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Abstract
We establish a global existence result for the rotating Navier-Stokes equations with

nondecaying initial data in a critical space which includes a large class of almost periodic
functions. The scaling invariant function space we introduce is given as the divergence of the
space of 3× 3 fields of Fourier transformed finite Radon measures. The smallness condition
on initial data for global existence is explicitly given in terms of the Reynolds number. The
condition is independent of the size of the angular velocity of rotation.
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1 Introduction and main results

We study the incompressible rotating Navier-Stokes equations on Rn × (0,∞):
∂tu − ν∆u + ΩJu + (u · ∇)u = −∇p in Rn × (0,∞),

div u = 0 in Rn × (0,∞),
u|t=0 = u0 in Rn,

(1.1)

where u(x, t) is the velocity vector field and p is the pressure. Here ν is the kinematic
viscosity coefficient. For the moment we explain the three dimensional case (n = 3),
which is the main focus of this paper. In R3, the skew-symmetric term Ju = Ωe3×u
represents the Coriolis force, where Ω denotes twice the angular velocity of rotation.
The coordinate system is chosen in a way such that the rotation is around the axis
e3 = (0, 0, 1)T .

The main objectives of the present work are: (i) to prove the existence of global
solutions for system (1.1) for a class of spatially nondecaying initial data which
includes a large class of almost periodic funtions; (ii) to quantify the smallness
condition and to prove that the bound for the solution is independent of the angular
velocity Ω. This has some relevance for several reasons: existence of solutions with
norms uniformly bounded in Ω in spaces including functions nondecaying at infinity
are essential in studies of statistical properties of turbulence, see e.g. [8], [17, 18],
and in the analysis of fast oscillating singular limits for system (1.1), see [1], [2] and
[15].

In our previous work [10] and [12], we studied the system (1.1) in the new func-
tion space FM0(R3, C3), which represents the space of finite Fourier transformed
Radon measures with no point mass at the origin. Note that this space is differ-
ent from the space of pseudo measures which is the space of Fourier transformed
bounded functions as introduced by [16] to their study of the Navier-Stokes equa-
tions; see also [3].

In [10] local-in-time existence is proved whereas in [12] we show global existence
for small Reynolds number under the additional condition that the Fourier transform
of the initial data is supported in a sum-closed frequency set. The crucial point is
that all results and conditions in [10] and [12] are uniformly in the Coriolis parameter
Ω and that the space contains nondecaying functions including a class of almost
periodic functions.

In the present paper we will prove uniform global in time solvability of (1.1) for
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small initial data in the critical space

FM−1
0 (R3, C3) := div FM0(R3, C3)3.

The fact that we work with a space of Fourier transformed quantities makes our
approach elementary and clear, see also [10] and [12]. In fact, as an interesting
outcome, similarly to [12], we will obtain an explicit representation of the smallness
condition in terms of the Reynolds number, see Theorem 1.1. We also emphasize
that all results given here include the case Ω = 0, i.e., the standard Navier-Stokes
equations. The results presented in this paper improve the results given in [12]
in the sense that we can remove the additional condition on the support of the
Fourier transformed initial data. This has the advantage that our new results hold
for arbitrary almost periodic functions as initial data, whereas the results in [12]
merely admit a restricted class of almost periodic functions.

Our paper provides the first global result for the rotating Navier-Stokes equations
with general small initial data which are spatially nondecaying. Even without the
Coriolis term the Navier-Stokes equations with spatially nondecaying initial data
is less studied in the literature compared with the case of decaying initial data.
There is a nice review paper [3] and a introductory book [5] on well-posedness for
decaying initial data for the Navier-Stokes equations without the Coriolis therm i.e.
Ω = 0. For two dimensional case global existence for arbitrary bounded initial data
is known [13] (for local existence, see e.g. [9]). A celebrated result for the standard
Navier-Stokes equations (Ω = 0) in the critical space BMO−1(Rn) is obtained in
[14]. This is the only global existence result for small initial data which may not
decay at the spatial infinity except periodic initial data.

