ0

∞,∞(Rn−1;Lq(R+)) + ||Qj∇′f ||Ḃ0
∞,∞(Rn−1;Lq(R+))

)]

≤ Cδt
−δ− 1

2 (
1
q −

1
p ) (

||f ||L∞(Rn−1;W 1,q(R+)) + ‖f‖W 1,∞(Rn−1;Lq(R+))

)
.
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For 1 ≤ k ≤ n − 1 inequality (3) is an immediate consequence of
Lemma 4.1 (3), P+ ∈ L(Ḃ0

∞,∞(Rn−1;Lq(R+))), and Lemma 2.3. In order

to see (3) for k = n we use ∂net∆DP+f = et∆N ∂nP+f and the splitting

∂nP+f = ∂n(f ′, 0) +

n−1∑

j=1

∂jrR(Rn(Ef)j) + (∇′, 0)rR2
n(Ef)n

−
n−1∑

j=1

∂jrRjRn(Ef)nen

= ∂nQ0f +

n−1∑

j=1

∂jQ̃jf,

with Q̃j , j = 1, . . . , n − 1, as defined in (4.7) with Ẽ replaced by E. After
applying et∆N , the first term of the right hand side can be represented by
∂net∆D (f ′, 0), using et∆N ∂n = ∂net∆D again. Hence, Lemma 4.1 (4) yields
the desired estimate for this term. Employing Lemma 4.1 (3), Remark 4.2

(b), and Q̃j ∈ L(Ḃ0
∞,∞(Rn−1;Lq(R+))), j = 1, . . . , n− 1, we obtain for the

other terms

||et∆N

n−1∑

j=1

∂jQ̃jf ||Ḃ0
∞,1(R

n−1;Lq(R+)) = ||∂je
t∆N

n−1∑

j=1

Q̃jf ||Ḃ0
∞,1(R

n−1;Lq(R+))

≤ Ct−
1
2−

1
2 (

1
q −

1
p )||f ||Ḃ0

∞,∞(Rn−1;Lq(R+)), t > 0,

which proves (3) in view of Lemma 2.3. ¤

Lemma 4.4. Let ϕ0 ∈ (0, π), 2 < p < ∞, and B = ΩP+JP+ + CE. There
is a C = Cϕ0

> 0 such that

(1) ‖(λ − ∆D)−1S(λ)f‖Ḃ0
∞,1(L

p) ≤
C

|λ|1− 1
2p

‖f‖Ḃ0
∞,∞(Lp/2)

(2) ‖∇(λ − ∆D)−1S(λ)f‖Ḃ0
∞,1(L

p) ≤
C

|λ| 12− 1
2p

‖f‖Ḃ0
∞,∞(Lp/2)

(3) ‖B(λ − ∆D)−1S(λ)f‖Ḃ0
∞,1(L

p) ≤
C

|λ| 12− 1
2p

‖f‖Ḃ0
∞,∞(Lp/2)

for λ ∈ Σπ−ϕ0
, |λ| ≥ 1, f ∈ Ḃ0

∞,∞(Lp/2).

Proof. We write the operator under consideration as

∇k(λ − ∆D)−1S(λ) = (−∆′)1/4p′∇k(λ − ∆D)−1(−∆′)−1/4p′

S(λ)

for k = 0, 1. Observe that

‖∇ke−t∆D‖L(Ḃ0
∞,1(L

p)) ≤ Ct−
k
2 , t > 0,
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due to Proposition 3.2. By Lemma A.1 (2) with α = 1/4p′ and the Lp −Lq-
estimates for ∆D,n we therefore deduce

‖∇k(−∆′)1/4p′

e−t∆Df‖Ḃ0
∞,1(L

p)

= ‖∇ke−t∆D/2(−∆′)1/4p′

e−t∆′/2e−t∆D,n/2f‖Ḃ0
∞,1(L

p)

≤ Ct
− k

2−
1

4p′ ‖e−t∆D,n/2f‖Ḃ0
∞,∞(Lp)

≤ Ct
− k

2−
1

4p′ −
1
2p ‖f‖Ḃ0

∞,∞(Lp/2), t > 0, k = 0, 1.

This implies for the resolvent

‖∇k(−∆′)1/4p′

(λ − ∆D)−1f‖Ḃ0
∞,1(L

p) ≤
C

|λ|1−
k
2−

1
4p′ −

1
2p

‖f‖Ḃ0
∞,∞(Lp/2)

for λ ∈ Σπ−ϕ0
, k = 0, 1. In combination with Lemma 3.3 this yields

‖∇k(λ − ∆D)−1S(λ)f‖Ḃ0
∞,1(L

p)

≤ C

|λ|1−
k
2−

1
4p′ −

1
2p

‖(−∆′)−1/4p′

S(λ)f‖Ḃ0
∞,∞(Lp/2)

≤ C

|λ|1− k
2−

1
2p

‖f‖Ḃ0
∞,∞(Lp/2)

for λ ∈ Σπ−ϕ0
, k = 0, 1. This shows (1) and (2). In view of the boundedness

of P+ in Ḃ0
∞,1(L

p) and the function UE , relation (3) is an easy consequence
of (1) and (2). ¤

The next proposition contains the crucial estimates that allow us to
construct solutions in the space BUC(R2;Lp(R+)). Note again that due to
the fact mentioned in Remark 4.2 (a) we are not able to carry out the
iteration in the space Ḃ0

∞,1(R
2;Lp(R+)).

