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ABSTRACT. In this paper we develop a new approach to rotating
boundary layers via Fourier transformed finite vector Radon measures.
As an application we consider the Ekman boundary layer. By our meth-
ods we can derive very explicit bounds for existence intervals and solu-
tions of the linearized and the nonlinear Ekman system. For example,
we can prove these bounds to be uniform with respect to the angular
velocity of rotation which has proved to be relevant for several aspects
(see introduction). Another advantage of our approach is that we ob-
tain well-posedness in classes containing nondecaying vector fields such
as almost periodic functions. These outcomes give respect to the nature
of boundary layer problems and cannot be obtained by approaches in
standard function spaces such as Lebesgue, Bessel-potential, Hölder or
Besov spaces.
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1. Introduction and main results

The main purpose of this note is the development of a new approach to rotating
boundary layer problems. The method is based on the introduction and the estab-
lishment of an operator theory on spaces of Fourier transformed finite vector-valued
Radon measures. An essential advantage in dealing with Fourier transformed quan-
tities lies in the fact that all performed calculations and estimations become rather
explicit. As a consequence we can derive detailed information on how the solution
depends on involved parameters such as time, viscosity, layer thickness, and angular
velocity of rotation.

It is also typical for geostrophic boundary layer problems that existing stationary
solutions are nondecaying and oscillating in tangential direction. To give respect to
this fact, it seems natural to consider this type boundary layer problems in classes
containing nondecaying functions. Hence, the frequently performed Lp approach for
1 < p < ∞ to the corresponding mathematical models fails in this situation. The
spaces introduced here, however, include nondecaying - in particular almost periodic
- functions.

By an application to the Ekman boundary layer problem we demonstrate the
strengths of our theory. Mathematically this geophysical problem is modeled by the
system





∂tv − ν∆v + ωe3 × v + (v · ∇)v = −∇q in (0, T )×G,
div v = 0 in (0, T )×G,

v = UE |∂G on (0, T )× ∂G,
v|t=0 = v0 in G,

(1.1)

which represents the 3D Navier-Stokes equations with Coriolis force. Here e3 =
(0, 0, 1)T , ν > 0 is the viscosity coefficient, and ω ∈ R is the Coriolis parameter which
equals twice the angular velocity of rotation. For G we will consider simultaneously
the half-space R

3
+ or a layer, i.e., we have G = R

2 ×D with D = (0, d) and either

fixed d ∈ (0,∞) or d = ∞. The vector field UE is the so-called Ekman spiral
(introduced by the geophysicist V.W. Ekman [17]) given as

UE(x3) = U∞(1− e−x3/δ cos(x3/δ), e
−x3/δ sin(x3/δ), 0)

T , x3 ≥ 0. (1.2)

System (1.1) is known to be a well-established model for the layer arising in a
rotating system (e.g. the earth) between a straight geostrophic flow (e.g. wind) and
the surface on which the no slip condition is imposed. Observe that in the above
model rotation about the x3-axis is assumed, whereas U∞ denotes the total velocity
of the flow, blowing in direction of the x1-axis. The parameter δ denotes the layer
thickness given by δ =

√
2ν/|ω|. By geostrophic approximation (see [37]) (1.1) is a

reasonable model at least for the upper part of the northern hemisphere. The couple
(UE , pE) with pressure

pE(x2) = −ωU∞x2

represents a stationary solution of system (1.1). Observe that UE(0) = 0, i.e.
sytem (1.1) is subject to Dirichlet conditions at the lower boundary, and that UE
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is oscillating and nondecaying in tangential direction. We note that remarkable
persistent stability of UE is observed in geophysical literature.

Mathematically, an approach to stability in time is given in [13] and to asymp-
totic stability in [31]. These two papers consider the problem in the L2 setting
which, of course, does not include nondecaying perturbations of UE . We refer to
[30], [10], [11], and [38] for more mathematical literature on the Ekman problem
dealing also with vanishing Rossby and Ekman numbers. For a spectral analysis
of the linearized problem we refer to [28], [34]. Local-in-time well-posedness in the

homogeneous Lp-valued Besov space Ḃ0
∞,1(R

2, Lp(R+)) is obtained in [25]. By the

fact that almost periodic functions are contained in Ḃ0
∞,1(R

2), this represents the
first result in a space including nondecaying functions. On the other hand, the space
Ḃ0

∞,1(R
2, Lp(R+)) turned out to be not very useful concerning stability investiga-

tions. In fact, the semigroup corresponding to the linearized equations is expected
to be increasing in time and in ω in the space Ḃ0

∞,1(R
2, Lp(R+)).

This is underlined by the following observation. Roughly speaking, the part of the
linear solution operator coming from the Coriolis force is given by a group which is
called Poincaré-Riesz group or occasionally also Poincaré-Sobolev group. Its symbol
consists essentially of functions as

m(ξ) = e−itωξj/|ξ|, ξ ∈ R
n \ {0}. (1.3)

In the L2 setting, by Plancherel’s theorem, the uniform boundedness ofm guarantees
the uniform boundedness in t and ω of the Poincaré-Riesz semigroup and hence of
the full semigroup associated to the linearization of (1.1). This fact, which relies
on the skew symmetry of the Coriolis force, is used in [13] and [31]. However, the
application of typical multiplier conditions involving e.g. derivatives of m, cause
a growth in t and ω. Thus, stability in these two parameters is not expected in
standard function spaces not isomorphic to a Hilbert space such as Lp for p 6= 2 or
Ḃ0

∞,1(R
2, Lp(R+)). In fact, for the case of Lp, p 6= 2, polynomial growth in ω of the

Poincaré-Sobolev group is explicitly derived in [16].
The uniformness in ω of appearing quantities such as an existence interval or

a bound for solutions, however, is interesting for several aspects. For instance,
it is important for the investigation of statistical properties of turbulence as it is
demonstrated in the textbooks [36] and [44]. It also represents the basis for the
examination of rapidly oscillating limits as ω → ∞. In a series of papers [5], [6],
[7], [33] Babin, Mahalov, and Nicolaenko proved the striking result of global-in-time
regularization of a flow in periodic domains, if the rotation is sufficiently fast. This
also represents the first rigorous mathematical verification of the Taylor-Proudman
theorem, the physical principle behind that phenomenon. For an alternative proof
in R

n based on dispersive effects, see also [11]. We also refer to the classical books
[29] and [37] for an introduction to rotating fluids in geophysics, and to the nice
monograph [11] for an introduction from the mathematical point of view. The
results obtained by Babin, Mahalov, and Nicolaenko are not only mathematically of
great interest. They could also play a significant role in applied situations. This is
justified by the fact that in applications the angular velocity of rotation is often much
higher than other appearing parameters. This is true in geophysical situations, e.g.
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for the rotating earth, but also in technological applications such as the spin-coating-
process, cf. [12]. Furthermore, a rather explicit knowledge on the dependence of the
norm of solutions on the appearing parameters time t, viscosity ν, layer thickness
δ, and angular velocity ω/2 could also help to improve numerical codes used for
simulations of the Ekman layer.

The discussion above demonstrates the importance of two requirements that we
want the solution of a rotating boundary layer problem to satisfy in this note:

(1) almost periodic perturbations of stationary solutions should be included,
i.e., the ground space should contain a sufficiently large class of nondecaying
functions.

(2) rather explicit knowledge on the dependence of appearing quantities on the
involved parameters is desired. In particular, an existence time interval or a
bound for the solution should be uniform in the angular velocity of rotation
ω.

In standard spaces, however, apparently at least one of the requirements cannot
be satisfied. For example, in L2 or Ḃ0

2,2 we can fulfill (2), but (1) fails; in Ḃ0
∞,1,

L∞, BUC, or Cα we can achieve (1), but (2) seems to fail; in Lp for p 6= 2 even
both conditions cannot be satisfied. This is the reason for the development of the
theory presented in this note. In order to prove that we can indeed satisfy both
requirements, next we formulate our main results on the Ekman boundary layer
problem (1.1). For a rigorous definition of the appearing spaces we refer to Sections 2
and 3. Let M0(R

2, L2(D)3) denote the space of finite L2(D)3-valued Radon measures
with no point mass at the origin. We set

FM0(R
2, L2(D)3) := {Fµ : µ ∈ M0(R

2, L2(D)3)}

and equip it with its canonical norm. It can be shown that FM0(R
2, L2(D)3) ⊂

BUC(R2, L2(D)3) (see Lemma 2.12(iii)), hence the Fourier transform Fµ is well-
defined. Moreover, the Helmholtz projection P is bounded on FM0(R

2, L2(D)3)
(see Lemma 3.4). Thus we may define its solenoidal part as

FM0,σ(R
2, L2(D)3) := P (FM0(R

2, L2(D)3)).

Next, we set u0 := v0 −UE , u = v −UE , and p := q − pE . Then (v, q) solves (1.1)
if and only if (u, p) solves the transformed system

∂tu− ν∆u+ ωe3 × u+ (UE · ∇)u+ u3∂3U
E + (u · ∇)u = −∇p in (0, T )×G,

div u = 0 in (0, T )×G,
u = 0 on (0, T )× ∂G,

u|t=0 = u0 in G.
(1.4)

The Stokes-Coriolis-Ekman operator ASCE is defined as the full linear operator
of the linearized Cauchy problem associated to (1.4) (see Section 3 for a rigorous
definition). For ASCE we prove the following theorem, which is our main result for
the linearized Ekman problem (see also Theorem 3.10).
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Theorem 1.1. Let T ∈ (0,∞), ν, U∞ > 0, d ∈ (0,∞], and set X2 := L2(0, d)3.
Then ASCE is the generator of a holomorphic C0-semigroup TSCE(t) = e−tASCE on
FM0,σ(R

2, X2) satisfying the following estimates:

(i) ‖TSCE(t)‖L (FM0(R2,X2)) ≤ exp(tU2
∞/8ν) (t ≥ 0),

(ii) ‖∇TSCEu0‖L2((0,T ),FM0(R2,X2)) ≤
√
2/ν exp(TU2

∞/8ν)‖u0‖FM0(R2,X2),

for all u0 ∈ FM0,σ(R
2, X2). In particular, all estimates are uniform in ω ∈ R.

Based on Theorem 1.1 and a fixed point argument, in Section 4 we derive the
following main result for the full nonlinear Ekman problem (1.1).

Theorem 1.2. Let the assumptions of Theorem 1.1 be satisfied and let UE be the
Ekman spiral given in (1.2). Then for every v0 ∈ FM0,σ(R

2, X2) + UE there is a
T0 > 0 and a unique (mild) solution v of (1.1) satisfying

v −UE ∈ BC
(
(0, T0), FM0,σ(R

2, X2)
)
,

∇(v −UE) ∈ L2
(
(0, T0), FM0(R

2, X2)
)
.

Additionally, the existence time T0 can be estimated from below by

T0 > T ∗ := min

{
π4ν3

2 · 484 exp(U2
∞/ν)‖v0 −UE‖4

FM0(R2,X2)

, 1

}
,

and for T ≤ T ∗ the solution can be estimated from above as

‖v −UE‖L∞((0,T ),FM0(R2,X2)) ≤ 4 exp(U2
∞/8ν)‖v0 −UE‖FM0(R2,X2),

‖∇(v −UE)‖L2((0,T ),FM0(R2,X2)) ≤ 4

√
2

ν
exp(U2

∞/8ν)‖v0 −UE‖FM0(R2,X2).

In particular, all estimates above are uniform in ω ∈ R, i.e., with respect to the
angular velocity of rotation.

Remark 1.3. (a) It is not difficult to show that FM0(R
2, L2(D)3) contains vector

fields which are almost periodic in tangential direction. In particular, it includes
functions of the form

x 7→
∞∑

j=1

aje
−iλj ·x, x ∈ R

2,

where (λj)j∈N ⊂ R
2 \ {0} denotes the sequence of frequencies and where (aj)j∈N ⊂

L2(D)3 satisfies
∑∞

j=1 ‖aj‖L2(D)3 < ∞. This shows that Theorem 1.1 and Theo-

rem 1.2 satisfy our requirements (1) and (2).

(b) Applying iteratively derivatives to the mild formulation (4.1) of problem (1.1),
it can be proved that the solution v given by Theorem 1.2 enjoys higher regularity
in FM0(R

2, X2). By this fact we can recover the pressure via

∇q = (I − P )(ν∆v − ωe3 × v − (v · ∇)v).

Then it can be shown that

(v, q) ∈ C∞((0, T )× R
2 × (0, d)),
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i.e., (v, q) is the unique classical solution of problem (1.1). However, we will not carry
out this standard procedure here. This result will be included in a forthcoming work.

(c) We note that the applicability of the theory developed here is by far not limited
to local-in-time well-posedness. In the same forthcoming work we will prove a global-
in-time existence result as well as exponential stability for the Ekman spiral. Also
in this context we will derive precise estimates and uniformness in ω.

(d) The power 4 of the norm of v0−UE in the estimate for T0 is natural from scaling
point of view. For local existence the main term of (1.4) is the Navier-Stokes part.
In the classical Navier-Stokes equations (i.e. (1.4) with ω = 0, UE = 0), if (u, p)
is a solution in R

n × (0,∞), so is (uk, pk) with uk(x, t) = ku(kx, k2t), pk(x, t) =
k2p(kx, k2t), k > 0. To reflect this invariance one assigns scaling dimensions as
given in [9], [21]. For example we assign dimension 2 to time variable and dimension
1 to spatial variable. We assign dimension −1 to the velocity field. Checking the
dimension of the norm of v0 − UE in Theorem 1.2, it has the scaling dimension
−1/2 while T0 has the scaling dimension 2, so in the estimate both hand sides are
balanced.

The idea to use the space of Fourier transformed Radon measures for the treat-
ment of the Navier-Stokes equations with Coriolis force, first appeared in [22]. There
the local-in-time well-posedness in the whole space R

3, i.e. in the class FM0(R
3) :=

FM0(R
3,R3), uniformly in ω for the system

∂tv − ν∆v + ωe3 × v + (v · ∇)v = −∇q in (0, T )× R
3,

div v = 0 in (0, T )× R
3,

v|t=0 = v0 in R
3

is proved. Global-in-time well-posedness and stability results in FM0(R
3) are derived

in [23] and [24]. Moreover, in [26] it is proved that almost periodicity in space is
preserved if it is initially almost periodic.

We note that the situation in R
3 is much easier to handle. Then one can work in

the setting of standard finite nonnegative Radon measures. It seems to be difficult
to stay completely in the FM setting, when a boundary is present. In order to
handle the case of a half-space or a layer, therefore we developed the vector-valued
approach given here.

A crucial advantage in dealing with spaces of Fourier transformed quantities lies
in the fact that, concerning multiplier results, we can obtain a situation similar to
L2. Indeed, merely boundedness and continuity is required in order to turn a symbol
into a multiplier (see Proposition 2.13, or e.g. [22, Lemma 2.2]). As seen from the
discussion before and after (1.3) this preserves the important uniform boundedness
in ω of related solution operators. In fact, we even obtain (scalar- or operator-valued)
a relation as

‖op(m)‖L (FM) = ‖m‖∞ = ‖op(m)‖L (L2) (1.5)

for the associated operator formally given by op(m) = F−1mF with F the Fourier
transformation. This shows that the boundedness of an operator in FM and L2 is
equivalent, if it has a bounded and continuous symbol. This is a very remarkable
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property of the space FM, in particular by the fact that it contains nondecaying
functions, but L2 does not.