As BMO−1(Rn), the space FM−1(Rn) is also a critical space for the Navier-
Stokes equations, i.e., it is scaling invariant under the transformation

u(x, t) 7→ αu(αx, α2t),

with the corresponding scaling for the pressure. Furthermore, also in the space
FM−1(Rn) the initial value problem is borderline ill-posed in the sense that the
proof of local well-posedness by the usual fixed point argument is supposed to fail
in FM−1−ε(Rn) for ε > 0. By the fact that

FM(Rn) ⊆ BUC(Rn) ⊆ BMO(Rn)

it follows that (see [14] and Lemma 2.9(i))

FM−1(Rn) = div FM(Rn)n ⊆ div BMO(Rn)n = BMO−1(Rn),

i.e., our class is contained in BMO−1(Rn). However, we emphasize that the main
intention of this paper is not to find the largest class of well-posedness, but to derive
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global well-posedness uniformly in the Coriolis parameter Ω without the restrictive
assumption on the initial data imposed in [12]. Observe that in BMO−1(Rn) the
uniformness in Ω is expected to fail, by the fact that a multiplier result as Proposi-
tion 2.5 is not available in that space. In BMO−1(Rn) polynomial growth in Ω for the
Poincaré-Riesz semigroup eΩPJPt arising from the Coriolis term is expected. This
behavior is also expected for other known spaces containing nondecaying functions
as the homogeneous Besov space Ḃ−1

∞,0(Rn), whereas in the space of uniformly con-
tinuous functions BUC−1(Rn), for instance, the Poincaré-Riesz semigroup doesn’t
even exist. We note that the authors of [7] developed new techniques allowing to
prove growth in Ω of the Poincaré-Riesz semigroup in certain functional spaces.

The global existence for large |Ω| is known for periodic initial data ([1], [2]) and
for bounded cylindrical domains with slip boundary conditions on vertical plates
([12]). The global existence for small initial data whose smallness is uniform in
Ω is known for periodic initial data ([1], [2]). For results on global well-posedness
for (1.1) the reader is referred to [4]. In this paper we present the first available
global existence results for small real-valued almost periodic initial data. In [11] we
considered Navier-Stokes equation with complex almost periodic initial data but no
real-valued data was allowed.

We formulate our main results in the n-dimensional setting, i.e., J ∈ Rn×n is a
suitable skew-symmetric matrix (see (2.1)) such that Ju = e3 × u, if n = 3. We
consider (1.1) in the space

FM0,σ(Rn, Cn) := {û : u ∈ M(Rn, Cn), div u = 0, u({0}) = 0} .

Here M(Rn, Cn) denotes the space of finite Cn-valued Radon measures (see the next
section for a precise definition), which can be regarded as the dual space of

C∞(Rn, Cn) =
{

u ∈ C(Rn, Cn) : lim
R→∞

‖u‖L∞(Rn\BR) = 0
}

.

Here BR denotes the ball with center 0 and radius R and Rn and Cn are always
equipped with the Euclidean norm Initial data will be an element of

FM−1
0,σ(Rn, Cn) := div FM0,σ(Rn, Cn)n.

The spaces FM0,σ(Rn, Cn) and FM−1
0,σ(Rn, Cn) are equipped with their canonical

norms. Our main results read as follows.

Theorem 1.1. (unique existence of global mild solution) Let ν > 0, Ω ∈ R,
and u0 ∈ FM−1

0,σ(Rn, Cn). Then, if

‖u0‖FM−1
0,σ

<
ν(2π)n/2

2
√

n
, (1.2)
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there exists a unique global mild solution u ∈ L2 ((0,∞), FM0,σ(Rn, Cn)) of the
Navier-Stokes equations (1.1).

Note that the space FM−1
0,σ(Rn, Cn) contains (complex-valued or pure real-valued)

almost periodic functions of the form

u0(x) =
∞∑

j=1

aje
iλj ·x, x ∈ Rn, aj ∈ Cn, λj ∈ Rn \ {0},

whenever
∑∞

j=1(maxi |aji|)/(mini |λji|) < ∞ and div u0 = 0.

Remark 1.2. The smallness condition (1.2) is equivalent to Re < (2π)n/2

2
√

n
, where

Re := ||u0||FM−1
0,σ

/ν is the Reynolds number. We note that the norm ||u0||FM−1
0,σ

has
the physical units of (velocity x length).