Proposition 4.5. Let 2 < p < ∞, ϕ0 ∈ (0, π/2), δ ∈ (0, 1/2], and ω0 =
ω0(ϕ0) as in Theorem 3.4. There exist C = C(ϕ0, δ) > 0 and ω1 ≥ ω0 such
that

‖ ∇ℓe−t(AE+ω1)P+∂jf‖L∞(R2;Lp(R+))

≤ Ct−
ℓ
2−

1
2p−δ(1−ℓ)

(
‖f‖W 1,∞(R2;Lp/2(R+)) + ‖f‖L∞(R2;W 1,p/2(R+))

)
(4.8)

for t > 0, ℓ = 0, 1, j = 1, 2, 3, and
f ∈ BUC1(R2;Lp/2(R+)) ∩ BUC(R2;W 1,p/2(R+)) with f |∂Rn

+
= 0.

Proof. For simplicity we omit the R notation in the spaces, i.e. we write
W 1,∞(Lp) = W 1,∞(R2;Lp(R+)), L∞(Lp) = L∞(R2;Lp(R+)) and so on in
the sequel. We will prove the corresponding estimates for the resolvent of
AE , i.e.

‖∇ℓ(λ + ω1 + AE)−1P+∂jf‖L∞(Lp)
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≤ C

|λ|1− ℓ
2−

1
2p−δ(1−ℓ)

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
(4.9)

for j = 1, 2, 3, ℓ = 0, 1, λ ∈ Σπ−ϕ0
, and f ∈ BUC1(Lp/2). Then (4.8) easily

follows by the representation

e−t(AE+ω1) =
1

2πi

∫

Γ

e−tλ(λ + ω1 + AE)−1dλ.

Now fix ϕ0 ∈ (0, π/2) and set µ := λ + ω1. We already pointed out that the
resolvent of the Stokes operator A can be written as

(µ + A)−1 = (µ − ∆D)−1(I − S(µ)), (4.10)

where S(µ) is defined as in (3.8). Thus, according to (3.11) the resolvent of
AE is represented as

(µ + AE)−1 = (µ − ∆D)−1(I − S(µ))[I + B(µ + A)−1]−1.

Let us first consider the easier case of tangential derivatives. Since ∂j com-
mutes with P+ and all parts of AE for j = 1, 2, in this case we have

‖(µ + AE)−1P+∂jf‖L∞(Lp)

= C‖(µ − ∆D)−1∂j(I − S(µ))[I + B(µ + A)−1]−1P+f‖Ḃ0
∞,1(L

p)

≤ C

|µ|1− 1
2p−δ

(
‖(I − S(µ))[I + B(µ + A)−1]−1P+f‖Ḃ0

∞,∞(Lp/2)

+ ‖(I − S(µ))[I + B(µ + A)−1]−1P+∇′f‖Ḃ0
∞,∞(Lp/2)

)

≤ C

|µ|1− 1
2p−δ

(
‖f‖L∞(Lp/2) + ‖∇′f‖L∞(Lp/2)

)

≤ C

|µ|1− 1
2p−δ

‖f‖W 1,∞(Lp/2), (4.11)

where we applied Lemma 4.1 (1) as well as the boundedness of S(µ), [I +
B(µ + A)−1]−1, and P+ in the space Ḃ0

∞,∞(Lp/2) given by Lemma 3.3,
by ω1 ≥ ω0 and our choice of ω0 (see Theorem 3.4), and Corollary 2.12,
respectively. Applying Lemma 4.1 (3) instead of Lemma 4.1 (1) we can
obtain in an analogous way

‖∂i(µ + AE)−1P+∂jf‖L∞(Lp) ≤
Cϕ0

|µ| 12− 1
2p

‖∂jf‖L∞(Lp/2)

for i = 1, 2 and j = 1, 2, 3. Since

||∂jf ||L∞(Lp/2) ≤ ||f ||W 1,∞(Lp/2) if j = 1, 2,

||∂3f ||L∞(Lp/2) ≤ ||f ||L∞(W 1,p/2),
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we conclude

‖∂i(µ + AE)−1P+∂jf‖L∞(Lp)

≤ Cϕ0

|µ| 12− 1
2p

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
. (4.12)

The case of normal derivatives is more involved. Here we employ the
Neumann series and use the representation of the form

(µ + AE)−1 =

∞∑

k=0

(µ + A)−1[B(µ + A)−1]k.

In order to estimate this expression we need

Lemma 4.6. There are constants K = K(ϕ0) > 0 and ω1 ≥ ω0 such that

‖(µ + A)−1[B(µ + A)−1]kP+∂3f‖L∞(Lp)

≤ K

|µ|1− 1
2p−δ

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
(4.13)

and

‖∂3(µ + A)−1[B(µ + A)−1]kP+∂jf‖L∞(Lp)

≤ K

|µ| 12− 1
2p

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
(4.14)

for all µ − ω1 ∈ Σπ−ϕ0
, j = 1, 2, 3, k = 0, 1, 2, . . ., and f ∈ BUC1(Lp/2) ∩

BUC(W 1,p/2) with f |∂Rn
+

= 0.

Before proving Lemma 4.6 let us complete the proof of Proposition 4.5 first.
From (4.13) we immediately conclude

‖(µ + AE)−1P+∂3f‖L∞(Lp)

≤
∞∑

k=0

Cϕ0

|µ|1− 1
2p−δ

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

≤ Cϕ0

|µ|1− 1
2p−δ

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
.