By this fact, the space FM also turns out to be very interesting for investigations
on instability. A typical ansatz in order to prove instability for large Reynolds num-
bers is to decompose the solution into a sum of wave functions. Inserting this ansatz
into the equations the problem reduces to an ODE for the corresponding Eigenval-
ues and Eigenvectors of the waves producing instability. At least numerically these
problems in many cases can be solved; we refer to [32] for a numerical proof of linear
instability for the Ekman spiral. For an approach to nonlinear instability in L2 based
on [32] we refer to [14]. A problem with the approach in L2 is that the unstable
waves are non-decaying, hence do not belong to L2 and they have to be realized as
approximate Eigenfunctions. However, they belong to FM. This means in contrast
to the situation in L2, in FM the unstable Eigenvalues belong to the point spectrum
and the corresponding unstable Eigenfunctions instantly prove instability in FM.
But then, due to equality (1.5), we immediately obtain linear instability in L2 as
well. Based on the results in [32] by this method a relatively short proof of linear
and nonlinear instability for the Ekman problem is performed in [18]. This exhibits
another nice application of the theory developed here and again demonstrates its
valuability in the treatment of rotating boundary layer problems.

Apart from the properties mentioned above, the space FM displays a couple of
further remarkable mathematical properties, for instance, concerning maximal reg-
ularity. Indeed, the negative Laplacian −∆ can be proved to have L1 maximal
regularity on FM(Rn), cf. [27]. This is noteworthy, since for L1 maximal regularity
no higher regularity for the initial value is required (note that −∆ does not even have
L1 maximal regularity on L2(Rn)). However, we do not use these further properties
in this note.

The paper is organized as follows. After the introduction in the current section,
in Section 2 we first recall some basic facts on vector Radon measures. Then we
establish systematically a theory for operator-valued symbols on spaces of vector
Radon measures. Accordingly, this leads to an operator-valued Fourier multiplier
theory on spaces of Fourier transformed finite Banach space valued Radon measures.
Furthermore, we prove useful properties and estimates in these spaces. In Section 3
we apply the theory developed in Section 2 to the linearized Ekman boundary layer
problem. We establish the Helmholtz decomposition of the space FM0(R

2, Lp(D)3)
and prove the Stokes operator to be a generator of a bounded analytic semigroup.
Here we essentially make use of relation (1.5) and the fact that the obtained results
are known in Lp(R2 × D). Based on these facts we prove Theorem 1.1. Finally,
relying to the uniform estimates obtained for the linearized equations, in Section 4
we prove uniform local-in-time existence for (1.1), that is Theorem 1.2, by applying
the contraction mapping principle.

2. Vector measures and abstract setting

We use standard notation throughout this article. The symbols R, C, Z denote
reals, complex numbers, and integers, respectively. We also write N = {1, 2, 3, . . .}
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for the naturals and set N0 := N ∪ {0}. The symbols X, Y , Z usually denote
Banach spaces, whereas L (X,Y ) stands for the set of bounded linear operators
from X to Y . If X = Y , we write L (X). For a measure space (G,A , µ) and
1 ≤ p ≤ ∞, Lp(G,X, µ) denotes the X-valued Lebesgue space with respect to
(G,A , µ). If G ⊂ R

n is open and µ = Λ, i.e. the Lebesgue measure, we simply
write Lp(G,X). For k ∈ N, W k,p(G,X) denotes the X-valued Sobolev space. For
p = 2 we also write Hk(G,X). If X = C

m or X = R
m we use the common notation

Lp(G),W k,p(G), Hk(G) (occasionally also Lp(G)m,W k,p(G)m, Hk(G)m if confusion
seems likely). The space C∞

c (G,X) is the set of smooth and compactly supported

functions. Its closure in W k,p (Hk) is denoted by W k,p
0 (G,X) (Hk

0 (G,X)). We
will also write BC(G,X) and BUC(G,X) for the space of bounded and continuous
functions and the space of bounded and uniformly continuous functions, respectively.
Spaces of continuous and continuously differentiable functions are as usual denoted
by C(G,X), Ck(G,X), BCk(G,X), and so on. The Fourier transformation on the
space of rapidly decreasing functions S(Rn) in this note is defined as

û(ξ) = Fu(ξ) = 1

(2π)n/2

∫

Rn

e−iξxu(x)dx, u ∈ S(Rn).

As usual, its extension by duality to the space of tempered distributions S ′(Rn, X) :=
L (S(Rn), X) is again denoted by Fu or û for u ∈ S ′(Rn, X). For the duality pairing
of a topological vector space E with its dual space we use the notation

〈x′, x〉E′,E , x ∈ E, x′ ∈ E′.

Next we recall some basic definitions related to X-valued measures, cf. [15].

Definition 2.1. Let X be a Banach space, Ω be a set, A be a σ-algebra over Ω,
and µ : A → X be a set function.

(i) The function µ is called σ-additive, if it satisfies

µ

( ∞⋃

j=1

Aj

)
=

∞∑

j=1

µ(Aj)

for all pairwise disjoint sets Aj ∈ A , j = 1, 2, . . .. (The convergence of the
right hand side is in X.)

(ii) If µ is σ-additive and satisfies µ(∅) = 0, then µ is called X-valued measure
or vector measure.

(iii) The variation of an X-valued measure µ is defined as

|µ|(O) := sup





∑

A∈Π(O)

‖µ(A)‖X : Π(O) ⊂ A finite decomposition of O



 .

for O ∈ A . (Note that Π(O) is a decomposition of O ∈ A , if A ∩B = ∅ for
all A,B ∈ Π(O) with A 6= B and

⋃
A∈Π(O)A = O.)

(iv) The quantity |µ|(Ω) is called total variation of µ. If |µ|(Ω) < ∞, then µ is
called finite or of bounded variation.
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Remark 2.2. (a) Observe that |µ| : A → R is a positive measure. In fact, let
(Aj)j∈N be a family of disjoint sets and (Ek)

N
k=1 be a finite decomposition of

⋃∞
j=1Aj .

Then, for each j ∈ N the family (Ek ∩Aj)Nk=1 is a finite decomposition of Aj and we
obtain by the σ-additivity of µ that

∑

k

‖µ(Ek)‖X =
∑

k

‖µ
( ∞⋃

j=1

Ek ∩Aj
)
‖X ≤

∑

j

∑

k

‖µ(Ek ∩Aj)‖X .

Thus, |µ|
(⋃∞

j=1Aj

)
≤ ∑∞

j=1 |µ|(Aj). On the other hand, if (Ej,k)
N
k=1 is a decom-

position of Aj , then (Ej,k)j,k is one of
⋃∞
j=1Aj . Assuming for each j ∈ N that

|µ|(Aj) ≤
∑

k ‖µ(Ej,k)‖X + ε/2j yields
∑

j

|µ|(Aj) ≤
∑

j

∑

k

‖µ(Ej,k)‖X + ε,

and therefore
∑∞

j=1 |µ|(Aj) ≤ |µ|
(⋃∞

j=1Aj

)
. The remaining properties are obvious.

(b) For |µ|-measurable bounded scalar-valued functions the integral with respect to
an X-valued measure µ can be defined in a standard way via the approximation by
simple functions, see [15, page 5]. Thus, for each A ∈ A the map∫

A
· dµ : L∞(A, µ) → X, f 7→

∫

A
fdµ

is well-defined.

In this note we mainly deal with Radon measures which will be defined next. For
this purpose let Ω ⊂ R

n be open, A be a σ-algebra over Ω, and denote by B(Ω) the
Borel σ-algebra over Ω. Recall that η : A → [0,∞) is a Radon measure if it is Borel
regular, that is, if B(Ω) ⊆ A and if for each A ⊆ Ω there exists a B ∈ B(Ω) such
that A ⊆ B and η∗(A) = η∗(B), where η∗ denotes the outer measure associated to
η given by

η∗(A) := inf





∞∑

j=1

η(Ej) : (Ej)j∈N ⊆ A , A ⊆
∞⋃

j=1

Ej



 . (2.1)

Also observe that in the sequel we identify a measure η by its outer measure, so that
η is complete in the sense that all subsets B of a set A ∈ A satisfying η(A) = 0
belong to A .

Definition 2.3. Let Ω ⊂ R
n be open, X be a Banach space, and A be a σ-algebra

over Ω. The set function µ : A → X is called a finite X-valued Radon measure, if µ
is an X-valued measure and if the variation |µ| is a finite Radon measure. The set
of all finite X-valued Radon measures is denoted by M(Ω, X).

Let us quickly show

Lemma 2.4. The set M(Ω, X) enhanced with the total variation as a norm, i.e.
with ‖ · ‖M := | · |(Ω), forms a Banach space.
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Proof. It is easily checked that ‖ · ‖M is indeed a norm and consequently M(Ω, X)
is a normed linear space. Let (µk)k∈N be a Cauchy sequence in (M(Ω, X), ‖ · ‖M).
Obviously for each A ∈ A the sequence (µk(A))k∈N has a limit in X. We define

µ(A) := lim
k→∞

µk(A)

and show that µ ∈ M(Ω, X). Clearly, µ(∅) = 0 and for disjoint sets A,B ∈ A we
have that

µ(A ∪B) = lim
k→∞

µk(A ∪B)

= lim
k→∞

(µk(A) + µk(B)) = µ(A) + µ(B).

In order to see that µ is even σ-additive it suffices to prove that ‖µ(Aj)‖X → 0 as
j → ∞ for Aj ∈ A , j = 1, 2, . . ., such that Aj ⊂ Aj−1 and

⋂
Aj = ∅. By the triangle

inequality we obtain

‖µk(Aj)‖X ≤ ‖(µk − µℓ)(Aj)‖X + ‖µℓ(Aj)‖X
≤ ‖µk − µℓ‖M + ‖µℓ(Aj)‖X
≤ ε/2 + ‖µℓ(Aj)‖X

for all k, ℓ ≥ N(ε) and j = 1, 2, . . .. Fixing ℓ ≥ N(ε) and letting k → ∞ yields

‖µ(Aj)‖X ≤ ε/2 + ‖µℓ(Aj)‖X (j = 1, 2, . . .).

By the σ-additivity of µℓ we therefore may choose j(ε) large enough so that

‖µℓ(Aj)‖X ≤ ε/2 (j ≥ j(ε)).

Hence, µ : A → X is a finite X-valued measure and by the lower semicontinuity of
the supremum we obtain

‖µk − µ‖M = sup
Π(Ω)

∑

E∈Π(Ω)

‖(µk − µ)(E)‖X

= sup
Π(Ω)

∑

E∈Π(Ω)

lim
ℓ→∞

‖(µk − µℓ)(E)‖X

≤ lim inf
ℓ→∞

sup
Π(Ω)

∑

E∈Π(Ω)

‖(µk − µℓ)(E)‖X

≤ ε (k ≥ N(ε)).

In order to see that |µ| is a Radon measure we observe that
∣∣ |µk|(Ω)− |µ|(Ω)

∣∣ ≤ ‖µk − µ‖M → 0 (k → ∞).

Thus |µk| → |µ| in M(Ω,R) which is known to be a Banach space. In fact, by the
Riesz representation theorem we have M(Ω,R) = L (C∞(Ω),R), where

C∞(Ω) = {u ∈ C(Ω) : lim
R→∞

sup
x∈Ω\BR(0)

|u(x)| → 0}

(see [41]). Thus, µ ∈ M(Ω, X) which proves the assertion. �
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Next we consider vector measures which are (absolutely) continuous with respect
to a positive finite measure. For this purpose assume that X is a Banach space and
(Ω,A , η) a finite measure space. Recall that a finite vector measure µ : A → X is
called η-continuous, if

η(O) = 0 ⇒ µ(O) = 0, O ∈ A .

For instance, it is clear by definition that µ is |µ|-continuous. A fundamental question
for an X-valued η-continuous measure µ is, under which circumstances it has a
Radon-Nikodým derivative with respect to (Ω,A , η), that is, when there exists a
representation by a Bochner integral as

µ(O) =

∫

O
gdη (O ∈ A ), (2.2)

with a g ∈ L1(Ω, η,X). It turns out that this is essentially a matter of properties
of the range of the measure µ and therefore it can be regarded as a property of
the space X. Indeed, a space X is said to have the Radon-Nikodým property with
respect to the finite measure space (Ω,A , η), if each η-continuous vector measure
µ : A → X admits a representation (2.2). The space X is said to have the Radon-
Nikodým property, if X has the Radon-Nikodým property with respect to every
finite measure space (Ω,A , η). This question and its answer go back to fundamental
works of Dunford and Pettis in the first half of the 20-th century and was continued
by a couple of famous mathematicians in the second half. We refer to [15] for a
comprehensive approach to this topic and for further references. In this note we
mostly deal with reflexive spaces X which are known to have the Radon-Nikodým
property, see e.g. [15, page 76, Corollary 13].

So, from now on assume X to have the Radon-Nikodým property and Ω ⊂ R
n

to be open. By ρµ ∈ L1(Ω, X, |µ|) we denote the Radon-Nikodým derivative of a
measure µ ∈ M(Ω, X) with respect to (Ω,A , |µ|), i.e., we have

µ(O) =

∫

O
ρµd|µ| (O ∈ A ).

Next, let ψ ∈ L∞(Ω, |µ|,L (X,Y )), where Y is another Banach space. By the
definition of measurability, i.e., via the approximation by simple functions, it is
easily checked that the |µ|-measurability of ψ as a function from Ω to L (X,Y ) and
of ρµ as a function from Ω to X implies also ψρµ : Ω → Y to be |µ|-measurable.
Moreover, we have ψρµ ∈ L1(Ω, |µ|, Y ). Thus, the following is well-defined.

Definition 2.5. The multiplication of the |µ|-almost everywhere bounded L (X,Y )-
valued function ψ with the X-valued measure µ is defined as Y -valued measure µ⌊ψ
of the form

µ⌊ψ(O) :=

∫

O
ψρµd|µ| (O ∈ A ). (2.3)

Note that again by means of approximation by a sequence of simple functions and
by the definition of the variation it can be shown that

|µ|(O) =

∫

O
‖f‖Xdη (O ∈ A ), (2.4)
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for f ∈ L1(Ω, η,X) and a positive measure η, and if the X-valued measure µ is
represented by µ(O) =

∫
O fdη, O ∈ A , see [15, page 46, Theorem 4(iv)] for the

details. For the case that f = ρµ and η = |µ|, relation (2.4) immediately implies
that

‖ν(t)‖X = 1 for |µ|-almost all t ∈ Ω. (2.5)

For µ ∈ M(Ω, X) expression (2.3) defines a new vector Radon measure. This fact
and the expected properties of this new measure are proved in

Lemma 2.6. Let Ω ⊂ R
n be open and let X,Y, Z be Banach spaces having the

Radon-Nikodým property. Furthermore, let µ ∈ M(Ω, X) and the functions ψ ∈
L∞(Ω,L (X,Y ), |µ|) and φ ∈ L∞(Ω,L (Y, Z), |µ|) be given. Then we have

(i) |µ⌊ψ| = |µ|⌊‖ψρµ‖Y ≤ |µ|⌊‖ψ‖L (X,Y ),

(ii) µ⌊ψ ∈ M(Ω, Y ) and therefore µ⌊ψ(O) =
∫
O ρµ⌊ψd|µ⌊ψ|, O ∈ A ,

(iii) (µ⌊ψ)⌊φ = µ⌊(φψ).
Proof. (i) Since µ⌊ψ is defined by an integral with respect to a positive measure it
clearly defines an Y -valued measure. From (2.4) and a straight forward estimation
we obtain that

|µ⌊ψ|(O) = |µ|⌊‖ψρµ‖Y (O)

≤
∫

O
‖ψ‖L (X,Y )‖ρµ‖Xd|µ|

= |µ|⌊‖ψ‖L (X,Y )(O) (O ∈ A ),

where the last equality is a consequence of (2.5).

