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Abstract

We prove existence of global regular solutions for the 3D Navier-Stokes

equations with (or without) Coriolis force for a class of initial data u0 in

the space FMσ,δ, i.e. for functions whose Fourier image û0 is a vector-valued

Radon measure and that are supported in sum-closed frequency sets with

distance δ from the origin. In our main result we establish an upper bound

for admissible initial data in terms of the Reynolds number, uniform on the

Coriolis parameter Ω. In particular this means that this upper bound is

linearly growing in δ. This implies that we obtain global in time regular

solutions for large (in norm) initial data u0 which may not decay at space

infinity, provided that the distance δ of the sum-closed frequency set from

the origin is sufficiently large.
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1 Introduction and main results

In this paper we consider the 3D Navier-Stokes equations with Coriolis
force




∂tu− ν∆u+ Ωe3 × u+ (u · ∇)u = −∇p in R+ × R3,
div u = 0 in R+ × R3,
u|t=0 = u0 in R3,

(1.1)

where e3 = (0, 0, 1)T , ν is the viscosity coefficient, and Ω ∈ R is the
Coriolis parameter, which is twice the angle velocity of the rotation.
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Initial data u0 is required to be an element of the space FM, that is the
Fourier transform of M, which is the space of finite C3-valued Radon
measures on R3. By the Riesz representation theorem it is known that
M is the topological dual of

C∞(R3,C3) := {f ∈ C(R3,C3) : f(x)→ 0 if |x| → ∞}.

Note that FM equipped with the canonical norm ‖f‖FM := ‖F−1f‖M
is a Banach space, where F−1 denotes the inverse Fourier transform.
In particular we will consider initial values u0 with Fourier image û0

supported in sum-closed frequency sets, which are defined for general
space dimensions n = 1, 2, 3, . . . as follows:

Definition 1.1. We say that F ⊆ Rn is a sum-closed frequency set
in Rn, if

(i) F is closed,

(ii) 0 6∈ F ,

(iii) F + F := {x+ y;x, y ∈ F} ⊆ F ∪ {0}.
For a sum-closed frequency set with distance δ > 0 from zero in the
sequel we write Fδ. The class of all sum-closed frequency sets in Rn
is denoted by F n.

Typical examples of sum-closed frequency sets are:

(i) Countable sum-closed frequency sets in Rn for which pairwise dis-
tances between frequency vectors are uniformly bounded from zero.
This case corresponds to almost periodic initial data. The Cauchy
problem for Navier-Stokes equations with almost periodic initial data
was considered in [10] where local in time solvability was proven with-
out restrictions on frequency sets.

(ii)
Zn \ {0},

or more general

F :=

{ n∑

j=1

mjaj ; m = (m1, . . . ,mn) ∈ Zn
}
\ {0},

where a = {a1, . . . , an} represents a basis of Rn. This case corresponds
to periodic initial data. Indeed, supp û0 is contained in the above F
for some a if and only if u0 is periodic. Clearly, this is a special case
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of (i).

(iii)
{x ∈ Rn : xj ≥ δ} for j ∈ {1, . . . , n}, δ > 0.

Note that this example provides non real-valued initial data only.

Now let Fδ ∈ F 3. The main aim of this paper is to prove the
existence of global regular solutions to (1.1) for initial data u0 ∈ FM
with supp û0 ⊆ Fδ and norm less than a number M = M(δ, ν) which
does not depend on the Coriolis parameter Ω ∈ R. Existence of solu-
tions with norms uniformly bounded in Ω in spaces including functions
nondecaying at infinity are essential in studies of statistical properties
of turbulence, see e.g. [16, 19], and in the analysis of fast oscillating
singular limits for system (1.1), see [1], [2] and [6].

As another interesting outcome of our approach, we obtain explicit
dependence of M on the distance δ (and ν). In fact, we show that

M(δ, ν) = c0νδ

with an explicitely given numerical constant c0. This implies that we
can prove the existence of global regular solutions to (1.1) for large
initial data u0 in FM, provided that supp û0 ∈ Fδ with δ is sufficiently
large. We also emphasize that in our approach the case Ω = 0 is not
excluded, i.e. all the results presented here are valid for the standard
Navier-Stokes equations without Coriolis force.