For the obtained mild solution we have

Theorem 1.3. (regularity of mild solutions) Assume that u0 ∈ FM−1
0,σ(Rn, Cn)

satisfies (1.2). Let u ∈ L2 ((0,∞),FM0,σ(Rn, Cn)) be the solution obtained in the
above theorem. In addition, assume that u0 ∈ FM0,σ(Rn, Cn). Then, we have
(1) ∇u(t) ∈ L2 ([0, T ],FM(Rn, Cn)) (0 < T ≤ ∞), and

‖∇u‖L2((0,T ),FM) ≤
1√
2ν

‖u0‖FM (0 < T ≤ ∞). (1.3)

(2) Moreover, we have

t1/2∇u(t) ∈ C ([0, T0], FM(Rn, Cn)) for 0 < T0(< ∞), (1.4)
lim
t→0

t1/2||∇u(t)||FM = 0. (1.5)

In the case n = 3, we also have

Theorem 1.4. (local classical solution) Assume that u0 ∈ FM−1
0,σ(R3, R3) ∩

FM0,σ(R3, R3) satisfies (1.2). Let u(t) be the mild solution obtained in the above
theorems in the case n = 3. If we set

∂ip(t) = ∂i

3∑
j,k=1

RjRku
juk(t)+ΩRi(R2u

1−R1u
2)(t) for t > 0, i = 1, 2, 3. (1.6)

then, the pair (u,∇p) solves (1.1) for R3 × (0, T0) with any T0 < ∞.
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2 Radon measures and key estimates

We introduce some notations. By L (X) we denote the space of all bounded opera-
tors on the Banach space X. As mentioned before, the spaces Rn and Cn are always
equipped with the Euclidean norm. For G ⊆ Rn, C(G,X) denotes the space of con-
tinuous functions and BC(G, X) the space of all bounded and continuous functions
on G with values in X. In this note we denote the Fourier transform by

û(ξ) = Fu(ξ) :=
1

(2π)n/2

∫
Rn

e−iξ·xu(x)dx, u ∈ S(Rn),

where S(Rn) denotes the Schwartz space of rapidly decreasing functions. Its exten-
sion on S ′(Rn) is defined as usual.

We recall briefly some properties of the spaces FM and FM0 from [10] and [12].
For a comprehensive introduction to vector measures we refer to [6].

Definition 2.1. Let A be a σ-algebra over Rn. The set map µ : A → Cn is called
a finite Cn-valued (or more general vector valued) Radon measure, if

(i) µ is a Cn-valued measure, i.e., it is σ-additive and µ(∅) = 0,

(ii) the variation of µ given by

|µ|(O) := sup

 ∑
E∈Π(O)

|µ(E)| : Π(O) ⊆ A finite decomposition of O


for O ∈ A is a finite Radon measure. (Note that Π(O) ⊆ A is a decomposition
of O ∈ A , if A ∩ B = ∅ for all A,B ∈ Π with A 6= B and

∪
A∈Π A = O.)

We denote by M(Rn, Cn) the space of all finite Cn-valued Radon measures.

Recall that η : A → [0,∞) is a finite Radon measure, if η(Rn) < ∞ and if it
is Borel regular, that is, if B ⊆ A and if for each A ⊆ Rn there exists a B ∈ B
such that η∗(A) = η∗(B), where B denotes the Borel σ-algebra over Rn and η∗

denotes the outer measure associated to η. Also observe that we indentify η by
its outer measure, so that η is complete in the sense that all subsets B of a set
A ∈ A satisfying η(A) = 0 belong to A . By the Riesz representation theorem it is
well-known that M(Rn, C) can be regarded as the dual space of

C∞(Rn, C) =
{

u ∈ C(Rn, C) : lim
R→∞

‖u‖L∞(Rn\BR) = 0
}

,

where BR denotes the ball with center 0 and radius R (see [6]).
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Remark 2.2. (a) It can be shown that µ is a finite Cn-valued measure if and only
if the variation |µ| is a finite nonnegative measure.
(b) Equipped with the norm ‖µ‖M := ‖µ‖M(Rn,Cn) := |µ|(Rn), M(Rn, Cn) is a
Banach space.