(ii) The estimate in (i) shows that µ⌊ψ is finite. By the equality part in (i) the
assertion therefore follows from the fact, that for f ∈ L∞(Ω, η), f ≥ 0, the expression
µ(·) =

∫
· fdη defines a finite positive Radon measure if η does so. This can be seen

as follows. Obviously µ is a finite positive measure. In order to see that µ is Borel-
regular, let A ⊆ Ω be arbitrary and pick a Borel set B ⊇ A such that

η∗(A) = η∗(B) = η(B).

We will show that the same set B will do for µ, i.e., that µ∗(A) = µ(B). By definition
(2.1) of the outer measure η∗, for arbitrary ε > 0 we may choose (Ej)j∈N ⊆ A in a
way such that A ⊂ ⋃∞

j=1Ej and that

µ

( ∞⋃

j=1

Ej

)
≤ µ∗(A) + ε and

η

( ∞⋃

j=1

Ej

)
≤ η∗(A) +

ε

‖f‖∞
.

By construction and the properties of B we may assume without loss of generality
that B ⊂ ⋃∞

j=1Ej . Thus, the second inequality implies that

η

( ∞⋃

j=1

Ej \B
)

= η

( ∞⋃

j=1

Ej

)
− η∗(A) ≤ ε

‖f‖∞
.
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In view of µ ≤ ‖f‖∞η we therefore deduce

µ

( ∞⋃

j=1

Ej \B
)

≤ ε.

Hence, we conclude

µ(B)− ε ≤ µ

( ∞⋃

j=1

Ej

)
− ε ≤ µ∗(A)

≤ µ

( ∞⋃

j=1

Ej

)
≤ µ(B) + ε.

This implies (ii).

(iii) First we prove the relation for simple functions φ. To this end, let

φ : Ω → L (Y, Z), φ(t) =
m∑

j=1

ajχEj
(t),

with aj ∈ L (Y, Z), Ej ∈ A pairwise disjoint, and where χ
Ej

denotes the charac-

teristic function to the set Ej . Further, let ρµ and ρµ⌊ψ be the Radon-Nikodým
derivative of the X-valued Radon measure µ and the Y -valued Radon measure µ⌊ψ
with respect to |µ| and |µ⌊ψ| respectively. Since ψρµ is |µ|-measurable 1 and ρµ⌊ψ
is |µ⌊ψ|-measurable, obviously also ajψρµ and ajρµ⌊ψ are |µ|- and |µ⌊ψ|-measurable
respectively. Thus, finite sums of these functions are measurable as well, and we
obtain

(µ⌊ψ)⌊φ(O) =

∫

O
φρµ⌊ψd|µ⌊ψ| =

m∑

j=1

∫

Ej∩O
ajρµ⌊ψd|µ⌊ψ|

=

m∑

j=1

ajµ⌊ψ(Ej ∩ O) =

m∑

j=1

aj

∫

Ej∩O
ψρµd|µ|

=

∫

O

m∑

j=1

ajψρµχEj
d|µ| =

∫

O
φψρµd|µ|

= µ⌊(φψ)(O) (O ∈ A ).

Next, let φ ∈ L∞(Ω, |µ|,L (Y, Z)) and (φk) be an approximating sequence of simple
functions. Then, applying twice Lebesgue’s dominated convergence theorem for
Bochner integrals implies

(µ⌊ψ)⌊φ(O) =

∫

O
φρµ⌊ψd|µ⌊ψ| = lim

k→∞

∫

O
φkρµ⌊ψd|µ⌊ψ|

= lim
k→∞

(µ⌊ψ)⌊φk(O) = lim
k→∞

µ⌊(φkψ)(O)

= lim
k→∞

∫

O
φkψρµd|µ| =

∫

O
φψρµd|µ|

1That means it can be approximated by a sequence of simple functions in L∞(Ω, Y, |µ|).
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= µ⌊(φψ)(O) (O ∈ A ).

This completes the proof. �

Remark 2.7. An important observation for the applications in subsequent sections
is the following fact: since every element of M(Ω, X) is defined on the Borel σ-algebra
B(Ω) and since every continuous function is Borel measurable, we obtain that

BC(Ω,L (X,Y )) ⊆ L∞(Ω,L (X,Y ), |µ|) (µ ∈ M(Ω, X)). (2.6)

That means expression µ⌊ψ is well defined and all assertions in Lemma 2.6 hold for
every µ ∈ M(Ω, X) and every ψ ∈ BC(Ω,L (X,Y )).

In view of the above remark it is also quite obvious that

Tµf :=

∫

Rn

fρµd|µ| = µ⌊f(Rn), f ∈ C∞(Rn), (2.7)

defines a bounded linear operator Tµ from C∞(Rn) to X. A standard argument
shows that µ 7→ Tµ is injective. Thus we always have a continuous and injective
embedding of the form

M(Rn, X) →֒ L (C∞(Rn), X). (2.8)

A much more delicate issue is the question for the converse direction, that is, when
a bounded operator T : C∞(Rn) → X has a representation by an X-valued measure
as above, or in other words, when does the Riesz representation theorem hold. This
question is is closely related to the existence of a Radon-Nikodým derivative, see
[15]. As mentioned above, if X = R, the space of finite Radon measures can be
identified with the space L (C∞(Rn),R). Based on results established in [15], it can
be shown that this identification generalizes to reflexive Banach spaces X. Since we
will not use it in the sequel, we just state this fact as a further remark.

Remark 2.8. For reflexive Banach spaces X we have that

M(Rn, X) = L (C∞(Rn), X)

in the sense that every bounded linear operator T : C∞(Rn) → X has a representa-
tion by a finite X-valued Radon measure µ given through (2.7). In particular, for
all µ ∈ M(Rn, X) and O ∈ A we have that

|µ|(O) = sup{‖Tµf‖X : f ∈ C∞
c (O), ‖f‖∞ ≤ 1}.

By the intention to introduce the Fourier transform of vector Radon measures,
from now on we assume Ω = R

n. In order to get a better feeling of the space
M(Rn, X), we next derive some properties and relations to known function spaces.
We still assume that X has the Radon-Nikodým property. First, note that we
obviously have

L1(Rn, X) →֒ M(Rn, X) (2.9)

in the sense of the identification

f 7→ Λ⌊f, f ∈ L1(Rn, X),
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where Λ denotes the Lebesgue measure on R
n. But observe that the space M(Rn, X)

is strictly larger than L1(Rn, X), since each Dirac measure δt0 with respect to the
point t0 ∈ R

n defines for every x ∈ X via δt0x an element in M(Rn, X) \L1(Rn, X).
On the other hand, the fact that the Schwartz space S(Rn) of rapidly decreas-
ing functions with its canonical topology is continuously and densely embedded in
C∞(Rn) gives us

L (C∞(Rn), X) →֒ L (S(Rn), X) = S ′(Rn, X).

Thus, in the sense of the identification

µ 7→ Tµ, Tµf := µ⌊f(Rn),
by relation (2.8) we have the embedding

M(Rn, X) →֒ S ′(Rn, X).

Consequently, the Fourier transform on M(Rn, X) is well-defined. Fubini’s theorem
implies

T̂µ(f) = Tµ(f̂) = (2π)−n/2
∫

Rn

∫

Rn

e−it·ξρµd|µ|(t)f(ξ)dξ

for all f ∈ S(Rn), and therefore we obtain

µ̂(ξ) = µ⌊ϕξ(Rn) (2.10)

with ϕξ(t) := (2π)−n/2e−it·ξ. This allows for the definition of the space

FM(Rn, X) := {µ̂ : µ ∈ M(Rn, X)},
which we equip with the canonical norm

‖u‖FM := ‖F−1u‖M.
Observe that replacing the Fourier transform by its inverse in the definition does
not change the value of the norm, i.e., we have ‖ · ‖FM = ‖F · ‖M = ‖F−1 · ‖M. In
order to define multipliers with symbols not necessarily continuous at the origin, we
also introduce the spaces

M0(R
n, X) := {µ ∈ M(Rn, X) : µ({0}) = 0},

that is, the subspace of Radon measures with no point mass at the origin and

FM0(R
n, X) := {µ̂ : µ ∈ M0(R

n, X)}.
Definition 2.9. For n ∈ N and a Banach space X having the Radon-Nikodým prop-
erty, we call FM(Rn, X) and FM0(R

n, X) (X-valued) spaces of Fourier transformed
(finite) Radon measures.

Remark 2.10. Note that every µ ∈ M(Rn, X) decomposes uniquely as

µ = (µ− δ0µ({0})) + δ0µ({0}).
In other words, we have M(Rn, X) = M0(R

n, X)⊕{δ0x; x ∈ X}. Since by definition
F : M(Rn, X) → FM(Rn, X) is isomorphic, this implies that

FM(Rn, X) = FM0(R
n, X)⊕X. (2.11)
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Next, we list some useful properties of the spaces just introduced. We start with a
convolution for vector Radon measures. For this purpose, let X, X1, X2 be Banach
spaces having the Radon-Nikodým property. Suppose further that a multiplication
of elements in X2 with elements in X1 is defined in a way that

X2 ·X1 →֒ X.

For example, X2 can be a suitable subspace of L (X1, X) or it can be the multiplica-
tion of functions in suitable Lp or Sobolev spaces. By ’suitable’ we particularly mean
that these spaces have the Radon-Nikodým property, which does in general not hold
for the whole of L (X1, X), see [15, page 219]. For two nonnegative measures η1, η2
over B(Rn), we denote the corresponding product measure over B(R2n) by η1⊗ η2.
For µ ∈ M(Rn, X1) and η ∈ M(Rn, X2) we define the convolution formally as

η ∗ µ(O) :=

∫

R2n

χ
O
(t+ s)ρη(t)ρµ(s) d(|µ| ⊗ |η|)(t, s) (O ∈ B(Rn)). (2.12)

Lemma 2.11. In the situation above we have

(i) η ∗ µ ∈ M(Rn, X), in particular, Young’s inequality

‖η ∗ µ‖M(Rn,X) ≤ ‖η‖M(Rn,X2)‖µ‖M(Rn,X1)

and the (familiar looking) representation

η ∗ µ(O) =

∫

Rn

η(O − s)ρµ(s)d|µ|(s), O ∈ B(Rn),

hold;
(ii) for all f ∈ L1(Rn, X1), g ∈ L1(Rn, X2)) that (Λ⌊g) ∗ (Λ⌊f) = Λ⌊(g ∗ f), i.e.,

in this case (2.12) coincides with the standard convolution in L1;
(iii) for all f ∈ BC(Rn,L (X,Y )) that

(η∗µ)⌊f(O) =

∫

Rn

∫

Rn

χ
O
(t+s)f(t+s)ρη(t)ρµ(s)d|µ|(s)d|η|(s) (O ∈ B(Rn));

(iv) F(η ∗ µ) = (2π)n/2η̂ · µ̂;
(v) η ∗ µ = µ ∗ η, if the multiplication X2 ·X1 is commutative;
(vi) that (M(Rn, X), ∗) is an (abelian) algebra (with unit), if (X, ·) is an (abelian)

algebra (with unit).

Proof. (i) Regarding the |η|-measurable function ρη and the |µ|-measurable function
ρµ as constant in s and as constant in t respectively, we see that these functions are
obviously measurable in B(R2n), too. Therefore, for each O ∈ B(Rn), (t, s) 7→
χ

O
(t + s)ρη(t)ρµ(s) is |η| ⊗ |µ|-measurable. Hence the integral in representation

(2.12) is well-defined. Thanks to χ
O
(t+ s) = χ

O−s
(t) and to Fubini’s theorem then

we know that∫

Rn

χ
O
(t+ s)ρη(t)d|η|(t) =

∫

O−s
ρη(t)d|η|(t) = η(O − s), s ∈ R

n,

is |µ|-measurable. More precisely, we have that
(
s 7→

∫

Rn

χ
O
(t+ s)ρη(t)d|η|(t)

)
∈ L∞(Rn, X2, |µ|)
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and that

(η ∗ µ)(O) =

∫

Rn

∫

Rn

χ
O
(t+ s)ρη(t)ρµ(s)d|µ|(s)d|η|(t) (2.13)

=

∫

Rn

η(O − s)ρµ(s)d|µ|(s) (O ∈ B(Rn)).

From the latter representation it readily follows that η ∗ µ is a finite X-valued
measure. In order to see that its variation |η ∗ µ| is a Radon measure, observe that
(2.4) implies that

|η ∗ µ|(O) =

∫

Rn

∫

Rn

χ
O
(t+ s)‖ρη(t)ρµ(s)‖Xd|µ|(s)d|η|(t)

=

∫

Rn

|µ|⌊‖ρη(t)ρµ(·)‖X(O − t)d|η|(t) (O ∈ B(Rn)).

Obviously σt(O) := |µ|⌊‖ρη(t)ρµ(·)‖X(O−t) is a finite Radon measure for each fixed
t ∈ R

n (see proof of Lemma 2.6(ii)). Furthermore, dominated convergence implies
for the corresponding outer measures that

|η ∗ µ|∗(O) =

∫

Rn

σ∗t (O)d|η|(t),

from which we easily see that |η ∗ µ| is Borel regular. Consequently, also |η ∗ µ| is
a Radon measure which yields η ∗ µ ∈ M(Rn, X). Young’s inequality in (i) is easily
obtained from representation (2.13).

(ii) By virtue of translation invariance of the Lebesgue measure and by a repeated
application of Fubini’s theorem we obtain

Λ⌊g ∗ Λ⌊f(O) =

∫

Rn

Λ⌊g(O − s)ρΛ⌊f (s)d|Λ⌊f |(s)

=

∫

Rn

∫

O−s
g(t)dt ρΛ⌊f (s)d|Λ⌊f |(s)

=

∫

Rn

g(t)

∫

Rn

χ
O
(t+ s)ρΛ⌊f (s)d|Λ⌊f |(s)dt

=

∫

Rn

g(t)Λ⌊f(O − t)dt

=

∫

Rn

g(t)

∫

O−t
f(s)dsdt

=

∫

Rn

g(t)

∫

O
f(s− t)dsdt

=

∫

O

∫

Rn

g(t)f(s− t)dtds

=

∫

O

∫

Rn

g(t− s)f(s)dtds

= (Λ⌊(g ∗ f))(O) (O ∈ B(Rn)).
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(iii) Let f(t) =
∑m

j=1 ajχEj
(t) with aj ∈ L (X,Y ) and Ej ∈ B(Rn) be a simple

function. Then we have

(η ∗ µ)⌊f(O) =
m∑

j=1

aj

∫

O
χ

Ej
(t)ρη∗µ(t)d|η ∗ µ|(t)

=

m∑

j=1

aj(η ∗ µ)(O ∩ Ej)

=
m∑

j=1

aj

∫

Rn

∫

Rn

χ
O∩Ej

(t+ s)ρη(t)ρµ(s)d|µ|(s)d|η|(t)

=

∫

Rn

∫

Rn

χ
O
(t+ s)

m∑

j=1

ajχEj
(t+ s)ρη(t)ρµ(s)d|µ|(s)d|η|(t)

=

∫

Rn

∫

Rn

χ
O
(t+ s)f(t+ s)ρη(t)ρµ(s)d|µ|(s)d|η|(t) (O ∈ B(Rn)).

Dominated convergence yields the result for general f .

