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On stability for the Ekman boundary layer
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We present a result on well-posedness and stabilitiy for the Ekman aoulayer problem in the spad&(R?, L? (R )),
i.e., in the space of* (R )-valued Fourier transformed Radon measures. We obtain stability in@dbaing parameters as
time, angle velocity of rotation, viscosity, and layer thickness.
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1 Description and main result

The Ekman boundary layder problem is a meteorolocical mémtethe motion of a rotating fluid (atmosphere) inside a
boundary layer, appearing in between a uniform geostrofidic (wind) and a solid boundary (earth) at which the no slip
condition applies. Mathematically this situation is désed by the Navier-Stokes equations with Coriolis force

Ou—vAu+ (u, VIu+2Qes xu = —Vp in R x (0,7),
: _ i 3
divu = 0 in R 3>< (0,7), (1)
u = 0 on OR:} x (0,7,
U‘t:O = U in Ri.

Here the unknowns andp denote velocity and pressure of the fluid respectively, easr; = (0,0, 1) and the parameters
v andf2 correspond to viscosity and angle velocity of the rotatimyuad thers-axis.
There is a famous stationary exact solution to (1) called &kspiral and which is given by the vector

UZ(23) = Uy (1 — e7 /% cos(x3/8), e 73/0 sin(x3/5),0)

Hered = /v/€ denotes the layer thickness afid, the velocity of the geostrophic flow away from the boundarychtis
pointing inx; direction. The corresponding pressurdié is given byp” (z2) = —QU,.z2. Remarkable pesistent stability
of the Ekman spiral in atmosheric and oceanic boundary $dyas been noticed in geophysical literature. We are intstes
in stability results in the parameters), v, andd. In particular in the existence of solutions with norms anifily bounded in
Q in spaces including functions nondecaying at infinity. Rissof this type are essential in studies of statistical prtps of
turbulence, see e.g. [6, 7], and in the analysis of fastlasiciy singular limits for system (1), see e.g. [5].

The observation thal ¥ depends on the; variable only, i.e., it has infinite energy, and that

T3—00
leads to two natural requirements on a potential dias$initial data:
(i) The clas<E should include functions nondecreasing at infinity in tarige direction.
(i) up — (U, 0,0) if 23 — oo in a certain sense.

A first result on well-posedness for system (1) is obtaindd]ifior v in the class
E= {u € 3&71(R2,Lp(R+)3) +UF: divu =0, u3|5R1 = O} . p>2.

Here BY, | (R?, LP(R,.)%) stands for thel? (R, )3-valued version of the standard homogeneous Besov sBacg(R?, C).

Note that the spacBY, ; (R?, LP(R.)?) containsL? (R, )*-valued almost periodic functions. Thu satisfies (i) and (ii).
However, it seems that this class is inappropriate for Btalnvestigations. This relies essentially on the facttthe
Poincaé-Riesz semigrouf:~'5),- generated by the Coriolis operatBr,u := 2{e3 x u proved to be unbounded trand
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Q in the spacd.?(R?), unlesg = 2. The uniform boundedness ii¥ is a consequence of the fact that here a multiplier result
as

|‘f_1mf||£(L2(R3)3) < HmHLac(]RS)Sx.‘S (2)

for boundedn : R? — C3 is available by virtue of Placherel’s theorem and since yimet®l of the Poinca#-Riesz is bounded
(and uniformly bounded im and(2). Here £(X) denotes the class of all bounded operators on a Banach 3paaed 7
andF~! the Fourier transform and its inverse respectively. Heircerder to obtain results on stability, besides the natural
requirements (i) and (ii), a potential class of initial dakeuld also admit a multiplier result as (2). A suitable slsatisfying
these requirements and which is still large enough is thescla

E = FMy, (R? L*(Ry)) + UZ,
where
FMy,,(R? L*(Ry)) = { Fu:ue MR LA(R4)%), [ul({0}) =0, divFu =0, Fu’|pps = 0}

equipped with the normjFullpw(x) == [lullmx) = |u[(R?). HereM(R?, X) denotes the space of finifé-valued Radon
measures an|(O) := sup {3 4oy lu(A)| x : IIfinite partition of O} the total variation measure of an open@eg R?.
Typical examples important for our purposes and includethenspacé™M, ., (R?, L*(R.)) are given by almost periodic
functions as

(oo}

ug(z) := Zajei)‘j'x, r€R? N\ #0, a; € L*(Ry)?, Z llajllz < oo.
j=1

j=1

The significance of the spa&d, , (R, C) for the Navier-Stokes equations with rotation in the whalaceR? was already

pointed out in [2] and [3]. In [2] a local-in-time existencesult is proved with an existence interval independeri2.oin

[3] global-in-time solvability and exponential stability derived for initial data., € FM ,(R*, C) such thatsupp Fuo

is contained in a sum-closed frequency set. Moreover, theired smallness condition is explicitly given in terms bét

Reynolds number and all the results are independefit @onsequently, we have stability in all appearing paramsete
Adopting the ideas from [2] and [3] we can prove a correspogadesult for the Ekman boundary layer problem, i.e., for

system (1). Our main result reads as follows.

Theorem 1.1 Letr,d > 0 and Q € R. For eachug € FMo,(R?, L*(R+)) + U thereexistsa Ty > C'uo [y With
C > 0 independent of 2 and a unique classical solution u € C([0, Tp], FMy »(R?, L2(R}.))) + U¥ of system (1).

The proof is based on a generator result independefi fufr the linearized Stokes equations (system (1) without the
term (u, V)u). The essential ingredient in deriving the generator tesuturn, is a multiplier result on the space of Fourier
transformed Radon measutesl , (R?, L?(R. )) corresponding to (2). More precisely, we can prove the etém

IF = mF || cemo . 82,2k, ) < 7l 2 222 4 )35

for m € [C(R?\ {0}, L(L*(Ry))) N L°°(R27£(L2(R+)))]3X3. The contraction mapping principle applied on the mild
formulation of (1) then yields Theorem 1.1.
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