On stability for the Ekman boundary layer

Yoshikazu Giga*1 and Jürgen Saal**1,2

¹ First address

² Second address

We present a result on well-posedness and stability for the Ekman boundary layer problem in the space $FM(\mathbb{R}^2, L^2(\mathbb{R}_+))$, i.e., in the space of $L^2(\mathbb{R}_+)$ -valued Fourier transformed Radon measures. We obtain stability in all appearing parameters as time, angle velocity of rotation, viscosity, and layer thickness.

Copyright line will be provided by the publisher

1 Description and main result

The Ekman boundary layder problem is a meteorolocical model for the motion of a rotating fluid (atmosphere) inside a boundary layer, appearing in between a uniform geostrophic flow (wind) and a solid boundary (earth) at which the no slip condition applies. Mathematically this situation is described by the Navier-Stokes equations with Coriolis force

$$\begin{cases} \partial_t u - \nu \Delta u + (u, \nabla) u + 2\Omega e_3 \times u &= -\nabla p \quad \text{in } \mathbb{R}^3_+ \times (0, T), \\ \text{div } u &= 0 \quad \text{in } \mathbb{R}^3_+ \times (0, T), \\ u &= 0 \quad \text{on } \partial \mathbb{R}^3_+ \times (0, T), \\ u|_{t=0} &= u_0 \quad \text{in } \mathbb{R}^3_+. \end{cases}$$
(1)

Here the unknowns u and p denote velocity and pressure of the fluid respectively, whereas $e_3 = (0, 0, 1)$ and the parameters ν and Ω correspond to viscosity and angle velocity of the rotation around the x_3 -axis.

There is a famous stationary exact solution to (1) called Ekman spiral and which is given by the vector

$$\mathbf{U}^{E}(x_{3}) = U_{\infty} \left(1 - e^{-x_{3}/\delta} \cos(x_{3}/\delta), e^{-x_{3}/\delta} \sin(x_{3}/\delta), 0 \right)$$

Here $\delta = \sqrt{\nu/\Omega}$ denotes the layer thickness and U_{∞} the velocity of the geostrophic flow away from the boundary which is pointing in x_1 direction. The corresponding pressure to \mathbf{U}^E is given by $p^E(x_2) = -\Omega U_{\infty} x_2$. Remarkable pesistent stability of the Ekman spiral in atmosheric and oceanic boundary layers has been noticed in geophysical literature. We are interested in stability results in the parameters t, Ω, ν , and δ . In particular in the existence of solutions with norms uniformly bounded in Ω in spaces including functions nondecaying at infinity. Results of this type are essential in studies of statistical properties of turbulence, see e.g. [6, 7], and in the analysis of fast oscillating singular limits for system (1), see e.g. [5].

The observation that \mathbf{U}^E depends on the x_3 variable only, i.e., it has infinite energy, and that

$$\lim_{x_3 \to \infty} \mathbf{U}^E(x_3) \to (U_\infty, 0, 0)$$

leads to two natural requirements on a potential class \mathbb{E} of initial data:

- (i) The class \mathbb{E} should include functions nondecreasing at infinity in tangential direction.
- (ii) $u_0 \to (U_\infty, 0, 0)$ if $x_3 \to \infty$ in a certain sense.

A first result on well-posedness for system (1) is obtained in [4] for u_0 in the class

$$\mathbb{E} = \left\{ u \in \dot{B}^{0}_{\infty,1}(\mathbb{R}^{2}, L^{p}(\mathbb{R}_{+})^{3}) + \mathbf{U}^{E} : \operatorname{div} u = 0, \ u^{3}|_{\partial \mathbb{R}^{3}_{+}} = 0 \right\}, \quad p > 2$$

Here $\dot{B}^0_{\infty,1}(\mathbb{R}^2, L^p(\mathbb{R}_+)^3)$ stands for the $L^p(\mathbb{R}_+)^3$ -valued version of the standard homogeneous Besov space $\dot{B}^0_{\infty,1}(\mathbb{R}^2, \mathbb{C})$. Note that the space $\dot{B}^0_{\infty,1}(\mathbb{R}^2, L^p(\mathbb{R}_+)^3)$ contains $L^p(\mathbb{R}_+)^3$ -valued almost periodic functions. Thus, \mathbb{E} satisfies (i) and (ii).

However, it seems that this class is inappropriate for stability investigations. This relies essentially on the fact that the Poincaré-Riesz semigroup $(e^{-tB_{\Omega}})_{t>0}$ generated by the Coriolis operator $B_{\Omega}u := 2\Omega e_3 \times u$ proved to be unbounded in t and

** Second author footnote.

^{*} Corresponding author: e-mail: x.y@xxx.yyy.zz, Phone: +00 999 999 999, Fax: +00 999 999 999