(iv) Set ϕξ(t) = (2π)−n/2e−iξt. Representation (2.10), (iii), and Fubini’s theorem
imply

F(η ∗ µ)(ξ) = (η ∗ µ)⌊ϕξ(Rn)

= (2π)−n/2
∫

Rn

∫

Rn

e−iξ(t+s)ρη(t)ρµ(s)d|µ|(s)d|η|(t)

= (2π)−n/2
∫

Rn

e−iξs
∫

Rn

e−iξtρη(t)d|η|(t)ρµ(s)d|µ|(s)

= (2π)n/2η̂(ξ) · µ̂(ξ), ξ ∈ R
n.

Assertions (v) and (vi) are obvious consequences of (i). Note that if e is the unit in
(X, ·), then δ0e is the unit in (M(Rn, X), ∗), where δ0 denotes the Dirac measure in
x = 0. �

With Lemma 2.11 at hand we can show the announced properties of the intro-
duced spaces of Fourier transformed Radon measures.

Lemma 2.12. Suppose X,X1, X2 are Banach spaces having the Radon-Nikodým
property and that X2 ·X1 →֒ X. Then the following assertions hold.

(i) The spaces FM(Rn, X), M0(R
n, X), and FM0(R

n, X) are Banach spaces.
(ii) For all u ∈ FM(Rn, X2) and v ∈ FM(Rn, X1) we have that

‖u · v‖FM(Rn,X) ≤ (2π)−n/2‖u‖FM(Rn,X2)‖v‖FM(Rn,X1),

i.e., FM(Rn, X2) ·FM(Rn, X1) →֒ FM(Rn, X). In particular, (FM(Rn, X), ·)
is an (abelian) algebra (with unit), if (X, ·) is an (abelian) algebra (with
unit).

(iii) We have

FM(Rn, X) →֒ BUC(Rn, X) (2.14)
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and

FL1(Rn, X) →֒ FM0(R
n, X) →֒ Ḃ0

∞,1(R
n, X) →֒ BUC(Rn, X), (2.15)

where B0
∞,1(R

n, X) denotes the homogeneous Besov space (see proof for a

precise Definition).

Proof. (i) This follows immediately by the definition and Lemma 2.4.

(ii) This is an obvious consequence of Lemma 2.11(i),(iv), and (vi).

(iii) By (2.9) the first embedding in (2.15) is obvious. The third embedding in (2.15)
is well-known, hence we omit a proof here (see e.g. [39, Example 2.3]). For the second
embedding we first prove that

FM(Rn, X) →֒ L∞(Rn, X). (2.16)

Set ϕξ(t) = (2π)−n/2e−itξ. Indeed, by virtue of Lemma 2.6(i) we obtain

‖µ̂(ξ)‖X ≤ |µ⌊ϕξ|(Rn) ≤ ‖µ‖M‖ϕξ‖∞ ≤ C‖µ̂‖FM (ξ ∈ R
n),

which shows the validity of (2.16). Recall that the Besov space Ḃ0
∞,1(R

n, X) is
defined by

Ḃ0
∞,1(R

n, X) =



u ∈ S ′(Rn, X) : ‖u‖Ḃ0

∞,1
<∞, u =

∑

j∈Z

φ̂j ∗ u in S ′(Rn, X)



 ,

where the norm reads as

‖u‖Ḃ0
∞,1

=
∑

j∈Z

‖φ̂j ∗ u‖L∞(Rn,X),

cf. [43]. Here (φj)j∈Z is a standard Littlewood-Paley decomposition given by a
family of functions φj ∈ S(Rn) satisfying

∑
j∈Z φj(ξ) = 1 for ξ ∈ R

n \ {0}, where
φj(ξ) := φ0(2

−jξ) and 0 6= φ0 ∈ S(Rn) such that suppφ0 ⊆ {1/2 ≤ |ξ| ≤ 2}.
Since FM0(R

n, X) does not contain constants (i.e. elements in X), the convergence∑N
j=−N φ̂j ∗ u → u for N → ∞ is clear for every u in this space. It remains to

derive the estimate for the corresponding norms. An application of Lemma 2.6(iii),
Lemma 2.11(iv), and (2.10) yields

φ̂j ∗ µ̂(ξ) = (2π)n/2F(φjµ)(ξ)

= (2π)n/2F((µ⌊χ
Ej
)⌊φj)(ξ)

=
[
(µ⌊χ

Ej
)⌊φjϕξ

]
(Rn) (ξ ∈ R

n),

where Ej = {2j−1 ≤ |ξ| ≤ 2j+1} and where we made use of the fact that suppφj ⊆
Ej . Relation (2.16) and once more Lemma 2.6(i) then imply

‖φ̂j ∗ µ̂‖L∞(Rn,X) ≤ C sup
ξ∈Rn

(|µ|⌊χ
Ej
)(Rn)‖φ0ϕξ‖L∞(Rn)

≤ C(|µ|⌊χ
Ej
)(Rn)‖φ0‖L∞(Rn)

≤ C|µ|(Ej) (j ∈ Z).
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Since Ej ∩ Ek = ∅ for |j − k| ≥ 3 we conclude by the σ-additivity of |µ| that
∞∑

j=−∞

‖φ̂j ∗ µ̂‖L∞(Rn,X) ≤ C
∞∑

j=−∞

|µ|(Ej)

≤ C
2∑

k=0

∞∑

j=−∞

|µ|(E3j+k)

≤ 3C|µ|(Rn)
≤ 3C‖µ̂‖FM (µ̂ ∈ FM0(R

n, X)).

The fact that u ∈ FM0(R
n, X) such that ‖u‖Ḃ0

∞,1
= 0 implies u ∈ X. Thanks to

(2.11) then u = 0. Thus, FM0(R
n, X) is continuously embedded in Ḃ0

∞,1(R
n, X)

and (2.15) is proved. Relation (2.14) now follows from the fact that FM0(R
n, X) →֒

BUC(Rn, X) and (2.11). �

Observe that the space FM0(R
n, X) is not an algebra, but at least we obtain by

Lemma 2.12(ii) that

FM0(R
n, X2) · FM0(R

n, X1) →֒ FM(Rn, X),

which will be important for later purposes.
The fact that δt0x ∈ M0(R

n, X) for Dirac measures δt0 , t0 ∈ R
n \ {0}, and x ∈ X,

gives rise to another interesting class of functions contained in the space FM0(R
n, X).

In fact, every sequence (aj)j∈N ⊆ X satisfying
∑∞

j=1 ‖aj‖X < ∞ defines for each

sequence of frequencies (λj)j∈N ⊆ R
n \ {0} an element

(
x 7→

∞∑

j=1

aje
−iλj ·x

)
∈ FM0(R

n, X),

by the fact that
∑∞

j=1 δλjaj ∈ M0(R
n, X). This class of almost periodic functions

is significant for applications to rotating boundary layers as explained in the intro-
duction.

Next, we present an operator valued multiplier result in FM0(R
n, X). It will play

a crucial role in deriving stability and uniformness in the appearing parameters for
the boundary layer problem treated in Sections 3 and 4.

For σ ∈ BC(Rn \ {0},L (X,Y )) we define

op(σ)f := F−1f̂⌊σ, f ∈ FM0(R
n, X). (2.17)

As a consequence of the theory for vector measures developed above we obtain the
following multiplier result.

Proposition 2.13. Let X,Y be Banach spaces having the Radon-Nikodým property
and suppose that σ ∈ BC(Rn \ {0},L (X,Y )). Then op(σ) as defined in (2.17) is
bounded from FM0(R

n, X) to FM0(R
n, Y ) and we have

‖op(σ)‖L (FM0(Rn,X),FM0(Rn,Y )) = ‖σ‖L∞(Rn\{0},L (X,Y )).



20 VECTOR MEASURE APPROACH TO ROTATING BOUNDARY LAYERS

If σ is also continuous at the origin, then op(σ) ∈ L (FM(Rn, X), FM(Rn, Y )) with
the corresponding equality for the operator norm.

Proof. Lemma 2.6(i) implies

‖op(σ)f‖FM = ‖f̂⌊σ‖M ≤ |f̂ |⌊‖σ‖L (X,Y )

≤ ‖σ‖L∞(Rn\{0},L (X,Y ))‖f‖FM
for all f ∈ FM0(R

n, X), where we made use of the fact that ‖ · ‖FM = ‖F · ‖M =
‖F−1 · ‖M. This shows

‖op(σ)‖ := ‖op(σ)‖L (FM0(Rn,X),FM0(Rn,Y )) ≤ ‖σ‖L∞(Rn\{0},L (X,Y )).

To see the converse, suppose that ‖op(σ)‖ < ‖σ‖L∞(Rn\{0},L (X,Y )). In detail this
means there is an x ∈ X with ‖x‖X = 1 and an t0 ∈ R

n \ {0} such that

‖σ(t0)x‖X > ‖op(σ)‖.
We set u := F−1δt0 . Then |û|(Rn) = 1. Furthermore, we have ux ∈ FM0(R

n, X)
and that the Radon-Nikodým derivative of ûx = ûx with respect to |ûx| = |û| reads
ρûx = x. This results in the contradiction

‖op(σ)‖ =

∫

Rn

‖op(σ)‖d|û|(ξ)

<

∫

Rn

‖σ(ξ)x‖Xd|û|(ξ)

= |û|⌊‖σ(·)x‖X(Rn) = |(ûx)⌊σ|(Rn)
= ‖F−1[(ûx)⌊σ]‖FM = ‖op(σ)(ux)‖FM
≤ ‖op(σ)‖‖u‖FM(Rn,C)‖x‖X
= ‖op(σ)‖,

where we applied Lemma 2.6(i) in the third equality. The additional assertion is
then obvious. �

Remark 2.14. If H1 and H2 are Hilbert spaces, Plancherel’s theorem implies that
the right hand side of the equality in Proposition 2.13 equals the operator norm of
op(σ) in L (L2(Rn, H1), L

2(Rn, H2)). Hence in this case we have

‖op(σ)‖L (FM0(Rn,H1),FM0(Rn,H2)) = ‖σ‖∞ = ‖op(σ)‖L (L2(Rn,H1), L2(Rn,H2)).

For Banach spaces X1 and X2 and 1 ≤ p ≤ ∞ Plancherel’s theorem does not hold,
but still we have that

‖op(σ)‖L (FM0(Rn,X1),FM0(Rn,X2)) = ‖σ‖∞ ≤ ‖op(σ)‖L (Lp(Rn,X1), Lp(Rn,X2)) (2.18)

(see Lemma 3.1). By these facts, we see that results which are known in a Lp(Rn, X)
framework and which fit into the multiplier context above immediately transfer to
FM0(R

n, X) (for X = X1 = X2). This observation will be very helpful for our
purposes in the next section.
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In the last part of this section the domain R
n is essentially fixed. So we occa-

sionally supress R
n and simply write FM(X) instead of FM(Rn, X) and so on. In

applications we will often use the fact noted in the above remark for the case that
H1 and H2 are certain L2-spaces. In the same spirit the following lemma will turn
out to be helpful.

Lemma 2.15. Let J ⊂ R be an interval and let H1 and H2 be Hilbert spaces.
Assume that

L ∈ L (L2(Rn, H1), L
2(J, L2(Rn, H2))) with ‖L‖L (L2(H1), L2(J,L2(H2))) ≤M

is an operator with a symbol σL satisfying

σL ∈ C
(
R
n \ {0}, L (H1, L

2(J,H2))
)
.

Then we have

L ∈ L (FM0(R
n, H1), L

2(J,FM0(R
n, H2))), ‖L‖L (FM0(H1), L2(J,FM0(H2))) ≤M.

Proof. We set E := L2(J,H2). Note that by Fubini’s theorem we have

L2(J, L2(Rn, H2)) ∼= L2(Rn, E).

Thus we may regard L as an operator such that

L ∈ L (L2(Rn, H1), L
2(Rn, E))

with an unchanged operator norm. Since L is assumed to have a symbol σL,
Plancherel’s theorem and the assumption on σL imply that

σL ∈ BC (Rn \ {0}, L (H1, E)) , ‖σL‖L∞(L (H1, E)) ≤M.

Proposition 2.13 then yields

L ∈ L (FM0(R
n, H1), FM0(R

n, E)), ‖L‖L (FM0(H1),FM0(E)) ≤M. (2.19)

By the fact that only the multiplier σL depends on t ∈ J and not the measure to
that it is applied, we can estimate as follows:

‖Lu‖L2(J,FM(H2)) = ‖ |û⌊σL(·)|H2(R
n) ‖L2(J)

=

∥∥∥∥
∫

Rn

‖σL(·, ξ)ρû(ξ)‖H2d|û|(ξ)
∥∥∥∥
L2(J)

≤
∫

Rn

‖σL(·, ξ)ρû(ξ)‖Ed|û|(ξ)

= |û⌊σL|E(Rn)
= ‖Lu‖FM(E) (u ∈ FM0(R

n, H1)).

Here we employed the notation | · |H2 and | · |E in order to highlight that û⌊σL is
once regarded as an H2-valued and once as an E-valued measure. Observe that the
first equality in Lemma 2.6(i) is crucial in order to obtain the second last equality
above. Relation (2.19) now implies the assertion. �

We also prepare the following general result on vector-valued convolution.
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Lemma 2.16. Let X,Y be Banach spaces, 1 ≤ p ≤ ∞, T ∈ (0,∞], and set J =
(0, T ). For g ∈ L (X,Lp(J, Y )) and f ∈ L1(J,X) we have

(
t 7→ g ⋆ f :=

∫ t

0
g(t− s)f(s)ds

)
∈ Lp(J, Y )

and

‖g ⋆ f‖Lp(J,Y ) ≤ ‖g‖L (X,Lp(J,Y ))‖f‖L1(J,X).

Proof. For a function h defined on J we set

h̃(t) :=

{
h(t), t ∈ J,

0, elsewhere.

Pick g ∈ L (X,Lp(J, Y )) and f ∈ L1(J,X). By assumption we have for a.e. s ∈ J
that

(t 7→ g̃(t− s)f̃(s)) ∈ Lp(R, Y )

and that

‖g̃(t− s)f̃(s)‖Lp(R,Y ) =

(∫ T+s

s
‖g(t− s)f(s)‖pY dt

)1/p

=

(∫ T

0
‖g(r)f(s)‖pY dr

)1/p

≤ ‖g‖L (X,Lp(J,Y ))‖f(s)‖X
= ‖g‖L (X,Lp(J,Y ))‖f̃(s)‖X . (2.20)

For s ∈ R \ J this estimate is trivially true. This yields
(
s 7→ ‖g̃(t− s)f̃(s)‖Lp(R,Y )

)
∈ L1(R).

Hence
∫
R
g̃(t−s)f̃(s)ds, and therefore also g ⋆f(t), exists as a Bochner integral with

values in Lp(J, Y ). Thanks to (2.20) we also obtain

‖g ⋆ f‖Lp(J,Y ) = ‖
∫

R

g̃(t− s)f̃(s)ds‖Lp(R,Y )

≤
∫

R

‖g̃(t− s)f̃(s)‖Lp(J,Y )ds

≤ ‖g‖L (X,Lp(J,Y ))

∫

R

‖f̃(s)‖Xds

= ‖g‖L (X,Lp(J,Y ))‖f‖L1(J,X).

�

Finally, we establish some density properties. For k ∈ N we set

FMk(Rn, X) := {u ∈ FM(Rn, X) : ∂αu ∈ FM(Rn, X) (0 ≤ |α| ≤ k)},
‖u‖FMk(X) :=

∑

0≤|α|≤k

‖∂αu‖FM(X).
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Further we define FM∞(Rn, X) :=
⋂∞
k=0 FM

k(Rn, X) equipped with the canonical

topology. The spaces FMk
0(R

n, X), k ∈ N0 ∪ {∞}, are defined accordingly.