We note that in the case Ω = 0 global existence of regular solutions
for small initial data is proved in various function spaces. However,
initial data are always assumed to decay at space infinity or to be
periodic in space. For example, if the L3-norm of initial data is small,
then there is a global regular solution [14, 13, 7]. Although for the
2-dimensional problem it is known that there is a global regular so-
lution for every bounded initial value [12, 17], it seems that there is
no literature studying global solvability in the 3-dimensional case for
nondecaying and nonperiodic initial data. In the situation of periodic
boundary conditions, Chemin and Gallagher [4] constructed global
regular solutions for system (1.1) in the case of Ω = 0 for a certain
class of initial data. Their approach relies on a splitting of the solution
in a 2D part and a part satisfying a perturbed Navier-Stokes system.
Admissible data need to satisfy a smallness condition of nonlinear
type, which seems to be difficult to verify in general.

The case of 3D Navier-Stokes equations with large initial data
characterized by uniformly large initial vorticity was considered in [1],
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[2] and [6] in the L2-setting in the case of periodic boundary condi-
tions and cylindrical domains. It was shown that for sufficienly large
Ω independent of the size of initial data in L2, weak solutions of the
3D Navier-Stokes equations are in fact global in time strong solutions.
The method of proving global regularity relies on the analysis of fast
singular oscillating limits (singular limit Ω → ∞), nonlinear averag-
ing methods and lemmas on restricted convolutions. This leads to the
condition that Ω must be large in order to get global regular solutions
for large initial data. There are no assumptions on 3D initial data be-
sides that Ω is a fixed large parameter. Initial data can have arbitrary
low and high frequency components.

In the present paper we prove global solvability of the 3D Navier-
Stokes equations with initial data in spaces of functions nondecreasing
at infinity based on sum-closed frequency sets provided that the dis-
tance from the origin of support of its Fourier image is sufficienly large.
The latter condition can be interpreted as highly oscillating initial
data. The Cauchy problem for Navier-Stokes equations (Ω = 0) with
highly oscillating initial data in Besov spaces is discussed in [3]. The
property that highly oscillating initial data lead to global solutions
to Navier-Stokes equations was implicitly contained in the papers of
Kato and Fujita ([5], [15]). We note that our results on global regu-
larity presented in this paper cover new spaces of functions for initial
data nondecreasing at infinity which also contain almost periodic ini-
tial data. Our approach is based on a subtle splitting of the integral
in the mild formulation of system (1.1), and the fact that the growth
bound of the heat semigroup in FM tends to −∞ if we increase the
distance δ of the sum-closed frequency set to the origin. In order to get
the independence of our results on Ω we use the fact that the Poincaré-
Riesz semigroup associated to the Coriolis term Ωe3 × u is uniformly
bounded in Ω in FM/C3. This result is shown in [9]. There Matsui
and the first three authors of this paper constructed a local-in-time
classical solution to (1.1) uniformly in Ω.

We proceed with a rigorous statement of our main results. For
Fδ ∈ F 3 we define the space

FMσ,δ := {f ∈ FM : div f = 0, supp f̂ ⊆ Fδ}. (1.2)

Observe that here actually FM = FM3, i.e. f ∈ FM3 is a C3-valued
function and we enhance FM3 with the norm

‖f‖FM3 := (

3∑

j=1

‖fj‖2FM)1/2.
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However, since it will always be clear from the context what we mean,
in the sequel we will write FM, FMσ,δ, etc. also for the vector-valued
versions. It is easy to see that FMσ,δ is a closed subspace of FM. In
Section 2 we shall give a more detailed discussion of the spaces FM
and FMσ,δ . In particular we will recall some of the results for the
heat and the Poincaré-Riesz semigroup obtained in [9]. We also recall
that BC(G,X) denotes the space of bounded continuous functions on
G ⊆ Rn with values in a Banach space X.

Now we state main results of this paper.

Theorem 1.2. Let ν, δ > 0, Ω ∈ R, Fδ ∈ F 3, and u0 ∈ FMσ,δ. Then,
if

‖u0‖FM < νδ/4K, (1.3)

where

K =
√

3

(
e−1

√
2

+
3e3/2

2

)
≈ 12.09433 , 1 (1.4)

there exists a unique global mild solution u ∈ BC([0,∞),FMσ,δ) of the
Navier-Stokes equations (1.1) satisfying

‖u(t)− u0‖FM → 0 if t→ 0,

and
‖u(t)‖FM ≤ 2e−νδ

2t‖u0‖FM, t ≥ 0.