 Ω in the space $L^p(\mathbb{R}^3)$, unless p = 2. The uniform boundedness in L^2 is a consequence of the fact that here a multiplier result as

$$\|\mathcal{F}^{-1}m\mathcal{F}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{3})^{3})} \le \|m\|_{L^{\infty}(\mathbb{R}^{3})^{3\times 3}}$$
(2)

for bounded $m : \mathbb{R}^3 \to \mathbb{C}^3$ is available by virtue of Placherel's theorem and since the symbol of the Poincaré-Riesz is bounded (and uniformly bounded in t and Ω). Here $\mathcal{L}(X)$ denotes the class of all bounded operators on a Banach space X, and \mathcal{F} and \mathcal{F}^{-1} the Fourier transform and its inverse respectively. Hence, in order to obtain results on stability, besides the natural requirements (i) and (ii), a potential class of initial data should also admit a multiplier result as (2). A suitable class satisfying these requirements and which is still large enough is the class

$$\mathbb{E} = \mathrm{FM}_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+)) + \mathbf{U}^E,$$

where

$$\mathrm{FM}_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+)) = \left\{ \mathcal{F}u: \ u \in \mathrm{M}(\mathbb{R}^2, L^2(\mathbb{R}_+)^3), \ |u|(\{0\}) = 0, \ \mathrm{div} \ \mathcal{F}u = 0, \ \mathcal{F}u^3|_{\partial \mathbb{R}^3_+} = 0 \right\}$$

equipped with the norm $\|\mathcal{F}u\|_{\mathrm{FM}(X)} := \|u\|_{\mathrm{M}(X)} := |u|(\mathbb{R}^3)$. Here $\mathrm{M}(\mathbb{R}^3, X)$ denotes the space of finite X-valued Radon measures and $|u|(\mathcal{O}) := \sup \{\sum_{A \in \Pi} \|u(A)\|_X : \Pi$ finite partition of $\mathcal{O}\}$ the total variation measure of an open set $\mathcal{O} \subseteq \mathbb{R}^2$. Typical examples important for our purposes and included in the space $\mathrm{FM}_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+))$ are given by almost periodic functions as

$$u_0(x) := \sum_{j=1}^{\infty} a_j e^{i\lambda_j \cdot x}, \quad x \in \mathbb{R}^2, \ \lambda_j \neq 0, \ a_j \in L^2(\mathbb{R}_+)^3, \ \sum_{j=1}^{\infty} \|a_j\|_2 < \infty.$$

The significance of the space $\operatorname{FM}_{0,\sigma}(\mathbb{R}^3, \mathbb{C})$ for the Navier-Stokes equations with rotation in the whole space \mathbb{R}^3 was already pointed out in [2] and [3]. In [2] a local-in-time existence result is proved with an existence interval independent of Ω . In [3] global-in-time solvability and exponential stability is derived for initial data $u_0 \in \operatorname{FM}_{0,\sigma}(\mathbb{R}^3, \mathbb{C})$ such that $\operatorname{supp} \mathcal{F} u_0$ is contained in a sum-closed frequency set. Moreover, the required smallness condition is explicitly given in terms of the Reynolds number and all the results are independent of Ω . Consequently, we have stability in all appearing parameters.

Adopting the ideas from [2] and [3] we can prove a corresponding result for the Ekman boundary layer problem, i.e., for system (1). Our main result reads as follows.

Theorem 1.1 Let $\nu, \delta > 0$ and $\Omega \in \mathbb{R}$. For each $u_0 \in FM_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+)) + \mathbf{U}^E$ there exists a $T_0 \ge C ||u_0||_{FM(L^2)}^2$ with C > 0 independent of Ω and a unique classical solution $u \in C([0, T_0], FM_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+))) + \mathbf{U}^E$ of system (1).

The proof is based on a generator result independent of Ω for the linearized Stokes equations (system (1) without the term $(u, \nabla)u$). The essential ingredient in deriving the generator result, in turn, is a multiplier result on the space of Fourier transformed Radon measures $FM_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+))$ corresponding to (2). More precisely, we can prove the estimate

$$\|\mathcal{F}^{-1}m\mathcal{F}\|_{\mathcal{L}(\mathrm{FM}_{0,\sigma}(\mathbb{R}^2, L^2(\mathbb{R}_+)))} \le \|m\|_{L^{\infty}(\mathbb{R}^2, \mathcal{L}(L^2(\mathbb{R}_+)))^{3\times 3}}$$

for $m \in [C(\mathbb{R}^2 \setminus \{0\}, \mathcal{L}(L^2(\mathbb{R}_+))) \cap L^{\infty}(\mathbb{R}^2, \mathcal{L}(L^2(\mathbb{R}_+)))]^{3 \times 3}$. The contraction mapping principle applied on the mild formulation of (1) then yields Theorem 1.1.

References

- [1] A. Babin, A. Mahalov and B. Nicolaenko, Indiana Univ. Math. J., 48, 3, 1133-1176, (1999).
- [2] Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Methods and Applications of Analysis, to appear.
- [3] Y. Giga, K. Inui, A. Mahalov, and J. Saal, Adv. ..., to appear.
- [4] Y. Giga, K. Inui, S. Matsui, A. Mahalov, and J. Saal, Arch. Ration. Mech. Anal., to appear.
- [5] A. Mahalov and B. Nicolaenko, Russ. Math. Surveys, 58, 2, 287-318, (2003).
- [6] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Volume 1 and 2 (MIT Press, Cambridge, Mass., 1971).
- [7] M.J. Vishik and A.V. Fursikov, Mathematical Problems of Statistical Hydromechanics (Kluwer Academic Publisher, Dordrecht, Netherlands, Boston, 1988).