Lemma 2.17. Let a Banach space X having the Radon-Nikodým property and a
domain Ω ⊆ R

m be given. Then we have:

(i) For every k ∈ N0 ∪ {∞} the space FMk(Rn, X) lies dense in FM(Rn, X).
(ii) For every k ∈ N0 ∪ {∞} and p ∈ [1,∞) the space FMk(Rn, C∞

c (Ω)n) lies
dense in FM(Rn, Lp(Ω)n).

Assertions (i) and (ii) remain true, if FM is replaced by FM0.

Remark 2.18. (a) Although C∞
c (Ω) is not a Banach space it is clear how to un-

derstand FMk(Rn, C∞
c (Ω)n), by the fact that C∞

c (Ω) →֒ Lp(Ω), for example.

(b) We note that FMk(Rn, X) →֒ BCk(Rn, X) for k ∈ N∪{∞} (see Lemma 2.12(iii)).

(c) Also observe that there is no dense set of decaying functions in FM(Rn, X).
This follows by the fact that the norm in FM(Rn, X) is stronger than the norm in
L∞(Rn, X).

Proof. (i) Choose a mollifier ϕε, i.e. ϕε(x) =
1
εnϕ0(x/ε) with 0 6= ϕ0 ∈ C∞

c (Rn),
ϕ0 ≥ 0, and

∫
Rn ϕ0(x)dx = 1. For u ∈ FM(Rn, X) we set

uε := ϕε ∗ u =

∫

Rn

ϕε(x− y)u(y)dy.

Since FM(Rn, X) →֒ BUC(Rn, X) we readily have uε ∈ C∞(Rn, X). Furthermore,
we obtain

∂α(ϕε ∗ u)(x) =

∫

Rn

u(x− y)∂αϕε(y)dy

=
1

(2π)n/2

∫

Rn

∫

Rn

ei(x−y)ξρû(ξ)d|û|(ξ)∂αϕε(y)dy

=
1

(2π)n/2

∫

Rn

eixξρû(ξ)

∫

Rn

e−iyξ∂αϕε(y)dyd|û|(ξ)

=

∫

Rn

eixξρû(ξ)F∂αϕε(ξ)d|û|(ξ)

= (2π)n/2F−1(û⌊F∂αϕε)(x) (x ∈ R
n, α ∈ N

n
0 ),

where we applied Lemma 2.6(iii) in the last step. This implies that F∂αuε =

(2π)n/2û⌊F∂αϕε ∈ M(X). Consequently ∂αuε ∈ FM(X) for ε > 0 and α ∈ N
n
0 .

Next, observe that

(ûε − û)(O) =

∫

O
(ϕ̂ερû − ρû)d|û| (O ∈ B(Rn)).

Thus,

‖uε − u‖FM = ‖ûε − û‖M ≤
∫

Rn

|ϕ̂ε − 1|‖ρû‖Xd|û| → 0 (ε→ 0)

by dominated convergence, and (i) follows.



24 VECTOR MEASURE APPROACH TO ROTATING BOUNDARY LAYERS

(ii) Pick u ∈ FM(Rn, Lp(Ω)n). By (i) we may even assume that

u ∈ FM∞(Rn, Lp(Ω)n).

In the present situation we choose a mollifier ϕε satisfying the properties in (i) in the
last variable, that is, ϕε : R

m → [0,∞). Furthermore, let (Kj)j∈N be an exhausting
sequence of Ω, i.e., each Kj ⊂ Ω is compact and we have

Kj ⊂
◦
Kj+1 (j ∈ N), Ω =

∞⋃

j=1

Kj ,

where
◦

Kj+1 denotes the interior of Kj+1. We also choose ψj ∈ C∞(Ω) such that
ψj ≡ 1 on Kj , ψj ≡ 0 outside Kj+1, and 0 ≤ ψj ≤ 1 on Ω. Then (ψj)j∈N ⊂ C∞

c (Ω)
and ψj → 1 pointwisely in Ω. We consider the sequence

uε,j(t, x) := ψj(x)(ϕε ∗x u)(t, x) (ε > 0, j ∈ N, t ∈ R
n, x ∈ Ω).

Here ‘∗x ’ denotes the convolution with respect to x ∈ R
m, i.e., we set

(ϕε ∗x u)(t, x) =

∫

Ω
ϕε(x− y)u(t, y)dy, x ∈ Ω, t ∈ R

n.

For functions a ∈ BC(Rm) and b ∈ L1(Rm) it is easily checked that

[(t, x) 7→ a(x)(b ∗x u)(t, x)] ∈ FM(Rn, Lp(Ω)n). (2.21)

From this we already obtain

∂αuε,j ∈ FM(Rn, Lp(Ω)n) (ε > 0, j ∈ N, α ∈ N
n+m
0 ). (2.22)

In fact, writing ∂α = ∂α1
t ∂α2

x , the Leibniz rule gives us

∂αuε,j(t, x) =
∑

β≤α2

c(α2, β)(∂
α2−βψj)(x)([∂

βϕε] ∗x ∂
α1
t u)(t, x)

with certain constants c(α2, β) > 0 and where β ≤ α is understood componentwise.
From this representation we see that the single summands possess the structure
given in (2.21). Thus (2.22) follows. So, we have proved uε,j ∈ FM∞(Rn,W k,p(Ω))
for all k ∈ N, hence that uε,j ∈ FM∞(Rn, C∞

c (Ω)) by the Sobolev embedding and
since ψj has compact support.

In view of

(ûε,j − û)(O, x) =
∫

O

[
ψj(x)(ϕε ∗x ρû)(t, x)− ρû(t, x)

]
d|û|(t),

we can calculate

‖uε,j − u‖FM(Lp) = ‖ûε,j − û‖M(Lp)

≤ sup
Π(Rn)

∑

Eℓ∈Π(Rn)

‖(ûε,j − û)(Eℓ)‖p

≤
∫

Rn

‖ψj(ϕε ∗x ρû)(t)− ρû(t)‖p d|û|(t).

Clearly, we have

‖ψj(ϕε ∗x ρû)(t)− ρû(t)‖p → 0 (ε→ 0, j → ∞)
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for a.e. t ∈ R
n. Moreover,

‖ψj(ϕε ∗x ρû)(t)− ρû(t)‖p ≤ ‖ϕε ∗x ρû(t)‖p + ‖ρû(t)‖p
≤ (‖ϕε‖1 + 1)‖ρû(t)‖p
≤ 2‖ρû(t)‖p (t ∈ R

n).

The dominated convergence theorem therefore yields

‖uε,j − u‖FM(Lp) → 0 (ε→ 0, j → ∞).

This implies (ii). The additional assertion is obvious. �

3. The linearized Ekman problem

From now on let X = Xp := Lp(D)n, where D denotes either one of the inter-
vals (0,∞) or (0, d) for some fixed d > 0. We start with deriving the Helmholtz
decomposition of the space FM0(R

n−1, Xp) and the required generator result for the
Stokes operator on its solenoidal subspace. These facts will be proved in the spirit
of Remark 2.14, in particular of relation (2.18). Since this is not so standard, let us
briefly explain the strategy we pursue here.

The main point is to derive suitable operator-valued representations for the sym-
bols of Helmholtz projection and Stokes resolvent (see (3.7) and (3.16)). This can
be obtained by taking advantage of the well-known Lp-versions of the desired re-
sults (see Lemma 3.2). Thanks to the Lp-boundedness of the operators under dis-
cussion and due to Lemma 3.1 below, we can prove their symbols to be bounded
functions. Continuity of the symbols can be read off directly from their representa-
tions. Proposition 2.13 then yields boundedness of the corresponding operators in
FM0(R

n−1, Xp). In other words, we rigorously verified relation (2.18) for the sym-
bol of the Helmholtz projection and of the Stokes resolvent. A priori this method
merely yields boundedness of operators associated to certain symbols. Thus, finally
it has to be shown that these operators indeed possess the desired properties of the
Helmholtz projection or the Stokes resolvent also in FM0(R

n−1, Xp). This again
reduces to the validity of these properties in Lp.

Of course, Helmholtz decomposition and sectoriality of the Stokes operator in
FM0(R

n−1, Xp) could also be obtained without utilizing the counterparts of these
results in Lp. Based on the multiplier result Proposition 2.13, these facts could be
obtained by directly estimating corresponding explicit solution formulas in R

n−1×D.
Such formulas, however, are somewhat lengthy and of intricate structure, especially
corresponding representations for the Stokes resolvent in a layer, cf. [1], [2]. As a
consequence, this more direct way would enlarge the proofs enourmously. It is much
more convenient to take advantage of knowledge in Lp and, based on this, to deal
with the operator-valued formulas (3.7) and (3.16). Those have a nicer and much
more compact structure than explicit formulas in R

n−1 ×D, especially in the case
d <∞.

In order to follow the strategy just explained, next we recall three known results
from the Lp-setting. Note that also here and in Section 4 we will frequently make



26 VECTOR MEASURE APPROACH TO ROTATING BOUNDARY LAYERS

use of the short hand notation M(X), FM(X) and so on, since the domain R
n−1

essentially will be fixed.

Lemma 3.1. Let E,F be Banach spaces and 1 < p < ∞. We denote by the set
Mp(R

n,L (E,F )) the class of all L (E,F )-valued Fourier multipliers on Lp(Rn, E),
i.e.,

Mp(R
n,L (E,F )) :=

{
m : Rn \ {0} → L (E,F );

F−1mF ∈ L
(
Lp(Rn, E), Lp(Rn, F )

)}

endowed with the norm ‖m‖Mp(Rn,L (E,F )) = ‖F−1mF‖L (Lp(Rn,E), Lp(Rn,F )). Then,
Mp(R

n,L (E,F )) →֒ L∞(Rn,L (E,F )). More precisely, we have

‖m‖L∞(Rn,L (E,F )) ≤ ‖m‖Mp(Rn,L (E,F )) (m ∈ Mp(R
n,L (E,F ))).

Proof. Pick m ∈ Mp(R
n,L (E,F )), x ∈ E, and y′ ∈ F ′. Then 〈m(·)x, y′〉 is a

scalar-valued multiplier. Here 〈·, ·〉 denotes the duality pairing of F with F ′. For
such multipliers it is well-known that

Mp(R
n) →֒ M2(R

n) = L∞(Rn).

In particular, we have ‖m‖L∞(Rn) ≤ ‖m‖Mp(Rn) for all m ∈ Mp(R
n). Note that

these classes were introduced by Mikhlin, cf. [42], [43]. By the commutativity of
suprema this yields

‖m‖L∞(Rn,L (E,F )) = sup
ξ∈Rn

sup
‖x‖E=1

sup
‖y′‖F ′=1

|〈m(ξ)x, y′〉|

= sup
‖x‖E=1

sup
‖y′‖F ′=1

‖〈mx, y′〉‖L∞(Rn)

≤ sup
‖x‖E=1

sup
‖y′‖F ′=1

‖F−1〈mx, y′〉F‖L (Lp(Rn))

≤ sup
‖x‖E=1

sup
‖y′‖F ′=1

sup
‖f‖Lp(Rn)=1

‖〈F−1mFfx, y′〉‖Lp(Rn)

≤ sup
‖x‖E=1

sup
‖f‖Lp(Rn)=1

‖F−1mFfx‖Lp(Rn,F )

≤ ‖F−1mF‖L (Lp(Rn,E), Lp(Rn,F )).

�

In what follows, we denote by N the outer normal vector at the boundary ∂G of
a domain G ⊂ R

n and by Σθ the complex sector

Σθ := {z ∈ C \ {0} : | arg z| < θ}
for θ ∈ (0, π).

Lemma 3.2. Let 1 < p <∞, ν > 0, d ∈ (0,∞], and set G = R
n−1 × (0, d).

(i) On G we have the Helmholtz decomposition

Lp(G) = Lpσ(G)⊕Gp(G),
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where

Lpσ(G) = {u ∈ Lp(G) : div u = 0, N · u = 0 on ∂G}
= {u ∈ C∞

c (G)n : div u = 0}‖·‖p ,
Gp(G) = {∇p : p ∈ L1

loc(G), ∇p ∈ Lp(G)}.
In particular, the associated Helmholtz projection P : Lp(G) → Lp(G) is
bounded and we have ‖P‖L (L2(G)) = 1.

(ii) The Stokes operator

Aν := −νP∆, D(Aν) :=W 2,p(G) ∩W 1,p
0 (G) ∩ Lpσ(G)

is the generator of a bounded holomorphic C0-semigroup (e−tAν )t≥0 on L
p
σ(G)

and for each ϕ0 ∈ (0, π) there exists a Cϕ0 such that

‖λk/2∂α(λ+Aν)
−1‖L (Lp

σ(G), Lp(G)) ≤ Cϕ0 (λ ∈ Σϕ0 , k + |α| = 2).

Here k ∈ N0 and α ∈ N
n
0 . In particular, for p = 2 Aν is positive selfadjoint

and the family (e−tAν )t≥0 forms a semigroup of contractions.

Proof. For the case d = ∞ the existence of the Helmholtz projection in (i) for
instance is proved in [40]; assertion (ii) for the case of d = ∞ is obtained in [35]. We
also refer to [8] for (i) and (ii) and the case d = ∞. For the case of a layer, that is
d < ∞, statement (ii) is proved in [1] and [2]; for both (i) and (ii) and the case of
d <∞ we refer to [3], [4]. �

Now we are in position to establish the Helmholtz decomposition of the space
FM0(R

n−1, Xp). To be precise, we will show that

FM0(R
n−1, Xp) = FM0,σ(R

n−1, Xp)⊕GFM, (3.1)

with

FM0,σ(R
n−1, Xp)

:=

{
u ∈ FM∞

0

(
Rn−1,

∞⋂

k=0

W k,p(D)

)
; div u = 0, N · u|∂(Rn−1×D) = 0

}‖·‖FM

(3.2)

and
GFM = {∇p ; p ∈ L1

loc(R
n−1 ×D), ∇p ∈ FM0(R

n−1, Xp)}. (3.3)

Recall that the existence of (3.1) is (at first formally) equivalent to the unique
solvability (modulo constants) of the Neumann problem

{
∆p = div u in R

n−1 ×D,
∂N p = N · u on ∂(Rn−1 ×D),

(3.4)

in the weak sense. The corresponding Helmholtz projection associated to (3.1) then
is given as

Pu = u−∇p
with p the solution of (3.4).
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Definition 3.3. In what follows we will make use of the notation x = (x′, xn), i.e.,
x′ ∈ R

n−1 denotes the tangential part of x ∈ R
n. The same notation we will use for

vector fields u, that is, we write u = (u′, un), ρ = (ρ′, ρn), etc.

As explained in the beginning of this section, the boundedness of P is proved in
the spirit of Remark 2.14. Thus, we start with deriving a suitable operator-valued
symbol representation. For this purpose, assume that

u ∈ Lp(Rn−1, C∞
c (D)n)

d→֒ Lp(Rn−1, Xp) ∼= Lp(Rn−1 ×D)n.