On the other hand (4.14) implies

‖∂3(µ + AE)−1P+∂jf‖L∞(Lp)

≤
∞∑

k=0

Cϕ0

|µ| 12− 1
2p

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

≤ Cϕ0

|µ| 12− 1
2p

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
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for j = 1, 2, 3. Combining these two inequalities with (4.11) and (4.12),
estimate (4.9) and thus the assertion of Proposition 4.5 follows. ¤

Proof. (of Lemma 4.6)
We apply induction over k. For k = 0 an application of Lemma 4.3 (2) and
Lemma 4.4 (1) implies

‖(µ + A)−1P+∂3f‖L∞(Lp) = ‖(µ − ∆D)−1(I − S(µ))P+∂3f‖L∞(Lp)

≤ C

[
1

|µ|1− 1
2p−δ

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

+
1

|µ|1− 1
2p

‖∂3f‖L∞(Lp/2)

]

≤ K

|µ|1− 1
2p−δ

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

for µ − ω1 ∈ Σπ−ϕ0
and some K > 0. Instead, if we employ Lemma 4.3 (3)

and Lemma 4.4 (2), we obtain completely analogous

‖∂3(µ + A)−1P+∂jf‖L∞(Lp) ≤
K

|µ| 12− 1
2p

‖∂jf‖L∞(Lp/2)

≤ K

|µ| 12− 1
2p

(
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

for µ−ω1 ∈ Σπ−ϕ0
and j = 1, 2, 3. For the step k −→ k+1 we first consider

again (4.13). Note that we have to make sure that the constant K, while
doing this step, is not increasing. We compute by using (4.10)

(µ + A)−1[B(µ + A)−1]k+1P+∂3f

= (µ + A)−1[B(µ + A)−1]kB(µ − ∆D)−1P+∂3f

− (µ + A)−1[B(µ + A)−1]kB(µ − ∆D)−1S(µ)P+∂3f

=: I1 + I2.

We start by estimating I2. According to (3.12) we have ‖B(µ + A)−1

‖L(Ḃ0
∞,1(L

p)) ≤ 1/
√

2. Consequently

‖I2‖L∞(Lp) ≤ C‖I2‖Ḃ0
∞,1(L

p)

≤ C

|µ|

(
1√
2

)k

‖B(µ − ∆D)−1S(µ)P+∂3f‖Ḃ0
∞,1(L

p).

By using Lemma 4.4 (3) we can continue the calculation, concluding

‖I2‖L∞(Lp) ≤
C√
|µ|

1

|µ|1− 1
2p

(
1√
2

)k

‖P+∂3f‖Ḃ0
∞,∞(Lp/2)

≤ C√
|µ|

1

|µ|1− 1
2p

(
1√
2

)k

‖∂3f‖Ḃ0
∞,∞(Lp/2)
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≤ C1√
|µ|

1

|µ|1− 1
2p

(
1√
2

)k

‖f‖L∞(W 1,p/2), µ − ω1 ∈ Σπ−ϕ0
. (4.15)

Here, we used the boundedness of P+ in Ḃ0
∞,∞(Lp/2) and Lemma 2.3. The

term I1 we split in further two parts by recalling B = CE+ΩP+J. Note that
in order to avoid another splitting, we write here P+J instead of P+JP+.
This is possible, since P+JP+ is a priori applied on solenoidal fields only.
This yields

I1 = (µ + A)−1[B(µ + A)−1]kCE(µ − ∆D)−1P+∂3f

+ Ω(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1P+∂3f

=: I11 + I12.

In order to estimate I11, note that the Ekman part CE can be written as

CEv = P+(UE · ∇)v + P+v3∂3U
E

= P+

2∑

j=1

UE
j ∂jv + P+UE(∇′ · v′) + P+∂3(U

Ev3), (4.16)

if divv = 0. Observe that we can employ this representation before our
splitting in I1 and I2, since then this divergence condition is fulfilled. Now
consider the first term of CE which contains tangential derivatives only.
Since UE depends only on x3, we can pull out its supremum obtaining

‖P+

2∑

j=1

UE
j ∂j(µ − ∆D)−1P+∂3f‖Ḃ0

∞,1(L
p)

≤ C‖UE‖∞
2∑

j=1

‖∂j(µ − ∆D)−1P+∂3f‖Ḃ0
∞,1(L

p)

≤ C

|µ| 12− 1
2p

‖UE‖∞‖P+∂3f‖Ḃ0
∞,∞(Lp/2)

≤ C

|µ| 12− 1
2p

‖∂3f‖Ḃ0
∞,∞(Lp/2) ≤

C

|µ| 12− 1
2p

‖f‖L∞(W 1,p/2),

where we used Lemma 4.1 (3) in the second inequality. Hence, by
Ḃ0
∞,1(L

p) →֒ L∞(Lp) we have for the first term of (4.16)

‖(µ + A)−1[B(µ + A)−1]kP+

2∑

j=1

UE
j ∂j(µ − ∆D)−1P+∂3f‖L∞(Lp)

≤ C

|µ|

(
1√
2

)k

‖P+

2∑

j=1

UE
j ∂j(µ − ∆D)−1P+∂3f‖Ḃ0

∞,1(L
p)

≤ C2√
|µ|

1

|µ|1− 1
2p

(
1√
2

)k

‖f‖L∞(W 1,p/2).
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We omit the details for the second part of (4.16). As it also contains only
tangential derivatives, we deduce in a completely analogous way

‖(µ + A)−1[B(µ + A)−1]kP+UE(∇′ · ((µ − ∆D)−1P+∂3f)′)‖L∞(Lp)

≤ C3√
|µ|

1

|µ|1− 1
2p

(
1√
2

)k

‖f‖L∞(W 1,p/2).