Relation (1.3) implies that ‖u0‖FM can be large, provided that the dis-
tance δ of Fδ from the origin is sufficiently large.

In the same way as in [8] we also obtain

Theorem 1.3. Assume that the conditions of Theorem 1.2 hold and
let u be the global mild solution obtained there. If we set

p(t) = Ω(−∆)−1/2(R2u
1(t)−R1u

2(t)) +

3∑

j,k=1

RjRku
j(t)uk(t)

for the pressure p, where Rj denotes the Riesz operator associated to
the symbol iξj/|ξ| for j = 1, 2, 3, then the pair (u,∇p) is the unique
classical solution to (1.1).

1This constant can be optimized to K ≤ 2.5 ; see Remark 3.2 (1).
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Remark 1.4. (a) We note that the condition (1.3) can be written
in terms of nondimensional physical parameter known as Reynolds
number Re:

Re =
‖u0‖FM

νδ
< 1/4K. (1.5)

The Reynolds number defined by (1.5) is based on velocity scale for
initial data ‖u0‖FM, viscosity ν and a characteristic length scale 1/δ
(1/δ is a length scale since δ is a distance from the origin in frequency
space). The above theorem establishes global solvability provided that
initial Reynolds number satisfies the condition Re < 1/4K, where K
is a nondimensional constant given by (1.4).

(b) Let ‖u0‖FM be given. Then representation (1.4) allows an exact
numerical determination of the distance δ, i.e. how far û0 must be
supported from the origin, in order to get global regular solutions.

(c) It is clear that in the case Ω = 0 all the results remain true for
arbitrary dimension n ∈ N, modulo changing constants. This is even
true for Ω 6= 0, if we replace the rotation matrix J by a suitable skew-
symmetric matrix.

(d) Observe that ξ ∈ supp û0 ⊆ F implies that −ξ ∈ supp û0 ⊆ F ,
if the initial data u0 is real-valued. Thus, the consideration of such
initial data requires that −F = F for the related sum-closed frequency
set F . By the fact that F has a positive distance from 0 a simple
argumentation shows that F must be a periodic lattice of the form
given in example (ii) right after Definition 1.1.

Let us discuss two examples of (possibly “large”) initial data covered
by our results:

(1) Let h ∈ L1(R3) such that supph ⊆ Fδ := {x ∈ R3 : x3 ≥ δ}. Set
u0 := PF−1h ∈ FMσ,δ, where P denotes the Helmholtz projection in
R3. Then, by Lemma 2.2(i) we have

‖u0‖FM ≤ ‖F−1h‖FM = ‖h‖1.

Thus, if
δ > 4K‖h‖1/ν = 10‖h‖1/ν , 2

there exists a global regular solution of (1.1) to u0.

(2) Next, for any d > 0 we see that Fd := dZ3 \ {0} ∈ F 3. We set

2Here we took the optimized K obtained in Remark 3.2 (1).
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u0 = Pv, where

v :=
∞∑

j=1

aje
iλj ·x, x ∈ R3, λj ∈ Fd,

and (aj)j∈N can be any sequence in R3 such that
∑∞

j=1 |aj | < ∞.
Then,

v̂ = (2π)3/2
∞∑

j=1

ajδ(ξ − λj) and ‖u0‖FM ≤ (2π)3/2
∞∑

j=1

|aj |,

where here δ denotes the Dirac delta distribution. Thus u0 ∈ FMσ,d.
Furthermore, we see that we can get global regular solutions of (1.1) for
the initial values of the form u0 = Pv, if the vectors of the frequencies
λj = (λj,1, λj,2, λj,3) satisfy

√
λ2
j,1 + λ2

j,2 + λ2
j,3 ≥ 4K(2π)3/2

∞∑

j=k

|ak|/ν, j = 1, 2, . . . .

We organized this paper as follows. In Section 2 we list basic prop-
erties of the spaces FM and FMσ,δ and for the linear operators asso-
ciated to (1.1). In particular we recall from [9] estimates for the heat
semigroup, the Poincaré-Riesz semigroup, and the Helmholtz projec-
tion in the spaces FM. By utilizing these estimates, in Section 3 then
we prove our main results Theorem 1.2 and Theorem 1.3.