Dealing with those u has the advantage that the trace condition in (3.4) is homoge-
neous. Applying Fourier transformation in tangential direction to (3.4), we are left
with the ODE {

(|ξ′|2 − ∂2n)p̂ = −iξ′ · û′ − ∂nû
n in D,

∂N p̂ = 0 on ∂D.
(3.5)

Let ∆N,n denote the Neumann Laplacian in the normal variable xn. By well-known
results for this operator the solution of (3.5) is represented by

p̂(ξ′, ·) = −iξ′ · (|ξ′|2 −∆N,n)
−1û′(ξ′, ·)− (|ξ′|2 −∆N,n)

−1∂nû
n(ξ′, ·), ξ′ 6= 0. (3.6)

We define the operator-valued symbol σP by

σP (ξ
′)v = v +

(
iξ′

∂n

)(
iξ′ · (|ξ′|2 −∆N,n)

−1v′ + (|ξ′|2 −∆N,n)
−1∂nv

n

)

= v +

(
iξ′

∂n

)
(|ξ′|2 −∆N,n)

−1

(
iξ′

∂n

)T
v (3.7)

for ξ′ ∈ R
n−1 \ {0} and v ∈ C∞

c (D)n. Obviously this is exactly the symbol of the
Helmholtz projection and we have

Pu = u−∇p = F−1σPFu (u ∈ Lp(Rn−1, C∞
c (D))). (3.8)

By virtue of Lemma 3.2(i) and Lemma 3.1 it is clear that σP extends to Xp.
However, in the sequel it will be advantageous to know that also representation (3.7)
is still valid for v ∈ Xp (see the latter part of the proof of Lemma 3.4). This can be
seen via abstract arguments for sectorial operators. In fact, by utilizing these (well-

known) arguments, the resolvent of ∆N,n has a natural extension on W−1,p
0 (D) :=

(W 1,p′(D))′, which for simplicity again is denoted by (λ−∆N,n)
−1. Indeed, we have

(λ − ∆N,n)
−1 ∈ L (W−1,p

0 (D), W 1,p(D)). Since ∂n(L
p(D)) →֒ W−1,p

0 (D), we see
that (|ξ′|2 − ∆N,n)

−1∂nv
n, ξ 6= 0, is a well-defined element in W 1,p(D) for every

vn ∈ Lp(D). Therefore representations (3.7) and (3.8) hold for all v ∈ Xp and all
u ∈ Lp(Rn−1 ×D)n, respectively.

We also remark that then p = F−1p̂ with p̂ given through (3.6) with the gen-
eralized resolvent of ∆N,n represents the solution of (3.4) for general data u ∈
Lp(Rn−1 × D)n. This fact, however, will not be used in the sequel. In the fol-
lowing proof we just concentrate on the symbol σP defined by representation (3.7)
on Xp, with (|ξ′|2 −∆N,n)

−1 being interpreted as the above constructed extension

on W−1,p
0 (D).
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Lemma 3.4. The Helmholtz projection P is bounded on FM0(R
n−1, Xp) and de-

composition (3.1) holds.

Proof. Lemma 3.2(i) and Lemma 3.1 imply

‖σP (ξ′)v‖Xp ≤ C‖v‖Xp (ξ′ ∈ R
n−1 \ {0}, v ∈ Xp), (3.9)

even with C = 1 if p = 2. With the help of representation (3.7) and estimate (3.9)
it is not difficult to verify that σP satisfies

σP ∈ BC(Rn−1 \ {0},L (Xp)). (3.10)

Proposition 2.13 therefore implies that

P = op(σP ) ∈ L (FM0(R
n−1, Xp)). (3.11)

Moreover, the representation

Pu = F−1(û⌊σP )
with σP given through (3.7) holds for all u ∈ FM0(R

n−1, Xp).
Note that by the fact that Lp(Rn−1 × D)n ∩ FM0(R

n−1, Xp) is not dense in
FM0(R

n−1, Xp) we still have to prove that P as an operator on FM0(R
n−1, Xp)

admits the usual properties of the Helmholtz projection. To this end, we take ad-

vantage of the function ψ(x′) := e−|x′|2/2, which is known to represent a fixed point
for the Fourier transformation. First we show that P is indeed a projection on
FM0(R

n−1, Xp). By P
2u = Pu for all u ∈ Lp(Rn−1 ×D)n we deduce

(σ2P (ξ
′)− σP (ξ

′))û(ξ′) = 0 (u ∈ Lp(Rn−1 ×D)n, ξ′ ∈ R
n−1 \ {0}).

Let v ∈ Xp and set u := ψv. Then we have u ∈ Lp(Rn−1 ×D)n and

ψ(ξ′)(σ2P (ξ
′)− σP (ξ

′))v = 0 (ξ′ ∈ R
n−1 \ {0}).

This implies σ2P v = σP v for all v ∈ Xp, from which we conclude û⌊σ2P = û⌊σP for
all u ∈ FM0(R

n−1, Xp). So, we have proved

P 2u = Pu (u ∈ FM0(R
n−1, Xp)).

We set

FM0,σ(R
n−1, Xp) = P (FM0(R

n−1, Xp)).

It remains to prove characterizations (3.2) and (3.3).
The fact that divPu = 0 for u ∈ FM0(R

n−1, Xp) follows from the validity of
this equation in Lp in the same manner as we proved P 2u = Pu (or by a direct
calculation). Next, again by known facts for ∆N,n we have

(|ξ′|2 −∆N,n)
−1(W k,p(D)) →֒W k,p(D) (k ∈ N0, 1 < p <∞).

Utilizing this relation, from the formula

∂αPu = F−1((F∂α1
x′ u)⌊∂α2

xnσP ) (α = (α1, α2) ∈ N
n
0 )

and representation (3.7) we can derive

P (FM∞(Rn−1, C∞
c (D))) →֒ FM∞(Rn−1,W k,p(D)) (k ∈ N0).
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Noting that FM∞(Rn−1,W k,p(D)) →֒ BUC(Rn−1,BUC(D)) for k ≥ 1, we see that
the trace N ·u|∂(Rn−1×D) makes sense for functions u ∈ P (FM∞(Rn−1, C∞

c (D))). We
consider the case D = (0,∞). Then N · (Pu)|∂(Rn−1×D) = −(Pu)n|xn=0. Since the
trace operator γ : v 7→ v|xn=0 acts as a continuous linear operator from BUC(R+)
to R, we have γ(Pu)n = F−1

∫
Rn−1 γ(σP (ξ

′)ρû(ξ
′))nd|û|(ξ′).

Thus, it remains to show that

(σPρû)
n(ξ′, 0) = 0 (3.12)

for |û|-a.e. ξ′ ∈ R
n−1 \ {0}. On the other hand, from (3.7) we conclude

(σPρû)
n(ξ′, ·) = ρnû(ξ

′, ·) + iξ′ · ∂n(|ξ′|2 −∆N,n)
−1ρ′û(ξ

′, ·)
+ ∂n(|ξ′|2 −∆N,n)

−1∂nρ
n
û(ξ

′, ·). (3.13)

Also observe that

0 = γu(x′) =
1

(2π)(n−1)/2

∫

Rn−1

eiξ
′·x′γρû(ξ

′)d|û|(ξ′) (x′ ∈ R
n−1).

Hence we have ρû(ξ
′, 0) = 0 |û|-a.e. The fact that u ∈ FM∞(Rn−1,W k,p(D)) also

implies that ∂nρ
n
û(ξ

′, ·) ∈ Lp(D). Taking trace in (3.13) therefore yields (3.12). The
case of a layer, i.e. D = (0, d), follows completely analogous. A density argument
then results in characterization (3.2).

To see (3.3), let w := (I−P )u for u ∈ FM0(R
n−1, Xp). Then w ∈ L1

loc(R
n−1×D)

and Pw = 0. This yields

0 = ŵ⌊σP (O) =

∫

O
σP (ξ

′)ρŵ(ξ
′)d|ŵ|(ξ′) (O ∈ B(Rn−1)),

from which we conclude that σP (ξ
′)ρŵ(ξ

′) = 0 for |ŵ|-a.e. ξ′ ∈ R
n−1. Furthermore,

with the help of representation (3.7) we easily find that
∫

D
σP (ξ′)ϕ(xn)

T
ψ(xn)dxn =

∫

D
ϕ(xn)

T
σP (ξ

′)ψ(xn) dxn

(ξ′ ∈ R
n−1 \ {0}, ϕ ∈ Xp, ψ ∈ Xp′).

This gives us

〈w, v〉L∞,L1 = 〈w, Pv〉L∞,L1

=

∫

D
〈w, Pv(xn)〉S′(Rn−1,Xp),S(Rn−1)(xn)dxn

=

∫

D

(
ŵ⌊[(σP v̂)(xn)

T
]
)
(xn)dxn

=

∫

D

∫

Rn−1

(σP v̂)(ξ′, xn)
T
ρŵ(ξ

′, xn)d|ŵ|(ξ′)dxn

=

∫

Rn−1

∫

D
(σP v̂)(ξ′, xn)

T
ρŵ(ξ

′, xn)dxnd|ŵ|(ξ′)

=

∫

Rn−1

∫

D
v̂(ξ′, xn)

T
σPρŵ(ξ

′, xn)dxnd|ŵ|(ξ′)
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=

∫

D

∫

Rn−1

v̂(ξ′, xn)
T
σPρŵ(ξ

′, xn)d|ŵ|(ξ′)dxn

= 0 (v ∈ C∞
c,σ(R

n−1 ×D)).

In view of [19, Lemma III 1.1] then there exists a p ∈ W 1,1
loc (R

n−1 × D) such that
w = ∇p. This implies that (I − P )(FM0(R

n−1, Xp)) ⊂ GFM.
Conversely, let ∇p ∈ GFM. We intend to prove

σP (ξ)

(
iξ′

∂n

)
ρp̂(ξ

′) = 0 (ξ′ ∈ R
n \ {0})

which will yield the result. A crucial point here is to give a sense to p̂ and conse-
quently to ρp̂, since a priori we only know ∇p ∈ S ′(Rn−1, Xp). For every x

′ ∈ R
n−1

we have
p(x′) ∈ Ŵ 1,p(D) := {v ∈ L1

loc(D) : ∂nv ∈ Lp(D)}/C.
The fact that ∂np ∈ FM0(R

n−1, Lp(D)) then implies that p ∈ FM0(R
n−1, Ŵ 1,p(D)).

Thus, the Fourier transform p̂ is well-defined in S ′(Rn−1, Ŵ 1,p(D)). Therefore,
also p̂⌊iξ1(O) is well-defined for every compact O ∈ B(Rn−1). By virtue of
∂1p ∈ FM0(R

n−1, Lp(D)) we deduce p̂⌊iξ1(O) ∈ Lp(D). Due to Lemma 2.6, this, in
turn, gives us that

p̂(O) = (p̂⌊iξ1)⌊(1/iξ1)(O) ∈ Lp(D)

for every compact O ∈ B(Rn−1 \ {0}). Together with p̂(O) ∈ Ŵ 1,p(D) we can
conclude that ρp̂(ξ

′) ∈ W 1,p(D) for |p̂|-a.e. ξ′ ∈ R
n−1 \ {0}. On the other hand, for

each q ∈W 1,p(D) the validity of formula (3.7) on Xp yields

σP (ξ
′)

(
iξ′

∂n

)
q =

(
iξ′

∂n

)(
q + (|ξ′|2 −∆N,n)

−1

(
iξ′

∂n

)T (
iξ′

∂n

)
q

)

=

(
iξ′

∂n

)
(q − q) = 0 (ξ ∈ R

n−1 \ {0}).

Consequently,

FP∇p(O) = p̂⌊
[
σP

(
iξ′

∂n

)]
(O)

=

∫

O
σP (ξ

′)

(
iξ′

∂n

)
ρp̂(ξ

′)d|p̂|(ξ′)

= 0 (O ∈ B(Rn−1 \ {0}) compact).

Taking into account that p̂ has no point mass at the origin we obtain FP∇p(O) = 0
for any O ∈ B(Rn−1). This shows that GFM ⊂ (I−P )(FM0(R

n−1, Xp)). Thus (3.3)
follows and the proof is complete. �

Next, we define as usual the Stokes operator by

Aν = −νP∆
D(Aν) =

{
u ∈ FM0,σ(R

n−1, Xp) : ∂
αu ∈ FM(Rn−1, Xp),

α ∈ N
n
0 , |α| ≤ 2, u|∂(Rn−1×D) = 0

}
.
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The same strategy performed in Lemma 3.4 will result in sectoriality of Aν . For this
purpose, an operator-valued representation for the symbol of the resolvent of Aν is
in order.

Recall that the Stokes resolvent problem is given by




(λ− ν∆)u+∇p = f in R
n−1 ×D,

div u = 0 in R
n−1 ×D,

u = 0 on ∂(Rn−1 ×D).
(3.14)

Assume that f ∈ Lpσ(Rn−1 × D), i.e., again first we consider the situation in Lp.
Applying the Helmholtz projection P to the first line of (3.14) and then Fourier
transform in tangential direction x′, (3.14) turns into the problem

{
(λ+ ν|ξ′|2)û− σP (ξ

′)ν∂2nû = f̂ in D,
û = 0 on ∂D,

(3.15)

where σP as before denotes the symbol of the Helmholtz projection defined in (3.7).
Note that, if (3.15) is solved, the pressure p can be recovered by ∇p = −(I−P )ν∆u.
In this sense, problems (3.14) and (3.15) are equivalent.

By Lemma 3.2(ii), (3.14) is uniquely solvable in Lp(Rn−1, Xp) →֒ S ′(Rn−1, Xp).
Since F : S ′(Rn−1, Xp) → S ′(Rn−1, Xp) is isomorphic, also the solution û of (3.15)
is unique. Let S : Rn \ {0} → L (Xp) denote the solution operator of (3.15), i.e., we
set

û = S(ξ′)f̂ := (λ+ ν|ξ′|2 − σ(ξ′)ν∂2n)
−1f̂ . (3.16)

By the uniqueness of the solution, S represents exactly the symbol of the resolvent
of the Stokes operator. To be precise, we have

(λ+Aν)
−1f = F−1SFf (f ∈ Lpσ(R

n−1 ×D)). (3.17)

Based on the operator-valued representation (3.16) for the Stokes resolvent we can
prove the following result.

Theorem 3.5. Let 1 < p <∞, ν > 0, k ∈ N, and α ∈ N
n
0 . The Stokes operator Aν

is the generator of a bounded holomorphic C0-semigroup on FM0,σ(R
n−1, Xp) and

for each ϕ0 ∈ (0, π) there is a C = C(ϕ0, ν) > 0 such that

‖λk/2∂α(λ+Aν)
−1‖L (FM0(Rn−1,Xp)) ≤ C (λ ∈ Σπ−ϕ0 , k + |α| = 2).

In particular, for p = 2 Aν is the generator of a semigroup of contractions.

Proof. Let ϕ0 ∈ (0, π), k, ℓ ∈ N0, and α ∈ N
n
0 . In order to obtain a symbol in

Lp, rather than Lpσ, we consider SσP instead of just S in what follows. Identifying
Lp(Rn−1×D)n with Lp(Rn−1, Xp), Lemma 3.2(ii) and Lemma 3.1 immediately imply
that

‖λk/2∂ℓn(iξ′)αS(ξ′)σP (ξ′)‖L (Lp(D)n) ≤ C(ϕ0, ν) (3.18)

(λ ∈ Σπ−ϕ0 , ξ
′ ∈ R

n−1 \ {0}, k + ℓ+ |α| = 2),

and, if p = 2, also that

‖λS(ξ′)σP (ξ′)‖L (L2(D)n) ≤ 1 (λ > 0, ξ′ ∈ R
n−1 \ {0}). (3.19)
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Furthermore, since (ξ′ 7→ σP (ξ
′)) ∈ C(Rn−1 \ {0},L (Lp(D)n)), by representation

(3.16) and estimate (3.18) it is straight forward to show that
(
ξ′ 7→ λk/2∂ℓn(iξ

′)αS(ξ′)σP (ξ
′)
)
∈ C(Rn−1 \ {0},L (Lp(D)n)) (3.20)

(λ ∈ Σπ−ϕ0 , k + ℓ+ |α| = 2). (3.21)

(We will perform such a calculation in the proof of Lemma 3.9 for the more compli-
cated resolvent of the Stokes-Coriolis-Ekman operator ASCE . The proof given there
can be copied in order to obtain (3.20).) Combining (3.18) and (3.20) we deduce

(
ξ′ 7→ λk/2∂ℓn(iξ

′)αS(ξ′)σP (ξ
′)
)
∈ BC(Rn−1 \ {0},L (Lp(D)n))

(λ ∈ Σπ−ϕ0 , k + ℓ+ |α| = 2).