For the third addend of (4.16) we conclude by applying the assumption of
induction

‖(µ + A)−1[B(µ + A)−1]kP+∂3

(
UE [(µ − ∆D)−1P+∂3f · e3]

)
‖L∞(Lp)

≤ K

|µ|1− 1
2p−δ

(
1√
2

)k (
‖UE [(µ − ∆D)−1P+∂3f · e3]‖L∞(W 1,p/2)

+ ‖UE [(µ − ∆D)−1P+∂3f · e3]‖W 1,∞(Lp/2)

)

≤ C4√
|µ|

1

|µ|1− 1
2p−δ

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)
,

where we used Lemma 4.3 (2) in the last estimate and set e3 = (0, 0, 1).
In order to see the estimate for I12 we split P+∂3f as in (4.5) and get

1

Ω
||I12||L∞(Lp)

≤ ||(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1∂3Q0f ||L∞(Lp)

+

2∑

j=1

||(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1∂jQjf ||L∞(Lp)

=: A0 +

2∑

j=1

Aj .

For j = 1, 2 we obtain

Aj ≤ ||(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1∂jQjf ||Ḃ0
∞,1(L

p)

≤ C
1

|µ| (
1√
2
)k||(µ − ∆D)−1∂jQjf ||Ḃ0

∞,1(L
p).

Applying Lemma 4.1 (1) and the boundedness of Qj on Ḃ0
∞,∞(Lp/2) yields

Aj ≤ C
1

|µ| (
1√
2
)k 1

|µ|1− 1
2p−δ

(
||Qjf ||Ḃ0

∞,∞(Lp/2) + ||Qj∇′f ||Ḃ0
∞,∞(Lp/2)

)

≤ C6

|µ| (
1√
2
)k 1

|µ|1− 1
2p−δ

||f ||W 1,∞(Lp/2).

For A0 we use

J(µ − ∆D)−1∂3Q0f = ∂3J(µ − ∆N )−1Q0f (4.17)
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to get by the assumption of induction that

A0 ≤ K
1

|µ|1− 1
2p−δ

(
1√
2
)k

(
||J(µ − ∆N )−1Q0f ||L∞(W 1,p/2)

+ ||J(µ − ∆N )−1Q0f ||W 1,∞(Lp/2)

)
.

By definition (4.6) obviously Q0 is bounded in L∞(W 1,p/2). Applying well-
known estimates for the Laplacian with Neumann boundary conditions then
yields

A0 ≤ K
1

|µ|1− 1
2p−δ

(
1√
2
)k 1

|µ|C
(
||f ||L∞(W 1,p/2) + ‖f‖W 1,∞(Lp/2)

)

≤ C7

|µ|
1

|µ|1− 1
2p−δ

(
1√
2
)k

(
‖f‖L∞(W 1,p/2) + ‖f‖W 1,∞(Lp/2)

)
.

Thus, setting Cmax := max{C1, . . . , C7} and choosing ω1 large enough,
we can achieve

√
|µ| =

√
|λ + ω1| ≥ 8Cmax

√
2/K, λ ∈ Σπ−ϕ0

. Conse-
quently,

‖∂3(µ + A)−1[B(µ + A)−1]k+1P+∂jf‖L∞(Lp)

≤ K

|µ|1− 1
2p−δ

(
1√
2

)k+1 (
‖f‖L∞(W 1,p/2) + ‖f‖W 1,∞(Lp/2)

)

for µ − ω1 ∈ Σπ−ϕ0
and (4.13) is proved.

Since it is very similar, we will be brief in details in demonstrating the
step k −→ k + 1 for (4.14). We use again the splitting

∂3(µ + A)−1[B(µ + A)−1]k+1P+∂jf

= ∂3(µ + A)−1[B(µ + A)−1]kB(µ − ∆D)−1P+∂jf

− ∂3(µ + A)−1[B(µ + A)−1]kB(µ − ∆D)−1S(µ)P+∂jf

=: J1 + J2

and deduce in the same way as in (4.15)

‖J2‖L∞(Lp) ≤
C1√
|µ|

1

|µ| 12− 1
2p

(
1√
2

)k

‖∂jf‖L∞(Lp/2)

≤ C1√
|µ|

1

|µ| 12− 1
2p

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

for µ − ω1 ∈ Σπ−ϕ0
and j = 1, 2, 3. The term J1 we split again as

J1 = ∂3(µ + A)−1[B(µ + A)−1]kCE(µ − ∆D)−1P+∂jf

+ Ω∂3(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1P+∂jf

=: J11 + J12.
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In this case we can use for CE the representation

CEv = P+div(v ⊗ UE + UE ⊗ v).

Then we can apply directly the assumption of induction, which implies

‖J11‖L∞(Lp/2)

≤ K

|µ| 12− 1
2p

(
1√
2

)k

‖UE‖1,∞

(
‖(µ − ∆D)−1P+∂jf‖W 1,∞(Lp/2)

+ ‖(µ − ∆D)−1P+∂jf‖L∞(W 1,p/2)

)

≤ C2√
|µ|

1

|µ| 12− 1
2p

(
1√
2

)k (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

for µ − ω1 ∈ Σπ−ϕ0
.