2 Preliminaries

Here we recall some of the basic results on the space FM and the linear
operators associated to (1.1) obtained in [9]. As an easy consequence
of these results at the end of this section we will state the cruicial
exponential decay rate estimate for the heat semigroup on the space
FMσ,δ .

By the Riesz representation theorem it is well known that each
linear form L on C∞(Rn,C) can be represented as

L(f) =

∫

Rn
fνdη,

where ν : Rn → C is an η-measurable function satisfying |ν(x)| = 1,
x ∈ Rn, and η is a finite positive Radon measure on Rn. Recall that

7



η is a finite Radon measure if it is a positive Borel-regular measure
satisfying η(Rn) <∞ (see [18]). Therefore, the element µ of the space
M associated to L is given by

µ(O) :=

∫

O
νdη, O ⊆ Rn open,

and the norm on M, that is

‖µ‖M := sup

{
|
∫

Rn
fνdη|; f ∈ Cc(Rn), ‖f‖∞ ≤ 1

}
,

is called the total variation norm, where Cc(O) denotes the space of
continuous functions with compact support in O. Now, for µ ∈ M let
ηµ be the associated finite positive Radon measure and let νµ be the
associated ηµ-measurable function satisfying |νµ(x)| = 1. For a ηµ-a.e.
bounded and Borel measurable function ψ we may define

µbψ(O) :=

∫

O
ψνµdηµ, O ⊆ Rn open.

Since this can be written as

µbψ(O) =

∫

O
(χ{ψ>0} − χRn\{ψ>0})νµ|ψ|dηµ,

it is clear that µbψ ∈ M. If B ⊆ Rn is a Borel set and ψ = χB is the
characteristic function then we simply write µbB for µbχB . The total
variation measure |µ| of µ ∈ M is defined by

|µ|(O) := sup

{
|
∫

Rn
fνdη|; f ∈ Cc(O), ‖f‖∞ ≤ 1

}
,

for open O ⊆ Rn. It follows easily from the definition that we have the
relations µ = ηµbνµ, |µ| = ηµ, |µbψ| ≤ |µ|b|ψ|, and (µbψ)bφ = µb(ψφ),
if φ is another |µ|-a.e. bounded Borel measurable function.

In order to define multipliers with symbols not necessarily contin-
uous at 0 we also introduce the space

M0 := {µ ∈ M; µb{0} = 0},

i.e. µ ∈ M0 has no point mass at the origin. Since µb{0} = 0 is
equivalent to say that limr↓0 |µ|(Br(0)) = 0, where Br(0) denotes the
open ball with radius r and center 0, it is easy to see that M0 is a
closed subspace of M.
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The space

Mn := {µ = (µ1, . . . , µn) : µj ∈ M, j = 1, . . . , n}

with norm

‖µ‖′ := sup{|〈µ, f〉|; f ∈ (Cc(Rn))n, ‖f‖∞ ≤ 1}, (2.1)

where

〈µ, f〉 :=

n∑

j=1

µbfj

we call the space of finite vector-valued Radon measures. For our
purposes it will be more suitable to enhance M with the norm

‖µ‖Mn :=




n∑

j=1

‖µj‖2M




1/2

.

If we fix the vector-valued ‖ · ‖∞ norm in (2.1) as

‖f‖∞ :=




n∑

j=1

‖fj‖2∞




1/2

, f ∈ (L∞(Rn))n,

then the relation between the two norms on M is

‖ · ‖′ ≤ ‖ · ‖Mn ≤ √n‖ · ‖′.

For simplicity in the sequel we will write M for Mn, ‖ · ‖M for ‖ · ‖Mn ,
Cc(Rn) for (Cc(Rn))n, etc.

The Fourier transform on the Schwartz space S(Rn) we denote by

f̂(ξ) = Ff(ξ) :=
1

(2π)n/2

∫

Rn
e−ix·ξf(x)dx, f ∈ S(Rn),

and its extension to the space of tempered distributions S ′(Rn) is
defined in the usual way. Since M as the dual of C∞(Rn) can be
regarded as a subspace of S ′(Rn) we may define the space

FM := {µ̂ : µ ∈ M}.

Equipped with the norm

‖f‖FM := ‖f̂‖M = ‖F−1f‖M,

9



FM is a Banach space and we have that FM ⊆ BUC(Rn), where
BUC(Rn) denotes the space of bounded uniformly continuous func-
tions on Rn. An important closed subspace of FM is

FM0 := {f̂ ; f ∈ M0}.