By Proposition 2.13 we therefore conclude that

op(S) = F−1SF ∈ L (FM0,σ(R
n−1, Xp), FM0(R

n−1, Xp)).

More precisely, in combination with (3.18) and (3.19) Proposition 2.13 yields

‖λk/2∂αop(S)‖L (FM0,σ(Rn−1,Xp),FM0(Rn−1,Xp)) ≤ C(ϕ0, ν)

(λ ∈ Σπ−ϕ0 , k + |α| = 2)

and

‖λop(S)‖L (FM0,σ(Rn−1,X2)) ≤ 1 (λ > 0), (3.22)

respectively.
It remains to show that the operator op(S) indeed represents the Stokes resolvent

in FM0,σ(R
n−1, Xp). For, we next show that op(S) maps FM0,σ(R

n−1, Xp) into the
domain of Aν . Note that it suffices to verify the trace condition op(S)f |∂(Rn−1×D) =

0. The fact that div op(S)f = 0 for f ∈ FM0,σ(R
n−1, Xp) can be proved similarly.

Pick f ∈ FM0,σ(R
n−1, Xp). Recall that we have

op(S)f(x′) =
1

(2π)n/2

∫

Rn−1

eiξ
′·x′S(ξ′)ρ

f̂
(ξ′)d|f̂ |(ξ′) ∈W 2,p(D), x′ ∈ R

n−1.

Since the trace operator γ : v 7→ v|xn=0 is bounded from W 2,p(D) to R, from this
representation we see that γop(S)f(x′) = 0 for all x′ ∈ R

n−1 if γS(ξ′)ρ
f̂
(ξ′) = 0 for

all ξ′ ∈ R
n−1 \ {0}. For h ∈ Lp(Rn−1 ×D) we know γS(ξ′)σp(ξ

′)ĥ(ξ′) = 0, thanks

to Lemma 3.2(ii). Now let v ∈ Xp and set ψ(x′) := e−|x′|2/2 and h := ψv. Then we
have h ∈ Lp(Rn−1 ×D) and

0 = γS(ξ′)σP (ξ
′)ĥ(ξ′) = ψ(ξ′)γS(ξ′)σP (ξ

′)v (ξ′ ∈ R
n−1 \ {0}).

This implies γS(ξ′)σP (ξ
′)v = 0 for all v ∈ Xp and ξ′ ∈ R

n−1 \ {0}. Consequently,

we also have γS(ξ′)σP (ξ
′)f̂(ξ′) = 0 for all f ∈ FM0,σ(R

n−1, Xp) and ξ
′ ∈ R

n−1 \{0}.
So, we have proved op(S)(FM0,σ(R

n−1, Xp)) ⊂ D(Aν). Hence we may apply Aν to
op(S)f and by using the symbol representations we easily can show that

(λ+Aν)op(S)f = f (f ∈ FM0,σ(R
n−1, Xp)),

op(S)(λ+Aν)u = u (u ∈ D(Aν)).
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Consequently,

op(S) = (λ+Aν)
−1.

Finally, we show that Aν is densely defined. To this end, it is sufficient to prove
that

(1 +
1

j
Aν)

−1f → f in FM0(R
n−1, Xp) (j → ∞, f ∈ FM0,σ(R

n−1, Xp)). (3.23)

By virtue of (3.16) and (3.17) we obtain

‖(1 + 1

j
Aν)

−1f − f‖FM(Lp)

= ‖Sf̂ − f̂‖M(Lp)

≤
∫

Rn

∥∥∥∥
(
1 +

1

j
(ν|ξ′|2 − σ(ξ′)∂2n)

)−1

ρ
f̂
(ξ′)− ρ

f̂
(ξ′)

∥∥∥∥
p

d|f̂ |(ξ′).

The sectoriality of Aν on Lpσ(Rn ×D) given by Lemma 3.2(ii) implies the pointwise
convergence to 0 of the integrand in case that f ∈ Lpσ(Rn−1 × D). In a similar
way as we reduced the verification of Dirichlet boundary conditions to the situation
in Lpσ(Rn−1 × D), we can prove that pointwise convergence remains true for f ∈
FM0,σ(R

n−1, Xp). By estimate (3.18) it is easily proved that there is an integrable
majorant as well. Hence the dominated convergence theorem yields (3.23). The
Hille-Yosida characterization for generators of holomorphic C0-semigroups yields
the remaining assertion. The fact that for p = 2 Aν generates a semigroup of
contractions follows by (3.22) and the corresponding characterization for contraction
semigroups. �

Next, we consider the problem




∂tu− ν∆u+ ωe3 × u+ (UE · ∇)u+ u3∂3U
E = −∇p in (0,∞)×G,

div u = 0 in (0,∞)×G,
u = 0 on (0,∞)× ∂G,

u|t=0 = u0 in G,
(3.24)

which is the linearized version of system (1.4). From here on we restrict ourselves
to the physically relevant case of three space dimensions. That is, G = R

2 × D
denotes a layer or a half-space in R

3 and UE denotes the Ekman spiral given in
(1.2). Applying the Helmholtz projection P to the first line and employing the
Stokes operator Aν , these equations reduce to the Cauchy problem

{
u′ +ASCEu = 0 in (0,∞),

u(0) = u0.

Here ASCE = Aν + Bω + BE denotes the Stokes-Coriolis-Ekman operator with the
Stokes operator Aν , the operator

Bωu := ωPe3 × u



YOSHIKAZU GIGA AND JÜRGEN SAAL 35

arising from the Coriolis force and the contribution from the Ekamn spiral BE =
B1
E +B2

E , where

B1
Eu = P (UE · ∇)u, B2

Eu = Pu3∂3U
E .

Obviously Bω and BE are of lower order. Thus, in view of Theorem 3.5, they are
relatively bounded by Aν . Since the property of generating an analytic semigroup
is stable under this type perturbations, Theorem 3.5 or Lemma 3.2(ii), respectively,
immediately imply the following result.

Theorem 3.6. Let 1 < p < ∞ and let F ∈ {Lpσ(R2 × (0, d)),FM0,σ(R
2, Xp)}

Then the Stokes-Coriolis-Ekman operator ASCE : D(ASCE) → F with domain
D(ASCE) = D(Aν) is the generator of a holomorphic C0-semigroup on F . Fur-
thermore, for each ϕ0 ∈ (0, π) there exists a λ0 = λ0(ϕ0) > 0 and a Cϕ0 > 0 such
that

‖λk/2∂α(λ+ (ASCE + λ0))
−1‖L (F ) ≤ Cϕ0 (λ ∈ Σπ−ϕ0 , k + |α| = 2).

However, this result gives no information on the dependence of the semigroup on
the parameters ω, ν, δ. Therefore, we restrict our considerations from now on to the
case p = 2, for which much more can be said. We will see that then the dependence
of the norm of e−ASCE on ω, ν, and δ can be determined rather explicitly. In
particular, it is uniformly bounded in ω ∈ R. This will be the issue of the remaining
part of the present section. First we provide

Lemma 3.7. We have

‖e−(·)/αv‖L2((0,d)) ≤ α

(∫ d/α

0
e−2xxdx

)1/2

‖v′‖L2((0,d))

≤ α

2
‖v′‖L2((0,d)) (α, d > 0, v ∈ H1(R+)).

Proof. We may assume that v ∈ C∞
c ((0, d]). The fundamental theorem of calculus

and the Cauchy-Schwarz inequality yield

|e−x/αv(x)| ≤ e−x/α
∫ x

0
|v′(s)|ds

≤ e−x/αx1/2‖v′‖L2((0,d)) (x ∈ (0, d)).

Integrating with respect to x and the substitution y = x/α imply the assertion. �

With the help of Lemma 3.7 we can obtain the following result for the linear
operator ASCE in L2. It already exhibits the mentioned explicit dependence on the
parameters ω, ν, and δ for norm estimates of the solution.

Proposition 3.8. Let d ∈ (0,∞] and G = R
2 × (0, d). The analytic C0-semigroup,

generated by the Stokes-Coriolis-Ekman operator ASCE on L2
σ(G) according to Pro-

position 3.6, satisfies the following uniform estimates: for η = U2
∞/8ν we have

(i) ‖e−tASCE‖L (L2(G)) ≤ eηt,

(ii) ‖∇e−(·)ASCEu0‖L2((0,t),L2(G)) ≤
√

2/ν eηt‖u0‖L2(G)
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for all u0 ∈ L2
σ(G) and all t ≥ 0. In particular, all estimates are uniform in ω ∈ R.

Proof. For u0 ∈ L2
σ(G) we set u(t) := e−tASCEu0. Then u solves

{
u′ +ASCEu = 0 in (0,∞),

u(0) = u0.

Multiplying the above equation with u, integrating w.r.t. x, and taking into account
the skew-symmetry of Bω and B1

E we obtain

1

2

d

dt
‖u(t)‖22 + ν‖∇u(t)‖22 + (u3(t)∂3U

E , u(t)) = 0 (t ≥ 0). (3.25)

Note that by (1.2) for the derivative of the Ekman spiral we obtain

∂3U
E(x3) =

U∞

δ
e−x3/δ




cos(x3/δ) + sin(x3/δ)
cos(x3/δ)− sin(x3/δ)

0


 .

The third term in (3.25) we estimate as follows:

|(u3(t)∂3UE , u(t))| ≤
2∑

j=1

‖u3(t)(∂3UE)j‖2‖u(t)‖2

≤
√
2U∞

δ
‖e−(·)/δu3(t)‖2‖u(t)‖2

≤ U∞√
2

(
ε‖∇u3(t)‖22 +

1

4ε
‖u(t)‖22

)
(ε > 0),

where we applied Lemma 3.7 with α = δ and Young’s inequality in the last line.
Inserting this into (3.25) we deduce

d

dt
‖u(t)‖22 + 2

(
ν − U∞ε√

2

)
‖∇u(t)‖22 ≤

U∞

2
√
2 ε

‖u(t)‖22 (t ≥ 0). (3.26)

Choosing ε =
√
2 ν/U∞ and applying Gronwall’s lemma we arrive at

‖u(t)‖22 ≤ ‖u0‖22e2ηt (t ≥ 0). (3.27)

This proves (i).
To see (ii), we choose ε <

√
2 ν/U∞, say ε = ν/

√
2U∞. Integrating (3.26) with

respect to t then implies with the help of (3.27) that

ν

∫ t

0
‖∇u(s)‖22ds ≤ U2

∞

2ν

∫ t

0
e2ηsds‖u0‖22 + ‖u0‖22

≤ 2(e2ηt − 1)‖u0‖22 + ‖u0‖22
≤ 2e2ηt‖u0‖22 (t ≥ 0).

Thus the proposition is proved. �

Next, we transfer the results obtained in Proposition 3.8 in L2
σ(G) to the space

FM0,σ(R
2, X2). Again we intend to exploit the idea pointed out in Remark 2.14.

For this purpose we need
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Lemma 3.9. Let T ∈ (0,∞) and let TSCE be the holomorphic C0-semigroup gener-
ated by ASCE on FM0,σ(R

2, X2). Then TSCE has a symbol σTSCE
that satisfies

(i) (ξ′ 7→ σTSCE
(t, ξ′)) ∈ C

(
R
2 \ {0}, L (X2)

)
, t ≥ 0, and

(ii) (ξ′ 7→ σTSCE
(·, ξ′)) ∈ C

(
R
2 \ {0}, L (X2, L

2((0, T ), X2))
)
.

Proof. Thanks to the fact that the Ekman spiral UE does not depend on x′ ∈ R
2

the Fourier transform of the Stokes-Coriolis-Ekman operator reads as

σASCE
(ξ′)û(ξ′) = FASCE u(ξ′) = ν|ξ′|2û(ξ′)− σP (ξ

′)K(ξ′)û(ξ′),

where

K(ξ′)û(ξ′) = ν∂2nû(ξ
′)− ωe3 × û(ξ′)−

2∑

j=1

(UE)jξj û(ξ
′)− û3(ξ′)∂3U

E

and where σP denotes the symbol of the Helmholtz projection defined in (3.7). We
fix ϕ0 ∈ (0, π/2). By Theorem 3.6 we may choose λ0 > 0 such that ASCE + λ0
generates a bounded holomorphic C0-semigroup on L2

σ(G). Due to this Theorem
and Lemma 3.1 we therefore have that the symbol of the resolvent satisfies

‖λk/2(iξ′)α∂ℓn(λ+ σASCE
(ξ′) + λ0)

−1‖L (X2) ≤ Cϕ0 (3.28)

for all ξ′ ∈ R
2\{0}, all λ ∈ Σπ−ϕ0 , and all α ∈ N

2
0, k, ℓ ∈ N0 such that k+ |α|+ℓ = 2.

Now pick ξ′0 ∈ R
2 \ {0} and λ ∈ Σπ−ϕ0 . By the resolvent identity we obtain

‖(λ+ σASCE
(ξ′) + λ0)

−1 − (λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2)

= ‖(λ+ σASCE
(ξ′) + λ0)

−1(σASCE
(ξ′0)− σASCE

(ξ′))(λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2)

≤ C(λ)‖(σASCE
(ξ′0)− σASCE

(ξ′))(λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2).

We have

σASCE
(ξ′0)− σASCE

(ξ′)

= ν(|ξ′0|2 − |ξ′|2) + σP (ξ
′)(K(ξ′)−K(ξ′0)) + (σP (ξ

′)− σP (ξ
′
0))K(ξ′0). (3.29)

For the first term in (3.29) we deduce

‖ν(|ξ′0|2 − |ξ′|2)(λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2) ≤ C(ϕ0, λ)(|ξ′0|2 − |ξ′|2)
→ 0 (ξ′ → ξ′0).

In view of (3.10) and since

K(ξ′)−K(ξ′0) =
2∑

j=1

(UE)j((ξ′0)j − ξ′j),

we obtain for the second term in (3.29) that

‖σP (ξ′)(K(ξ′)−K(ξ′0))(λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2)

≤ C(ϕ0, λ)‖UE‖∞|ξ′0 − ξ′|
→ 0 (ξ′ → ξ′0).
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By (3.28) we also have

‖K(ξ′0)(λ+ σASCE
(ξ′0) + λ0)

−1‖L (X2) ≤ C(ϕ0, λ)‖UE‖∞.
Hence, by the continuity of σP , i.e. by virtue of (3.10), we conclude for the third
term in (3.29) that

‖(σP (ξ′)− σP (ξ
′
0))K(ξ′0)(λ+ σASCE

(ξ′0) + λ0)
−1‖L (X2)

≤ C(ϕ0, λ)‖UE‖∞‖(σP (ξ′)− σP (ξ
′
0))‖L (X2)

→ 0 (ξ′ → ξ′0).