We turn to the term J12. In the same way as we applied Lemma 4.1, the
boundedness of P+, and Lemma 2.3 several times above, the cases j = 1, 2
can be handled. Therefore we restrict our considerations to the case j = 3.
Splitting P+∂3f yields

1

Ω
||J12||L∞(Lp)

≤ ‖∂3(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1∂3Q0f‖L∞(Lp)

+

2∑

j=1

‖∂3(µ + A)−1[B(µ + A)−1]kP+J(µ − ∆D)−1∂jQjf‖L∞(Lp)

=: B0 +

2∑

j=1

Bj .

By (4.17) and the assumption of induction we obtain analogously to the
estimate for A0 that

B0 ≤ K

|µ| 12− 1
2p

(
1√
2

)k (
||J(µ − ∆N )−1Q0f‖W 1,∞(Lp/2)

+ ||J(µ − ∆N )−1Q0f‖L∞(W 1,p/2)

)

≤ C3

|µ|
1

|µ| 12− 1
2p

(
1√
2

)k (
||f‖W 1,∞(Lp/2) + ||f‖L∞(W 1,p/2)

)
.

Furthermore, similarly to the estimates for Aj , j = 1, 2, we deduce

Bj ≤ C√
|µ|

(
1√
2

)k

||P+J(µ − ∆D)−1∂jQjf‖Ḃ0
∞,1(L

p)
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≤ C√
|µ|

(
1√
2

)k

||(µ − ∆D)−1∂jQjf‖Ḃ0
∞,1(L

p)

≤ C√
|µ|

(
1√
2

)k
1

|µ|1− 1
2p

||Qjf‖Ḃ0
∞,∞(Lp/2)

≤ C4

|µ|

(
1√
2

)k
1

|µ| 12− 1
2p

||f ||L∞(Lp/2),

where we simply applied Lemma 4.1 (3) instead of Lemma 4.1 (1) this time.
Summarizing, and by choosing ω1 large enough we can again achieve√
|µ| ≥ 5Cmax

√
2/K, λ = µ − ω1 ∈ Σπ−ϕ0

, where Cmax := max{C1, . . .
, C4}. Consequently,

‖∂3(µ + A)−1[B(µ + A)−1]k+1P+∂jf‖L∞(Lp)

≤ K

|µ| 12− 1
2p

(
1√
2

)k+1 (
‖f‖W 1,∞(Lp/2) + ‖f‖L∞(W 1,p/2)

)

for µ − ω1 ∈ Σπ−ϕ0
, j = 1, 2, 3, and the lemma is proved. ¤

5. Nonlinear problem - local existence

In this section we prove Theorem 1.2.

For v0 ∈ Ḃ0
∞,1,σ(R2;Lp(R+)) choose K > 2Cϕ0

eω1 ||v0||Ḃ0
∞,1,σ(R2;Lp(R+)).

Here Cϕ0
is the constant appearing in Theorem 3.4.

Put Y := L∞((0, T );BUC(R2;Lp(R+))). For T > 0 let

XT,K = {v(x, t) ∈ Y ; t1/2∇v(x, t) ∈ Y, divv = 0, v|∂Rn
+

= 0, ||v||XT
< K},

where

||v||XT
:= sup

0≤t≤T
||v||L∞(Lp)(t) + sup

0≤t≤T
t1/2||∇v||L∞(Lp)(t).

Next define F by

(Fv)(t) := e−tAE v0 + N(v, v)(t) for v ∈ XT,K ,

where

N(v, w)(t) := −
∫ t

0

e−(t−s)AEP+div(v ⊗ w)(s)ds.

To apply the contraction mapping principle we prepare the following esti-
mates derived from Proposition 4.5.
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Lemma 5.1. Let p, ϕ0, δ and ω0 = ω0(ϕ0) as in Proposition 4.5. There
exists a constant C = C(ϕ0, δ, p) > 0 such that

||N(v, w)(t)||L∞(Lp) ≤ Cetω1{M1t
1− 1

2p−δ + M2t
− 1

2p−δ+ 1
2 }, (5.1)

||∇N(v, w)(t)||L∞(Lp) ≤ Cetω1{M1t
1
2−

1
2p + M2t

− 1
2p } (5.2)

for t > 0 and all v, w ∈ XT,K . Here, M1 = MvMw and M2 = M ′
vMw +

MvM ′
w, where

Mu := sup
0≤s≤T

||u||L∞(Lp)(s) and M ′
u := sup

0≤s≤T
s1/2||∇u||L∞(Lp)(s)

for u ∈ XT,K .

Proof. We have by Proposition 4.5

||N(v, w)(t)||L∞(Lp) = || −
∫ t

0

e−(t−s)AEP+div(v ⊗ w)(s)ds||L∞(Lp)

≤ etω1

∫ t

0

||e−(t−s)(AE+ω1)P+div(v ⊗ w)(s)||L∞(Lp)ds

≤ Cϕ0,δ,pe
tω1

∫ t

0

(t − s)−
1
2p−δ(||v ⊗ w||W 1,∞(Lp/2)

+||v ⊗ w||L∞(W 1,p/2))(s)ds.