Proof. (a) See [6]. (b) The space M(Rn, Cn) is isomorphic to M(Rn, C)n. ¤

Since Cn has the Radon-Nikodým property, each η-continuous µ ∈ M(Rn, Cn)
has a Radon-Nikodým derivative with respect to a nonnegative Radon measure η.
To be precise, for each µ ∈ M(Rn, Cn) and η ∈ M(Rn, [0,∞)) such that η(O) = 0
implies µ(O) = 0 there exists a g ∈ L1(Rn, η, Cn) such that

µ(O) =
∫
O

gdη, O ∈ B.

In particular, we have the representation

µ(O) =
∫
O

νµd|µ|, O ∈ B,

with a ν ∈ L1(Rn, |µ|) such that |νµ|(x) = 1 (x ∈ Rn) (see [6]). Since each µ ∈
M(Rn, Cn) is defined on B, the expression

µbψ(O) :=
∫
O

ψνµd|µ|, O ∈ B,

is well-defined for every ψ ∈ BC(Rn,L (Cn)). The proof of the following properties
is straightforward.

Lemma 2.3. Let µ ∈ M(Rn, Cn) and ψ, φ ∈ BC(Rn, L (Cn)) be given. Then we
have

(i) |µbψ| ≤ |µ|b|ψ|,
(ii) µbψ ∈ M(Rn, Cn),

(iii) (µbψ)bφ = µb(φψ).

In our applications to the Navier-Stokes equations we will frequently have ψ =
σP , where σP (ξ) = I − ξξT /|ξ|2 denotes the symbol of the Helmholtz projection on
Rn. However, σP is discontinuous at ξ = 0. This motivates the introduction of

M0(Rn, Cn) := {µ ∈ M(Rn, Cn) : µ({0}) = 0},

which is a closed subspace of M(Rn, Cn). It is this space which will be used in our
applications in the next section. Next, note that by the identification

f 7→ λbf, f ∈ L1(Rn, Cn),
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where λ denotes the Lebesgue measure on Rn, we see that every f ∈ L1(Rn, Cn)
has a unique representant in M(Rn, Cn). On the other hand, the identification

µ 7→ Tµ, Tµf := µbf, f ∈ S(Rn, Cn),

where S(Rn, Cn) denotes the Schwartz space of rapidly decreasing functions, shows
that each µ ∈ M(Rn, Cn) can be regarded as a tempered distribution. Altogether
we have

L1(Rn, Cn) ↪→ M0(Rn, Cn) ↪→ M(Rn, Cn) ↪→ S ′(Rn, Cn).

Thus, the Fourier transform on M(Rn, Cn) is well-defined and we have µ̂(ξ) =
µbϕξ(Rn) with ϕξ(x) = (2π)−n/2e−ix·ξ. This allows for the introduction of the
space

FM0(Rn, Cn) := {µ̂ : µ ∈ M0(Rn, Cn)},

which we equip with the canonical norm ‖u‖FM := ‖F−1u‖M. Observe that by def-
inition we have ‖Fu‖M = ‖F−1u‖M. The space FM(Rn, Cn) is defined accordingly.
Finally, we define the convolution of finite Radon measures as follows

∗ : M(Rn, C) × M(Rn, Cn) → M(Rn, Cn),

η ∗ µ(O) :=
∫

Rn

η(O − x)νµ(x)d|µ|(x), O ∈ B.

The following properties are straightforward consequences of the definitions.

Lemma 2.4. We have

(i) F(η ∗ µ) = (2π)n/2η̂ · µ̂, η ∈ M(Rn, C), µ ∈ M(Rn, Cn),

(ii) ‖uv‖FM(Rn,Cn) ≤ (2π)−n/2‖u‖FM(Rn,C)‖v‖FM(Rn,Cn),

(iii) FL1(Rn, Cn) ↪→ FM0(Rn, Cn) ↪→ Ḃ0
∞,1(Rn, Cn) ↪→ BUC(Rn, Cn)/Cn.

Here Ḃ0
∞,1(Rn, Cn) denotes the homogeneous Besov space.

The next result, given in [10], is essential for the uniformness of our results in
the Coriolis parameter Ω. It is obtained as a consequence of Lemma 2.3.

