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On stability for the Ekman boundary layer
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We present a result on well-posedness and stabilitiy for the Ekman boundary layer problem in the spaceFM(R2, L2(R+)),
i.e., in the space ofL2(R+)-valued Fourier transformed Radon measures. We obtain stability in all appearing parameters as
time, angle velocity of rotation, viscosity, and layer thickness.
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1 Description and main result

The Ekman boundary layder problem is a meteorolocical modelfor the motion of a rotating fluid (atmosphere) inside a
boundary layer, appearing in between a uniform geostrophicflow (wind) and a solid boundary (earth) at which the no slip
condition applies. Mathematically this situation is described by the Navier-Stokes equations with Coriolis force















∂tu − ν∆u + (u,∇)u + 2Ωe3 × u = −∇p in R
3
+ × (0, T ),

div u = 0 in R
3
+ × (0, T ),

u = 0 on ∂R
3
+ × (0, T ),

u|t=0 = u0 in R
3
+.

(1)

Here the unknownsu andp denote velocity and pressure of the fluid respectively, wherease3 = (0, 0, 1) and the parameters
ν andΩ correspond to viscosity and angle velocity of the rotation around thex3-axis.

There is a famous stationary exact solution to (1) called Ekman spiral and which is given by the vector

U
E(x3) = U∞

(

1 − e−x3/δ cos(x3/δ), e−x3/δ sin(x3/δ), 0
)

Hereδ =
√

ν/Ω denotes the layer thickness andU∞ the velocity of the geostrophic flow away from the boundary which is
pointing inx1 direction. The corresponding pressure toU

E is given bypE(x2) = −ΩU∞x2. Remarkable pesistent stability
of the Ekman spiral in atmosheric and oceanic boundary layers has been noticed in geophysical literature. We are interested
in stability results in the parameterst,Ω, ν, andδ. In particular in the existence of solutions with norms uniformly bounded in
Ω in spaces including functions nondecaying at infinity. Results of this type are essential in studies of statistical properties of
turbulence, see e.g. [6, 7], and in the analysis of fast oscillating singular limits for system (1), see e.g. [5].

The observation thatUE depends on thex3 variable only, i.e., it has infinite energy, and that

lim
x3→∞

U
E(x3) → (U∞, 0, 0)

leads to two natural requirements on a potential classE of initial data:

(i) The classE should include functions nondecreasing at infinity in tangential direction.

(ii) u0 → (U∞, 0, 0) if x3 → ∞ in a certain sense.

A first result on well-posedness for system (1) is obtained in[4] for u0 in the class

E =
{

u ∈ Ḃ0
∞,1(R

2, Lp(R+)3) + U
E : div u = 0, u3|∂R

3
+

= 0
}

, p > 2.

HereḂ0
∞,1(R

2, Lp(R+)3) stands for theLp(R+)3-valued version of the standard homogeneous Besov spaceḂ0
∞,1(R

2, C).

Note that the spacėB0
∞,1(R

2, Lp(R+)3) containsLp(R+)3-valued almost periodic functions. Thus,E satisfies (i) and (ii).
However, it seems that this class is inappropriate for stability investigations. This relies essentially on the fact that the

Poincaŕe-Riesz semigroup(e−tBΩ)t≥0 generated by the Coriolis operatorBΩu := 2Ωe3 ×u proved to be unbounded int and
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Ω in the spaceLp(R3), unlessp = 2. The uniform boundedness inL2 is a consequence of the fact that here a multiplier result
as

‖F−1mF‖L(L2(R3)3) ≤ ‖m‖L∞(R3)3×3 (2)

for boundedm : R
3 → C

3 is available by virtue of Placherel’s theorem and since the symbol of the Poincaŕe-Riesz is bounded
(and uniformly bounded int andΩ). HereL(X) denotes the class of all bounded operators on a Banach spaceX, andF
andF−1 the Fourier transform and its inverse respectively. Hence,in order to obtain results on stability, besides the natural
requirements (i) and (ii), a potential class of initial datashould also admit a multiplier result as (2). A suitable class satisfying
these requirements and which is still large enough is the class

E = FM0,σ(R2, L2(R+)) + U
E ,

where

FM0,σ(R2, L2(R+)) =
{

Fu : u ∈ M(R2, L2(R+)3), |u|({0}) = 0, divFu = 0, Fu3|∂R
3
+

= 0
}

equipped with the norm‖Fu‖FM(X) := ‖u‖M(X) := |u|(R3). HereM(R3,X) denotes the space of finiteX-valued Radon
measures and|u|(O) := sup

{
∑

A∈Π ‖u(A)‖X : Π finite partition ofO
}

the total variation measure of an open setO ⊆ R
2.

Typical examples important for our purposes and included inthe spaceFM0,σ(R2, L2(R+)) are given by almost periodic
functions as

u0(x) :=

∞
∑

j=1

aje
iλj ·x, x ∈ R

2, λj 6= 0, aj ∈ L2(R+)3,

∞
∑

j=1

‖aj‖2 < ∞.

The significance of the spaceFM0,σ(R3, C) for the Navier-Stokes equations with rotation in the whole spaceR
3 was already

pointed out in [2] and [3]. In [2] a local-in-time existence result is proved with an existence interval independent ofΩ. In
[3] global-in-time solvability and exponential stabilityis derived for initial datau0 ∈ FM0,σ(R3, C) such thatsuppFu0

is contained in a sum-closed frequency set. Moreover, the required smallness condition is explicitly given in terms of the
Reynolds number and all the results are independent ofΩ. Consequently, we have stability in all appearing parameters.

Adopting the ideas from [2] and [3] we can prove a corresponding result for the Ekman boundary layer problem, i.e., for
system (1). Our main result reads as follows.

Theorem 1.1 Let ν, δ > 0 and Ω ∈ R. For each u0 ∈ FM0,σ(R2, L2(R+)) + U
E there exists a T0 ≥ C‖u0‖

2
FM(L2) with

C > 0 independent of Ω and a unique classical solution u ∈ C([0, T0],FM0,σ(R2, L2(R+))) + U
E of system (1).

The proof is based on a generator result independent ofΩ for the linearized Stokes equations (system (1) without the
term(u,∇)u). The essential ingredient in deriving the generator result, in turn, is a multiplier result on the space of Fourier
transformed Radon measuresFM0,σ(R2, L2(R+)) corresponding to (2). More precisely, we can prove the estimate

‖F−1mF‖L(FM0,σ(R2,L2(R+))) ≤ ‖m‖L∞(R2,L(L2(R+)))3×3

for m ∈
[

C(R2 \ {0},L(L2(R+))) ∩ L∞(R2,L(L2(R+)))
]3×3

. The contraction mapping principle applied on the mild
formulation of (1) then yields Theorem 1.1.
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