Since
(
||v ⊗ w||W 1,∞(Lp/2) + ||v ⊗ w||L∞(W 1,p/2)

)
(s)

≤ C
(
||v ⊗ w||L∞(Lp/2) + ||∇′(v ⊗ w)||L∞(Lp/2) + ||∂3(v ⊗ w)||L∞(Lp/2)

)
(s)

≤ C

(
||v||L∞(Lp)||w||L∞(Lp) + ||∇v||L∞(Lp)||w||L∞(Lp)

+ ||v||L∞(Lp)||∇w||L∞(Lp)

)
(s),

we get

||N(v, w)(t)||L∞(Lp) ≤ Cϕ0,δ,pe
tω1

{
MvMw

∫ t

0

(t − s)−
1
2p−δds

+ (M ′
vMw + MvM ′

w)

∫ t

0

(t − s)−
1
2p−δs−1/2ds

}
,

which implies (5.1). For (5.2) we similarly estimate by Proposition 4.5

||∇N(v, w)(t)||L∞(Lp)

≤ etω1

∫ t

0

||∇e−(t−s)(AE+ω1)P+div(v ⊗ w)(s)||L∞(Lp)ds

≤ Cϕ0,δ,pe
tω1

∫ t

0

(t − s)−
1
2−

1
2p (||v ⊗ w||W 1,∞(Lp/2)
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+||v ⊗ w||L∞(W 1,p/2))(s)ds

≤ Cϕ0,δ,pe
tω1{MvMw

∫ t

0

(t − s)−
1
2−

1
2p ds

+ (M ′
vMw + MvM ′

w)

∫ t

0

(t − s)−
1
2−

1
2p s−1/2ds}.

¤

Finally we turn to the proof of our main result.

Proof of Theorem 1.2
First we show that F : XT,K → XT,K for K > 2Cϕ0

eω1 ||v0||Ḃ0
∞,1,σ(R2;Lp(R+))

and T > 0 small enough. Assume v ∈ XT,K . Applying Theorem 3.4, Lemma
5.1, and Lemma 2.3 results for t > 0

||Fv||L∞(Lp) ≤ ||e−tAE v0||L∞(Lp) + ||N(v, v)(t)||L∞(Lp)

≤ ||e−tAE v0||Ḃ0
∞,1(L

p) + ||N(v, v)(t)||L∞(Lp)

≤ Cϕ0
etω1 ||v0||Ḃ0

∞,1(L
p) + Cϕ0,δ,pe

tω1K2(t1−
1
2p−δ + t−

1
2p−δ+ 1

2 ).

Here, we used the fact that the constants M1 and M2 in Lemma 5.1 are not
larger than (Mv + M ′

v)(Mw + M ′
w) = K2. Similarly we obtain

t1/2||∇Fv||L∞(Lp) ≤ Cϕ0
etω1 ||v0||Ḃ0

∞,1(L
p)

+Cϕ0,δ,pe
tω1K2t1/2(t

1
2−

1
2p + t−

1
2p ).

Our assumptions 2 < p < ∞ and δ ∈ (0, 1
4 ) imply the powers of t to be

positive. Consequently,

||Fv||XT
≤ 2Cϕ0

eTω1 ||v0||Ḃ0
∞,1(L

p) + 4Cϕ0,δ,pe
Tω1K2T− 1

2p−δ+ 1
2

≤ 2Cϕ0
eω1 ||v0||Ḃ0

∞,1(L
p) + 4Cϕ0,δ,pe

ω1K2T− 1
2p−δ+ 1

2

≤ K,

for small enough T > 0. More precisely we have to demand

T < min



1,

(
K − 2Cϕ0

eω1 ||v0||Ḃ0
∞,1(L

p)

4Cϕ0,δ,peω1K2

) 1

−
1
2p

−δ+ 1
2



 . (5.3)

Clearly, divFv = 0 and Fv|∂Rn
+

= 0. Thus we have proved Fv ∈ XT,K .
Next we show that F is a contraction. Let v, w ∈ XT,K . Noting that

Fv − Fw = N(v, v)(t) − N(w,w)(t) = N(v, v − w)(t) − N(v − w,w)(t), we
get by Lemma 5.1

||Fv − Fw||L∞(Lp)

≤ ||N(v, v − w)(t)||L∞(Lp) + ||N(v − w,w)(t)||L∞(Lp)
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≤ Cϕ0,δ,pe
tω1{MvMv−wt1−

1
2p−δ + (M ′

vMv−w + MvM ′
v−w)t−

1
2p−δ+ 1

2

+Mv−wMwt1−
1
2p−δ + (M ′

v−wMw + Mv−wM ′
w)t−

1
2p−δ+ 1

2 }
≤ 2Cϕ0,δ,pe

tω1K||v − w||XT
(t1−

1
2p−δ + t−

1
2p−δ+ 1

2 ),

and similarly

t1/2||∇Fv −∇Fw||L∞(Lp)

≤ t1/2||∇N(v, v − w)(t)||L∞(Lp) + t1/2||∇N(v − w,w)(t)||L∞(Lp)

≤ 2Cϕ0,δ,pe
tω1K||v − w||XT

t1/2(t
1
2−

1
2p + t−

1
2p ).

This yields

||Fv − Fw||XT
≤ 8Cϕ0,δ,pe

ω1KT− 1
2p−δ+ 1

2 ||v − w||XT
.