Proposition 2.5. Suppose that σ ∈ BC(Rn \ {0}, Cn×n). Then, we have

Op(σ) := F−1σF ∈ L (FM0(Rn, Cn)),
‖Op(σ)‖L (FM0(Rn,Cn)) = ‖σ‖L∞(Rn\{0},Cn×n).

If σ is also continuous at the origin, then Op(σ) ∈ L (FM(Rn, Cn)) with the corre-
sponding equality for the operator norm.
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Let σP (ξ) = I−ξξT /|ξ|2 be the symbol of the Helmholtz projection, where P (ξ)
is the symbol of the operator P (projection on divergence free vector fields in Rn).
Next, set S := PJP with

J =


0 −1 0 · · · 0
1 0 0

0 0 0
...

...
. . .

0 · · · 0

 . (2.1)

We call S the Poincaré-Riesz operator and denote its symbol by σS = σP JσP . Note
that for dimension n = 3 the solenoidal part of the Corolis force then can be repre-
sented as ΩPe3 × u = ΩSu. Observe that σP is orthogonal, σS is skew-symmetric,
and thus σ(etS) is unitary on Cn. The symbol of this operator is expressed in terms
of classical Riesz operators. We refer to [11] for additional information. As a con-
sequence of Proposition 2.5 we therefore obtain the following estimates (see [10,
Lemma 2.5, Lemma 2.9]).

Lemma 2.6. (i) The operators P , S, and etS are bounded on FM0(Rn, Cn). In
particular, we have

‖Pf‖FM ≤ ‖f‖FM (f ∈ FM0(Rn, Cn)),

‖etSf‖FM ≤ ‖f‖FM (t ∈ R, f ∈ FM0(Rn, Cn)).

(ii) The family (etν∆)t≥0 is a bounded holomorphic C0-semigroup of contractions
on FM0(Rn, Cn) and on FM(Rn, Cn), i.e.,

‖etν∆f‖FM ≤ ‖f‖FM (f ∈ FM(Rn, Cn), t > 0).

Next we consider the convolution of vector-valued functions and measure-valued
functions. Let T > 0, A be a σ-algebra, g : Rn × (0, T ) → C be a function, and

f : (0, T ) → M0(Rn, Cn), t 7→ f(t),

be a measure-valued function. If well-defined, we set

g ? f(t) =
∫ t

0
f(s)bg(t − s)ds, t ∈ (0, T ). (2.2)

Note that (2.2) later will play the role of the solution of a Cauchy problem given by
the variation of constant formula with g as the kernel of the solution operator.
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Lemma 2.7. For all f ∈ L1((0, T ), M0(Rn, Cn)) and g ∈ BC((Rn \ {0}) × (0, T ))
the convolution g ? f is well-defined and we have

‖g ? f‖L2((0,T ),M0) ≤ ‖g‖L∞(Rn,L2(0,T ))‖f‖L1((0,T ),M0) (0 < T ≤ ∞). (2.3)

Remark 2.8. At a first glance (2.3) might look like a Young type inequality. But,
observe that for later purposes it is essential that on the right hand side we take the
L∞(L2)-norm of g and not the L2(L∞)-norm as usual in Young’s inequality. The
fact that always || · ||L∞(Rn,L2(0,T )) ≤ || · ||L2((0,T ),L∞(Rn)) but the converse is not
true in general shows that (2.3) is sharper than Young’s inequality. Indeed, we will
see that (2.3) gives an estimate for singular integral operators, which is not possible
with the standard Young’s inequality.

Proof. Since g(s) ∈ BC(Rn \ {0}) and f(s) ∈ M0(Rn, Cn) for almost all s ∈ (0, T ),
by Lemma 2.3 we have f(s)bg(t − s) ∈ M0(Rn, Cn) and

‖f(s)bg(t − s)‖M0 = |f(s)bg(t − s)|(Rn)
≤ ‖g(t − s)‖L∞(Rn)‖f(s)‖M0 (s ∈ (0, t)).

The assumptions on f and g imply that (s 7→ ‖f(s)bg(t − s)‖M0) ∈ L1((0, t)).
Hence, g ? f(t) is well-defined as a Bochner integral. Next, set g̃(t) := χ(0,T )(t)g(t)
and f̃(t) := χ(0,T )(t)f(t), where χE denotes the indicator function of the set E.
Then, g̃ ∈ L∞(Rn × R), f̃ ∈ L1(R, M0) and we have

g ? f(t) =
∫

R
f̃(s)bg̃(t − s)ds.