Note that this space is isomorphic to the quotient space FM/Cn. In
fact FM = FM0 ⊕ Cn. Furthermore, in [9] it is proved that FM0

is even a subspace of the homogeneous Besov space Ḃ0
∞,1(Rn). For

σ = (σjk) ∈ [C(Rn \ {0}) ∩ L∞(Rn)]n×n we define

(Op(σ)f)j := F−1
n∑

k=1

f̂kbσjk, j = 1, . . . , n, f ∈ FM0. (2.2)

As an immediate consequence of the definition of FM and FM0 we
obtain the following multiplier result, which is essential for the uni-
formness of our main results in the Coriolis parameter Ω.

Lemma 2.1. [9, Lemma 2.2] Let σ = (σjk) ∈ [C(Rn \ {0}) ∩
L∞(Rn)]n×n. Then Op(σ) as defined in (2.2) is bounded on FM0

and we have

‖Op(σ)f‖FM ≤ ‖ |σ| ‖∞‖f‖FM, f ∈ FM0,

where |M | := supy∈Rn |My| for a matrix M ∈ Rn×n and | · | denotes
the Euclidean norm in Rn. Furthermore, if σ is also continuous at the
origin, then the operator Op(σ) is a bounded operator on FM and the
above estimate holds for all f ∈ FM .

From now on we restrict our considerations to 3 space dimensions.
Note that in the context as introduced above the Helmholtz projection
is given by

(Pf)j = F−1
3∑

k=1

f̂jbσ(P )jk, j = 1, 2, 3, f ∈ FM0,

where σ(P )jk = (δjk − ξjξk
|ξ|2 ), the heat semigroup as

et∆f = F−1(f̂be−t|·|2), f ∈ FM1,

and the Poincaré-Riesz operator by

Sf := PJPf, f ∈ FM0,
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where

J =




0 −1 0
1 0 0
0 0 0


 .

Observe that σ(P ) is orthogonal, σ(S) is skew-symmetric, and thus
σ(etS) is unitary on C3. As a consequence of Lemma 2.1 we therefore
obtain the following estimates (see [9, Lemma 2.5, Lemma 2.9]).

Lemma 2.2. (i) The operators P , S, and etS are bounded on FM0.
In particular we have

‖Pf‖FM ≤ ‖f‖FM, f ∈ FM0,

‖etSf‖FM ≤ ‖f‖FM, t ∈ R, f ∈ FM0.

(ii) The family {et∆}t≥0 is a bounded holomorphic C0-semigroup of
contractions on FM and FM0. Moreover, it satisfies

‖∂jet∆f‖FM ≤ (2te)−1/2‖f‖FM, f ∈ FM, t > 0, j = 1, 2, 3.

Next, for Fδ ∈ F 3 let FMσ,δ be defined as in (1.2). It is clear
that this is a closed subspace of FM0 and that it is invariant under
the operations P , S, and et∆. The main results in this paper rely
essentially on the following two facts. Firstly,

supp f̂ , supp ĝ ⊆ Fδ =⇒ supp f̂ g ⊆ Fδ ∪ {0}, (2.3)

which is a consequence of the definition of sum-closed frequency sets
(in particular of property (iii)). This property will be important for
applying the contraction mapping principle in the next section. Es-
sentially it implies that the space FMσ,δ is also invariant under the
nonlinear operation arising from the convective term in system (1.1).
Secondly, it relies on the following exponential decay rate estimate for
the heat semigroup depending on the distance δ of Fδ from the origin.

Lemma 2.3. Let Fδ ∈ F 3. The family {et∆}t≥0 is a bounded holo-
morphic C0-semigroup of contractions on FMσ,δ satisfying

‖et∆f‖FM ≤ e−tδ
2‖f‖FM, f ∈ FMσ,δ, t > 0.
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Proof. By virtue of supp f̂ ⊆ Fδ we obtain

‖et∆f‖FM = ‖f̂be−t|·|2‖M =
∣∣∣f̂be−t|·|2

∣∣∣ (Fδ)

≤ |f̂ |b|e−t|·|2 |(Fδ) =

∫

Fδ

e−t|·|
2
d|f̂ |

≤ e−tδ
2‖f‖FM, f ∈ FMσ,δ.