Hence the operator F is a contraction if

T < min

{
1,

(
1

8Cϕ0,δ,peω1K

) 1

−
1
2p

−δ+ 1
2

}
. (5.4)

The contraction mapping theorem now implies unique existence of a mild so-
lution v of (1.19) such that v ∈ XT,K for K > 2Cϕ0

eω1 ||v0||Ḃ0
∞,1,σ(R2;Lp(R+))

and T > 0 satisfying (5.3) and (5.4). It is easy to see the time interval
determined by (5.3) and (5.4) is largest, if we choose K = 4Cϕ0,δ,pe

ω1

× ||v0||Ḃ0
∞,1(L

p), which gives the lower estimate for existence time (Remark

1.3).
Finally, let us show that the local-in-time solution v obtained above is

continuous in time. By the strong continuity of t 7→ e−tAE on Xσ it follows
immediately

‖v(t) − v0‖BUC(R2;Lp(R+)) → 0 if t → 0. (5.5)

This follows easily by using the representation v(t) = Fv(t). In order to see
that t 7→ v(t) is continuous on the entire existence interval we have to prove
the continuity of t 7→ Fu(t). To this end let t > t0 > 0 and consider

‖Fv(t) − Fv(t0)‖BUC(Lp)

≤ ‖(e−tAE − e−t0AE)v0‖BUC(Lp)

+

∫ t0

0

‖(e−(t−s)AE − e−(t0−s)AE)P+div(v(s) ⊗ v(s))‖BUC(Lp)ds

+

∫ t

t0

‖e−(t−s)AEP+div(v(s) ⊗ v(s))‖BUC(Lp)ds

= I1(t) + I2(t) + I3(t). (5.6)

Here the problem becomes clear. Obviously, I1(t), I3(t) → 0 if t → t0.
But although we know the continuity of t 7→ e−tAE in Xσ it is a pri-
ori not clear, whether I2(t) → 0 if t → t0, since we construct solutions
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in BUC(R2;Lp(R+)) and we may not assume that {e−tAE}t≥0 is strongly
continuous in that space. We do not even expect e−tAE to be bounded in
BUC(R2;Lp(R+)) in general. Nevertheless, we have the estimates in Propo-
sition 4.5, which show that in this situation it is better to deal with the
operator

T (t) := e−t(ω1+AE)P+∂j , j = 1, 2, 3, t > 0.

For this operator the desired continuity can be proved.

Lemma 5.2. Let 2 < p < ∞. Then

(t 7→ T (t)f), (t 7→
√

t∇T (t)f) ∈ C((0,∞);BUC(R2;Lp(R+)))

for f ∈ BUC1(R2;W 1,p/2(R+)).

Proof. Observe that by Theorem 3.4 the operator AE is the genera-
tor of a holomorphic semigroup on Ḃ0

∞,∞(R2;Lp(R+)). Since P+∂jf ∈
Ḃ0
∞,∞(R2;Lp(R+)) if f ∈ BUC1(R2;W 1,p/2(R+)), we therefore may write

for ω1 > 0 large enough

T (t)f =
1

2πi

∫

Γ

e−tλ(λ − (ω1 + AE))−1P+∂jfdλ, j = 1, 2, 3, t > 0,

with Γ := {reiθ;∞ > r ≥ 0}∪{re−iθ; 0 ≤ r < ∞} and a proper θ ∈ (0, π/2).
Applying estimate (4.9) this yields for t, t0 > 0,

‖∇ℓ(T (t) − T (t0))f‖BUC(Lp)

≤ C

∫ ∞

0

|e−tλ − e−t0λ|‖∇ℓ(λ − (ω1 + AE))−1P+∂jf‖BUC(Lp)dr

≤ C

∫ ∞

0

|e−tλ − e−t0λ|
r1− ℓ

2−
1
2p−δ(1−ℓ)

dr‖f‖BUC(W 1,p/2)∩BUC1(Lp/2)

for ℓ = 0, 1, δ ∈ (0, 1/4), and λ = re±iθ. Note that σ := 1− ℓ
2− 1

2p−δ(1−ℓ) <
1. Furthermore,

|e−tλ − e−t0λ|
rσ

≤ |e−|t−t0|λ − 1|e−min{t,t0}r cos θ

rσ
≤ 2e−min{t,t0}r cos θ

rσ

and for each r ∈ (0,∞)

|e−tλ − e−t0λ|
rσ

→ 0 if t → t0.

Lebesgue’s dominated convergence theorem then results

‖∇ℓ(T (t) − T (t0))f‖BUC(Lp) → 0 if t → t0

for ℓ = 0, 1 and f ∈ BUC(R2;W 1,p/2(R+)) ∩ BUC1(Lp/2), which yields the
assertion. ¤
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Now we turn to the proof of the continuity of our solutions. Lemma 5.2
implies that I2(t) → 0 if t → t0 in (5.6). Hence t 7→ Fu(t) is continuous
and by similar arguments we see that also t 7→

√
t∇Fu(t) is continuous on

(0,∞) with values in BUC(R2;Lp(R+)).
For the continuity of first order derivatives of our solution v at t = 0, it

is easy to see that the nonlinear term t1/2||∇N(v, v)(t)||BUC(Lp) goes to 0
as t ↓ 0, thanks to (5.2). However, it seems difficult to show that the linear
term t1/2||∂3e

−tAE v0||BUC(Lp) tends to 0 as t ↓ 0, since ∂n and e−tAE do
not commute. This is the reason why we show (1.23) only for tangential
derivatives. For (1.23) we claim that for any f ∈ Ḃ0

∞,1(R
2;Lp(R+)) there

exists a sequence {fε}ε>0 ⊂ Ḃ0
∞,1(R

2;Lp(R+)) such that

||fε − f ||Ḃ0
∞,1(L

p) → 0 as ε ↓ 0, and (5.7)

||∇′fε||Ḃ0
∞,1(L

p) ≤ Cε−1/2||f ||Ḃ0
∞,1(L

p). (5.8)