This implies that

‖g ? f(t)‖M0 ≤
∫

R

∫
Rn

|g̃(ξ, t − s)|d|f̃(s)|(ξ)ds, t ∈ (0, T ). (2.4)

By the fact that∫ T

0
|g̃(ξ, t − s)|2dt ≤

∫ T

0
|g(ξ, r)|2dr = ‖g(ξ, ·)‖2

L2(0,T ), s ∈ (0, T ),

taking the L2-norm on both sides of (2.4) results in

‖g ? f‖L2((0,T ),M0) ≤
∫

R

∫
Rn

‖g(ξ, ·)‖L2(0,T )d|f̃(s)|(ξ)ds

≤ ‖g‖L∞(Rn,L2(0,T ))‖f‖L1((0,T ),M0) (0 < T ≤ ∞).

¤
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The rigorous definition of the critical space for the Navier-Stokes equations in
the Radon measure setting is

FM−1
0 (Rn, Cn) :=

{
f ∈ S(Rn, Cn) : f̂b(1/| · |) ∈ M0(Rn, Cn)

}
with canonical norm ‖f‖−1 = ‖f‖FM−1

0
= ‖f̂b(1/| · |)‖M0 .

Lemma 2.9. The following assertions on the space FM−1
0 (Rn, Cn) hold:

(i) FM−1
0 (Rn, Cn) = div FM0(Rn, Cn)n, where

div FM0(Rn, Cn)n =

f =
n∑

j=1

∂jgj : gj ∈ FM0(Rn, Cn) (j = 1, . . . , n)

 .

(ii) FM−1
0 (Rn, Cn) is a Banach space.

(iii) The assertions of Proposition 2.5 and Lemma 2.6 remain valid if FM0 is re-
placed by FM−1

0 .

Proof. (i) Note that according to Proposition 2.5, ξ 7→ iξ/|ξ| is the symbol
of a bounded operator on FM0(Rn, Cn). Thus, for f =

∑n
j=1 ∂jgj we have f ∈

S ′(Rn, Cn) and
f̂

|ξ|
=

n∑
j=1

iξ

|ξ|
ĝj ∈ M0(Rn, Cn)

if gj ∈ FM0(Rn, Cn) for j = 1, . . . , n. This shows “⊇”. In order to see the converse
inclusion, pick f ∈ FM−1

0 (Rn, Cn). Then, write f̂ as

f̂ = −
n∑

j=1

(iξj)2

|ξ|2
f̂ =

n∑
j=1

iξj

(
− iξj

|ξ|2
f̂

)
.

By assumption we have ĝj := − iξ
|ξ|2 f̂ ∈ M0(Rn, Cn), which proves the claim.

(ii) The operator M := F−1[|ξ|]F is injective from FM0(Rn, Cn) to S ′(Rn, Cn).
Hence, M : FM0(Rn, Cn) → FM−1

0 (Rn, Cn) is an isomorphism. The assertion there-
fore follows, since FM0(Rn, Cn) is a Banach space.
(iii) This is obvious by the definition and since 1/|ξ| commutes with all appearing
symbols. ¤

Observe that by Lemma 2.6(i) we easily obtain the Helmholtz decomposition

FM0(Rn, Cn) = FM0,σ(Rn, Cn) ⊕ GFM ,
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where

FM0,σ(Rn, Cn) := PFM0(Rn, Cn) = {u ∈ FM0(Rn, Cn) : div u = 0}

and GFM = {∇p : p ∈ S ′(Rn, Cn), ∇p ∈ FM0(Rn, Cn)}.
Now we are in position to prove the key estimates for the semiroup (e−tA)t≥0

generated by the Stokes-Poincaré-Riesz operator given by

A = −ν∆ + ΩS

and defined in FM0,σ(Rn, Cn). Lemma 2.6(i) and (ii) immediately imply that
(e−tA)t≥0 is a holomorphic C0-semigroup of contractions on FM0,σ(Rn, Cn). For
f and u0 suitably chosen,

u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af(s)ds, t > 0, (2.5)

therefore represents the unique solution of the Cauchy problem{
ut + Au = f, t > 0,

u(0) = u0.
(2.6)

Thanks to Lemma 2.9, exactly the same statements on P and (e−tA)t≥0 hold for the
space FM−1

0 (Rn, Cn). In particular, the space FM−1
0,σ(Rn, Cn) is defined analogously

as the space FM0,σ(Rn, Cn). The mentioned key estimates read as follows.