So, we have proved that

(λ+ σASCE
(·) + λ0)

−1 ∈ C
(
R
2 \ {0}, L (X2)

)
(3.30)

for every λ ∈ Σπ−ϕ0 .
In order to establish this also for the symbol of the holomorphic semigroup

(exp(−t(ASCE + λ0)))t≥0 we employ the Dunford integral representation

exp(−t(ASCE + λ0)) =
1

2πi

∫

Γ
eλt(λ+ASCE + λ0)

−1dλ, t ≥ 0. (3.31)

Here Γ is the usual path Γ = Γ1 ∪ Γ2 ∪ Γ3 passed through in counterclockwise
direction, where

Γ1 = {reiθ : ∞ > r < δ},
Γ2 = {δeis : θ ≥ s ≥ −θ},
Γ3 = {re−iθ : δ < r <∞}

for some δ > 0 and θ ∈ (π/2, π − ϕ0). The unitarity of the Fourier transformation
on L2(R2, X2) implies that

F exp(−t(ASCE + λ0))F−1(ξ′) =
1

2πi

∫

Γ
eλt(λ+ σASCE

(ξ′) + λ0)
−1dλ

= exp(−t(σASCE
(ξ′) + λ0)). (3.32)

Again we fix ξ′0 ∈ R
2 \ {0}. Thanks to (3.32) we have that

exp(−t(σASCE
(ξ′) + λ0))− exp(−t(σASCE

(ξ′0) + λ0))

=
1

2πi

∫

Γ
eλt
[
(λ+ σASCE

(ξ′) + λ0)
−1 − (λ+ σASCE

(ξ′0) + λ0)
−1
]
dλ. (3.33)

In view of

‖eλt
[
(λ+ σASCE

(ξ′) + λ0)
−1 − (λ+ σASCE

(ξ′0) + λ0)
−1
]
‖L (X2) ≤ 2etReλCϕ0

|λ|
(3.34)

for λ ∈ Σπ−ϕ0 and ξ′ ∈ R
2 \ {0}), we see that on Γ the integrand above has an in-

tegrable majorant. Lebegue’s dominated convergence theorem then yields by virtue
of (3.30) that

‖ exp(−t(σASCE
(ξ′) + λ0))− exp(−t(σASCE

(ξ′0) + λ0))‖L (X2) → 0 (ξ′ → ξ′0)
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for every t ≥ 0. By virtue of

σTSCE
(t, ξ′)− σTSCE

(t, ξ′0)

= eλ0t
(
exp(−t(σASCE

(ξ′) + λ0))− exp(−t(σASCE
(ξ′0) + λ0))

)

this gives us

σTSCE
(t, ·) ∈ C(R2 \ {0}, L (X2))

for every t ≥ 0. Thus (i) is proved.
In order to see (ii) we again employ representation (3.33). First note that

‖eReλt‖L2((0,T )) =

(∫ T

0
e2tReλdt

)1/2

≤ C(T )√
Reλ

(λ ∈ Σπ−ϕ0).

In combination with (3.34) this gives us

‖eλ(·)
[
(λ+ σASCE

(ξ′) + λ0)
−1 − (λ+ σASCE

(ξ′0) + λ0)
−1
]
‖L (X2, L2((0,T ),X2))

≤ C(ϕ0, T )

|λ|
√
Reλ

(λ ∈ Σπ−ϕ0 , ξ
′ ∈ R

2 \ {0}). (3.35)

Also observe that on Γ1 and Γ3 it holds an estimate as

|λ| ≤ c(ϕ0, δ)Reλ (λ ∈ Γ1 ∪ Γ3).

By this fact the right hand side of (3.35) is integrable on Γ1∪Γ3. On the other hand,

1/|λ|
√
Reλ is obviously integrable on Γ2. Hence we conclude that the right hand side

of (3.35) defines an integrable majorant for the integrand in (3.33), now in the sense
of an L

(
X2, L

2((0, T ), X2)
)
-valued Bochner integral. Dominated convergence and

relation (3.30) then imply

‖ exp(−(·)(σASCE
(ξ′) + λ0))− exp(−(·)(σASCE

(ξ′0) + λ0))‖ → 0 (ξ′ → ξ′0),

where ‖ · ‖ here denotes the operator norm in L
(
X2, L

2((0, T ), X2)
)
. By the fact

that

‖σTSCE
(·, ξ′)− σTSCE

(·, ξ′0)‖
= ‖eλ0(·)

(
exp(−(·)(σASCE

(ξ′) + λ0))− exp(−(·)(σASCE
(ξ′0) + λ0))

)
‖

≤ eλ0T ‖ exp(−(·)(σASCE
(ξ′) + λ0))− exp(−(·)(σASCE

(ξ′0) + λ0))‖
→ 0 (ξ′ → ξ′0),

we finally arrive at (ii). Hence the proof is complete. �

The previous two results serve as the preparation for the following Theorem.
It includes our main result Theorem 1.1 on the linearized Ekman boundary layer
problem (3.24).
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Theorem 3.10. Let T ∈ (0,∞), d ∈ (0,∞], and as before we set X2 = L2(0, d)3.
Furthermore, let the convolution f ⋆ g be defined as in Lemma 2.16. Then the
holomorphic C0-semigroup TSCE(t) = e−tASCE , generated by the Stokes-Coriolis-
Ekman operator ASCE on FM0,σ(R

2, X2) according to Theorem 3.6, satisfies the
following uniform estimates: For η = U2

∞/8ν we have

(i) ‖TSCE(t)‖L (FM(X2)) ≤ eηt (t ≥ 0),

(ii) ‖∇TSCEu0‖L2((0,T ),FM(X2)) ≤
√

2/ν eηT ‖u0‖FM(X2),

(iii) ‖∇TSCE ⋆ f‖L2((0,T ),FM(X2)) ≤
√

2/ν eηT ‖f‖L1((0,T ),FM(X2))

for all u0 ∈ FM0,σ(R
2, X2) and all f ∈ L1((0, T ),FM0,σ(R

2, X2)). In particular, all
estimates are uniform in ω ∈ R.

Proof. Proposition 3.8(i) in combination with Lemma 3.1, Lemma 3.9(i), and (3.10)
implies

σTSCE
(t)σP ∈ BC

(
R
2 \ {0}, L (X2)

)

and (with (3.9) for p = 2) that

‖σTSCE
(t)σP ‖L∞(R2\{0},L (X2)) ≤ eηt (t ≥ 0).

Proposition 2.13 then yields (i).
From Proposition 3.8(ii) we infer that

∇TSCEP ∈ L
(
L2(R2, X2), L

2((0, T ), L2(R2, X2))
)

such that

‖∇TSCEP‖L (L2(R2,X2), L2((0,T ), L2(R2,X2))) ≤
√
2/ν eηT .

With H1 = H2 = X2, J = (0, T ), L = TSCEP , and M =
√
2/ν eηT we therefore see

that relation (ii) is obtained as a consequence of Lemma 2.15 if we can show that

σTSCE
σP ∈ C

(
R
2 \ {0}, L (X2, L

2((0, T ), X2))
)
.

But this follows from Lemma 3.9(ii) and (3.10).
Assertion (iii) is now obtained as a consequence of (ii) and Lemma 2.16. Indeed,

relation (ii) gives us

∇TSCE ∈ L
(
FM0,σ(R

2, X2), L
2((0, T ), FM0(R

2, X2))
)
,

and

‖∇TSCE‖ = ‖∇TSCE‖L (FM0,σ(R2,X2), L2((0,T ),FM0(R2,X2))) ≤
√
2/ν eηT .

Thus, with p = 2, X = FM0,σ(R
2, X2), Y = FM0(R

2, X2), and g = ∇TSCE ,
Lemma 2.16 yields

‖∇TSCE ⋆ f‖L2((0,T ),FM(X2)) ≤ ‖∇TSCE‖‖f‖L1((0,T ),FM(X2))

≤
√

2/ν eηT ‖f‖L1((0,T ),FM(X2))

for all f ∈ L1((0, T ),FM0,σ(R
2, X2)). Hence the theorem is proved. �
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4. The Ekman layer - uniform local nonlinear existence

Utilizing the results obtained in the previous section, particularly Theorem 3.10,
here we turn to the construction of a local-in-time solution to the full nonlinear
problem (1.1). In other words, we prove Theorem 1.2. We again emphasize the
explicitness of the dependence on the appearing parameters in the norm estimates,
in particular, the uniformness in ω.

Note that we will prove the corresponding result for the transformed system (1.4).
This will yield the assertion due to the equivalence of (1.1) and (1.4). To this end,
we fix a u0 ∈ FM0,σ(R

2, X2). Formally the solution u is given by the variation of
constant formula

u(t) = exp(−tASCE)u0 −
∫ t

0
exp(−(t− s)ASCE)P (u(s) · ∇)u(s)ds. (4.1)

Let Hu(t) denote the right hand side of (4.1). We expect the solution to belong to
the class

ET := BC((0, T ),FM0,σ(R
2, X2))

∩ L2((0, T ), FM1
0(R

2, X2))

∩ L2((0, T ), FM0(R
2, H1

0 (0, d)
3)).

For suitable M and T we shall now show that the nonlinear operator H is a con-
traction on the closed set

BT,M :=
{
u ∈ ET : ‖u‖T ≤M‖u0‖FM(X2)

}
,

where

‖u‖T := (2/ν)1/2‖u‖L∞((0,T ),FM(X2)) + ‖∇u‖L2((0,T ),FM(X2)).

In this connection the crucial point is a suitable estimate for the nonlinear term
(u · ∇)u. This will be proved in

Lemma 4.1. For given functions u, v ∈ ET we have that

‖(u · ∇)v‖L1((0,T ),FM(X2)) ≤
3(2ν)1/4

π
T 1/4‖u‖T ‖v‖T .

Proof. In the first step we are tempted to use

L∞(0, d) ·X2 →֒ X2 (4.2)

in order to obtain by Lemma 2.12(ii) that

FM(R2, L∞(0, d)) · FM(R2, X2) →֒ FM(R2, X2).

However, this argumentation is not possible by the simple fact that L∞(0, d) does not
enjoy the Radon-Nikodým property. So, we have to argue somewhat more carefully.
Applying Young’s inequality to the well-known interpolation inequality

‖f‖∞ ≤
√
2 ‖f‖1/22 ‖f ′‖1/22 (f ∈ H1

0 (0, d)),
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(for a proof apply the Hölder inequality to f2(x) =
∫ x
0 (f

2)′(t)dt, see e.g. [20, Sec-
tion 6.1]) we can achieve that

‖f‖∞ ≤
√
2

(
λ‖f‖2 +

1

λ
‖f ′‖2

)
=: ‖f‖λ (f ∈ H1

0 (0, d), λ > 0). (4.3)

For each λ > 0 the norm ‖ · ‖λ is equivalent to the standard norm of H1
0 (0, d).

Thus H1
0,λ(0, d) := (H1

0 (0, d), ‖ · ‖λ) is a Hilbert space and therefore it enjoys the

Radon-Nikodým property. Moreover, relations (4.2) and (4.3) show that

H1
0,λ(0, d) ·X2 →֒ X2.

Now, we can apply Lemma 2.12(ii) to the result

‖(u(t) · ∇)v(t)‖FM(X2)

≤ 1

2π

3∑

j=1

‖uj(t)‖FM(H1
0,λ(0,d))

‖∂jv(t)‖FM(X2)

≤ 3

π
√
2

(
λ‖u(t)‖FM(X2) +

1

λ
‖∇u(t)‖FM(X2)

)
‖∇v(t)‖FM(X2)

for all u, v ∈ ET , λ > 0, and t ∈ (0, T ). Integrating with respect to t and applying
the Hölder inequality implies

‖(u · ∇)v‖L1((0,T ),FM(X2))

≤ 3

π
√
2

(
λ‖u‖L∞((0,T ),FM(X2))

∫ T

0
‖∇v‖FM(X2)dt

+
1

λ

∫ T

0
‖∇u(t)‖FM(X2)‖∇v(t)‖FM(X2) dt

)

≤ 3

π
√
2

(
λT 1/2(ν/2)1/2‖u‖T ‖v‖T +

1

λ
‖u‖T ‖v‖T

)

for all λ > 0. Choosing λ = (Tν/2)−1/4 yields the assertion. �

Next, we show that H(BT,M ) ⊂ BT,M for suitable M,T > 0. In fact, by virtue of
Theorem 3.10(i), taking the FM(X2)-norm of Hu leads to

‖Hu(t)‖FM(X2) ≤ eηt‖u0‖FM(X2) +

∫ t

0
eη(t−s)‖(u(s) · ∇)u(s)‖FM(X2)ds

≤ eηT
(
‖u0‖FM(X2) + ‖(u · ∇)u‖L1((0,T ),FM(X2))

)
.

Taking the L2((0, T ),FM(X2))-norm of ∇Hu, we infer from Theorem 3.10(ii) and
(iii) that

‖∇Hu(t)‖L2((0,T ),FM(X2))

≤ ‖∇TSCEu0‖L2((0,T ),FM(X2)) + ‖∇TSCE ⋆ (u · ∇)u‖L2((0,T ),FM(X2))

≤
√
2/ν eηT

(
‖u0‖FM(X2) + ‖(u · ∇)u‖L1((0,T ),FM(X2))

)
.
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Summing up the above two inequalities yields

‖Hu‖T ≤ 2
√
2/ν eηT

(
‖u0‖FM(X2) + ‖(u · ∇)u‖L1((0,T ),FM(X2))

)
.

Thanks to Lemma 4.1 we can estimate the latter term to the result

‖Hu‖T ≤ 2
√
2/ν eηT

(
‖u0‖FM(X2) +

3(2ν)1/4

π
T 1/4‖u‖2T

)

≤ 2
√
2/ν eηT ‖u0‖FM(X2)

(
1 +

3(2ν)1/4

π
T 1/4M2‖u0‖FM(X2)

)
.

Thus, choosing M = 4
√
2/ν eη and T ≤ min

{
π4ν3

2 · 484e8η‖u0‖4FM(X2)

, 1

}
we achieve

that

‖Hu‖T ≤M‖u0‖FM(X2). (4.4)

The boundary condition Hu|∂R3
+
= 0 now follows from representation (4.1). In order

to see that H is also contractive we observe that

Hu−Hv =

∫ t

0
exp(−(t− s)ASCE)P [(u · ∇)(u− v) + ((u− v) · ∇)v] (s)ds.

Again by employing Theorem 3.10 and Lemma 4.1, completely analogous to the
calculation above we can obtain

‖Hu−Hv‖T ≤ 2
√
2/ν eηT

(
‖(u · ∇)(u− v)‖L1((0,T ),FM(X2))

+ ‖((u− v) · ∇)u‖L1((0,T ),FM(X2))

)

≤ 2
√
2/ν

3(2ν)1/4

π
T 1/4 eηT

(
‖u‖T ‖u− v‖T + ‖u− v‖T ‖u‖T

)

≤ 4
√
2/ν

3(2ν)1/4

π
T 1/4 eηTM‖u0‖FM(X2)‖u− v‖T .

Thus, choosing

T < T ∗ := min

{
π4ν3

2 · 484e8η‖u0‖4FM(X2)

, 1

}
,

we see that H is a contraction. The contraction mapping principle then yields the
existence of a unique fixed point of H in BT,M . Since according to estimate (4.4)
‖Hu‖T is bounded up to T = T ∗, the interval of existence extends to some T0 > T ∗.
This implies all the assertions of Theorem 1.2.
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