In fact, we may set fε = eε∆′

f . Then (5.7) is clear and (5.8) follows from
Lemma A.1 (2). The commutativity of the tangential derivatives and the
semigroup e−tAE implies that

t1/2||∇′e−tAE v0||BUC(Lp) ≤ t1/2||∇′e−tAE v0||Ḃ0
∞,1(L

p)

≤ t1/2||∇′e−tAE (v0 − vε
0)||Ḃ0

∞,1(L
p) + t1/2||∇′e−tAE vε

0||Ḃ0
∞,1(L

p)

≤ Ct1/2t−1/2||v0 − vε
0||Ḃ0

∞,1(L
p) + t1/2||e−tAE∇′vε

0||Ḃ0
∞,1(L

p)

≤ C||v0 − vε
0||Ḃ0

∞,1(L
p) + t1/2||∇′vε

0||Ḃ0
∞,1(L

p)

≤ Cε + Ct1/2ε−1/2||f ||Ḃ0
∞,∞(Lp).

Since || · ||Ḃ0
∞,∞(Lp) ≤ || · ||L∞(Lp) ≤ || · ||Ḃ0

∞,1(L
p) is finite (Lemma 2.3), we

send t ↓ 0 to see that the RHS tends to 0 after putting ε = t1/2. The proof
of Theorem 1.2 is thus complete. ¤

Appendix A. Appendix

Appendix A.1. Heat kernel estimates

We claim the following estimate which was used in Lemma 4.1 and
Lemma 4.4. The proof can be found in [10].

Lemma A.1. Let n ∈ N and α > 0. Then there exists Cα = C(α) > 0 such
that
(1) ||(−∆)αGt(x)||Ḃ0

1,1(R
n) ≤ Ct−α,

(2) ||(−∆)αet∆f ||Ḃ0
∞,1(R

n) ≤ Ct−α||f ||Ḃ0
∞,∞(Rn)

for t > 0 and f ∈ Ḃ0
∞,∞(Rn).
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Appendix A.2. Characterization of Ḃ0
∞,0,σ(Lp)

It is well-known, that in the Lp-case, 1 < p < ∞, there is the character-
ization

Lp
σ(Rn

+) = P+(Lp(Rn
+)) = {u ∈ Lp(Rn

+) : divu = 0, u · ν|∂Rn
+

= 0}, (A.1)

where ν denotes the outer normal and the trace is understood in the sense of
the generalized Gauss theorem. More precisely, this result yields a bounded
operator γν : Ep(Rn

+) → W−1/p(∂R
n
+), where Ep(Rn

+) = {u ∈ Lp(Rn
+) :

divu ∈ Lp(Rn
+)} equipped with ‖u‖p + ‖divu‖p, such that γνu = u · ν|∂Rn

+

for smooth u. As it is also well-known, this fact remains true for a wide class
of domains Ω ⊂ R

n, as for instance bounded or exterior domains of class
C1 (see e.g. [8], [9] for the details). Since in certain applications it can be
helpful to have characterization (A.1), instead of having the very implicit
definition (2.13) only, we would like to briefly explain how one can obtain
such a characterization for the space Ḃ0

∞,1,σ(Rn−1;Lp(R+)) as defined in
(2.13), and which is the most important one in this note. So we intend to
show

Lemma A.2. Let 1 < p < ∞.

Ḃ0
∞,1,σ(Rn−1;Lp(R+))

= {u ∈ Ḃ0
∞,1(R

n−1;Lp(R+)) : divu = 0, u · ν|∂Rn
+

= 0} (A.2)

Proof. Of course, here we first have to give a meaning to the trace
u · ν|∂Rn

+
= 0. It is not clear how to define a global trace operator γν act-

ing on Ḃ0
∞,1,σ(Rn−1;Lp(R+)), since this space contains certain nondecaying

functions. However, at least it can be defined locally. For this purpose we
consider K in the class

M := {K ⊂ R
n
+ : K bounded and of class C1, µ(∂K ∩ ∂R

n
+) 6= 0},

where µ denotes the boundary measure on ∂R
n
+. Since the restriction u|K

of a function u ∈ Ḃ0
∞,1(R

n−1;Lp(R+)) satisfying divu = 0 in R
n
+ belongs to

Ep(K), the trace γν,Ku|K is well defined as we explained above. And in that

sense we can give a meaning to u · ν|∂Rn
+

= 0 for u ∈ Ḃs
r,q,σ(Rn−1;Lp(R+)).

To be precise we set

u · ν|∂Rn
+

= 0 :⇐⇒ (γν,K(u|K))|∂K∩∂Rn
+

= 0 for all K ∈ M.

Now, if u ∈ Ḃ0
∞,1,σ(Rn−1;Lp(R+)), obviously divu = 0, and since

(PEu)n is an odd function we obtain by using representation (1.17) that
(γν,K(P+u|K))|∂K∩∂Rn

+
= 0 for all K ∈ M. Thus ”⊆” is proved in (A.2).

In order the see the inverse inclusion we use again representation (1.17).
Observe that in view of u · ν|∂Rn

+
= 0 a straight forward calculation

shows that ∂ne−un = e+∂nun with e+, e− as given in Definition 1.1.
This implies divEu = e+divu = 0. Hence PEu = Eu, which yields
P+u = rPEu = rEu = u, and we conclude u ∈ Ḃ0

∞,1,σ(Rn−1;Lp(R+)).
¤
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