Lemma 2.10. Let u0 ∈ FM−1
0,σ(Rn, Cn), f ∈ L1((0, T ), FM0,σ(Rn, Cn)), and u be

the solution of (2.6) given by (2.5).

(i) If f ≡ 0, we have

‖u‖L2((0,T ),FM0) ≤
1√
2ν

‖u0‖−1 (0 < T ≤ ∞).

(ii) If u0 ≡ 0, we have

‖(−∆)1/2u‖L2((0,T ),FM0) ≤
1√
2ν

‖f‖L1((0,T ),FM0) (0 < T ≤ ∞).

Proof. (i) From Lemma 2.6(i) we infer that

‖u(t)‖FM0 ≤ ‖e−νt∆u0‖FM0 ≤
∫

Rn

e−νt|ξ|2d|û0|(ξ). (2.7)

It is easily calculated that

‖e−ν(·)|ξ|2‖L2(0,T ) ≤
1

|ξ|
√

2ν
(0 < T ≤ ∞, ξ ∈ Rn \ {0}).
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Regarding e−ν(·)|ξ|2 as an L2(0, T )-valued function and the right hand side of (2.7)
as a (L2-valued) Bochner integral, this implies that

‖u‖L2((0,T ),FM0) ≤
∫

Rn

‖e−ν(·)|ξ|2‖L2(0,T )d|û0|(ξ) ≤
1√
2ν

‖u0‖−1 (0 < T ≤ ∞).

(2.8)
(ii) We have

F(−∆)1/2u(t) =
∫ t

0
f̂(s)bg(·, t − s)ds

with g(ξ, s) = |ξ|e−(t−s)(ν|ξ|2+ΩσS(ξ)). Lemma 2.7 now implies

‖(−∆)1/2u‖L2((0,T ),FM0) ≤ ‖g‖L∞(Rn,L2(0,T ))‖f‖L1((0,T ),FM0).

By virtue of

‖g‖L∞(Rn,L2(0,T )) = sup
ξ∈Rn

(∫ T

0
|ξ|2e−2t(ν|ξ|2−ΩσS(ξ))dt

)1/2

≤ 1√
2ν

(0 < T ≤ ∞),

where we used the skew-symmetry of σS(ξ) in the first inequality, we obtain the
assertion. ¤

3 Proof of the main results

We show that

Hu(t) := e−tAu0 +
∫ t

0
(−∆)1/2e−(t−s)AP (u(s) · ∇)(−∆)−1/2u(s)ds

is a contraction on

Bu0 :=
{

u ∈ L2(R+, FM0,σ(Rn, Cn)) : ‖u‖L2(R+,FM0) ≤
√

2/ν‖u0‖−1

}
.

Indeed, Lemma 2.10(i) and (ii) give us

‖Hu‖L2(R+,FM0) ≤
1√
2ν

(
‖u0‖−1 + ‖P (u · ∇)(−∆)−1/2u‖L1(R+,FM0)

)
. (3.1)

By the boundedness of P and ∂j(−∆)−1/2 on FM0(Rn, Cn) and Lemma 2.4(ii) we
further obtain

‖P (u · ∇)(−∆)−1/2u‖L1(R+,FM0) ≤
1

(2π)n/2

n∑
j=1

‖uj‖L2(R+,FM0)‖u‖L2(R+,FM0).
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The fact that max1≤j≤n aj ≤ n−1/2(
∑n

j=1 aj)1/2 for aj ≥ 0, j = 1, . . . , n, yields

n∑
j=1

‖uj(t)‖FM0 ≤ n sup
Π(Rn)

∑
E∈Π(Rn)

max
1≤j≤n

|ûj(t, E)| ≤
√

n‖u(t)‖FM0 .

Consequently,

‖P (u · ∇)(−∆)−1/2u‖L1(R+,FM0) ≤
√

n

(2π)n/2
‖u‖2

L2(R+,FM0).

Inserting this into (3.1) and taking into account that u ∈ Bu0 results in

‖Hu‖L2(R+,FM0) ≤ 1√
2ν

(
‖u0‖−1 +

√
n

(2π)n/2
‖u‖2

L2(R+,FM0)

)
≤ 1√

2ν
‖u0‖−1

(
1 +

2
√

n

ν(2π)n/2
‖u0‖−1

)
.

This shows that ‖Hu‖L2(R+,FM0) ≤
√

2/ν‖u0‖−1, if ‖u0‖−1 ≤ ν(2π)n/2/2
√

n. Fur-
thermore, for u, v ∈ Bu0 we write

(u · ∇)u − (v · ∇)v = ((u − v) · ∇)u + (v · ∇)(u − v).

Then, we obtain completely analogous as above that

‖Hu − Hv‖L2(R+,FM0) ≤ 1√
2ν

√
n

(2π)n/2

(
‖u‖2

L2(R+,FM0) + ‖v‖2
L2(R+,FM0)

)
·‖u − v‖L2(R+,FM0)

≤ 2
√

n

ν(2π)n/2
‖u0‖−1‖u − v‖L2(R+,FM0).

Thus, H is a contraction, if ‖u0‖−1 < ν(2π)n/2/2
√

n which is exactly condition
(1.2). This completes the proof of Theorem 1.1.

Next we prove Theorem 1.3. The boundedness (1.3) in L2([0, T ]; FM) (0 < T ≤ ∞)
can be seen as in Lemma 2.10 by a similar estimate for F(∇ju) = iξj û,

‖∇u‖L2((0,T ),FM0) ≤
∫

Rn

‖iξje
−ν(·)|ξ|2‖L2(0,T )d|û0|(ξ)

≤
∫

Rn

|ξ|
|ξ|

√
2ν

d|û0|(ξ) ≤
1√
2ν

‖u0‖FM0 (0 < T ≤ ∞),

since ‖iξje
−ν(·)|ξ|2‖L2(0,T ) ≤ |ξ|/(|ξ|

√
2ν). (note that now u0 belongs to not only

FM−1
0 but also FM0). Proofs of (2) and (3) of Theorem 1.3 are very similar to the
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proof of Theorem 1 ii) in [9], where corresponding results in the space of uniformly
continuous functions BUC are proved. Adapting the Stokes-Poincaré-Riesz operator
A = −ν∆ + ΩS and f(s) = P divu(s)u(s)T to (2.5) we have

u(t) = e−Atu0 −
∫ t

0
P div e−A(t−s)u(s)u(s)T ds for t > 0, (3.2)

Taking the FM-norm on both hand sides of this integral equation, the exponential
term of the Coriolis operator ΩS is uniformly bounded in our space by virtue of the
uniform estimate

|| exp(ΩSt)f ||FM ≤ ||f ||FM

(Lemma 2.6). Then the proof proceeds in the same way as for the integral equation
corresponding to the Navier-Stokes equations without the Coriolis term

u(t) = eνt∆u0 −
∫ t

0
P div eν(t−s)∆u(s)v(s)T ds for t > 0,

for which we can repeat the proof of regularity as in [9], replacing BUC by FM.

Theorem 1.4 is also proven as in [9]. However, we note that we cannot conclude that
the mild solution (with the pressure (1.6)) obtained in the theorems 1.1 and 1.3 is a
global-in-time classical solution. This is because the proof for regularity (Theorem
1.3) is based on estimates for the solution u(t) of the integral equation (3.2). Even
by taking spacial derivatives in order to estimate ||∇u(t)||FM, or by taking time
difference ||u(t + h) − u(t)||FM on both hand sides of the above integral equation,
there seems to be no chance to calculate the square of the FM-norm, ||∇u(t)||2FM

nor ||u(t + h)− u(t)||2FM. However, our global-in-time estimates (Lemma 2.10) hold
only in the L2-space in time - L2((0,∞); FM). Hence, the mild solution can be
proved to be classical at most locally in time T0 < ∞.
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