�

Remark 2.4. Of course the solenoidality is not essential for the as-
sertion, i.e. Lemma 2.3 remains true if we replace FMσ,δ by FMδ :=

{f ∈ FM : supp f̂ ⊆ Fδ}.

3 Global solutions

We proceed with the construction of global mild solutions to problem
(1.1). To this end we define for T > 0,

G : BC([0, T ),FM3×3)→ BC([0, T ),FM0),

Gf(t) :=

∫ t

0
P div e(t−s)(ν∆−ΩS)f(s)ds,

where FM3×3 is equipped with the norm

‖f‖FM :=




3∑

j,k=1

‖fjk‖2FM




1/2

, f ∈ FM3×3.

Observe that G is well-defined, since by the presence of the operator
div we may always replace f by f −F−1(f̂b{0}) ∈ FM0. The crucial
step is to prove

Proposition 3.1. Let Fδ ∈ F 3 and let f ∈ BC([0,∞),FM3×3) such
that supp f̂ ⊆ Fδ ∪ {0}. Then

sup
t>0
‖eνδ2tGf(t)‖FM ≤

K

νδ
sup
t>0
‖e2νδ2tf(t)‖FM, (3.1)

with K given in (1.4). Moreover, we have

‖Gf(t)‖FM → 0 if t→ 0. (3.2)
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Proof. One key for the proof lies in a splitting of the integral in the
term eνδ

2tGf(t) into an integration over the two subintervals [0, 3t/4]
and [3t/4, t]. We denote the two resulting (sub-) integrals by I1(t) and
I2(t), respectively.

First we estimate I2. For this part observe that by Lemma 2.2(i)
and (ii) we obtain

‖I2(t)‖FM ≤ eνδ
2t

∫ t

3t/4
‖P e−Ω(t−s)Sdiv e(t−s)ν∆f(s)‖FMds

≤
√

3
eνδ

2t

√
2νe

∫ t

3t/4

1√
t− se−2νδ2s‖e2νδ2sf(s)‖FMds

≤
√

3
eνδ

2t

√
2νe

e−νδ
2t/2

∫ t

3t/4

1√
t− sds sup

t>0
‖e2νδ2sf(s)‖FM

≤
√

3
1√
2νe

√
te−νδ

2t/2 sup
s>0
‖e2νδ2sf(s)‖FM (3.3)

≤
√

3
1√
2νe

sup
t>0

(√
te−νδ

2t/2
)

sup
s>0
‖e2νδ2sf(s)‖FM

=

√
3 e−1

√
2 νδ

sup
s>0
‖e2νδ2sf(s)‖FM

Next consider I1. Here we pick r > 0, to be fixed later, and assume
first that t ≥ 4r. We will see that the introduction and the right
choice of r will be another key for the proof. Again an application of
Lemma 2.2(i) and (ii) yields

‖I1(t)‖FM ≤ eνδ
2t

∫ 3t/4

0
‖div erν∆e(t−s−r)ν∆f(s)‖FMds

≤
√

3
eνδ

2t

√
2rνe

∫ 3t/4

0
‖e(t−s−r)ν∆f(s)‖FMds.

Note that always t − s − r ≥ 0 for s ∈ [0, 3t/4] when t ≥ 4r. Thus,
employing Lemma 2.3 this calculation continues to the result

‖I1(t)‖FM ≤
√

3
eνδ

2t

√
2rνe

∫ 3t/4

0
e−(t−s−r)νδ2 e−2νδ2‖e2νδ2sf(s)‖FMds

≤
√

3
eνδ

2r

√
2rνe

∫ 3t/4

0
e−νδ

2sds sup
s>0
‖e2νδ2sf(s)‖FM.

In order to avoid growth in δ the last line shows how we have to choose
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r, namely e.g. as r = 1/2νδ2. This implies

‖I1(t)‖FM ≤
√

3δ
1− e−3νδ2t/4

νδ2
sup
s>0
‖e2νδ2sf(s)‖FM (3.4)

≤
√

3

νδ
sup
s>0
‖e2νδ2sf(s)‖FM, t ≥ 2/νδ2.

The case where t ≤ 2/νδ2 is easily estimated as

‖I1(t)‖FM ≤ eνδ
2t

∫ 3t/4

0
‖div e(t−s)ν∆f(s)‖FMds

≤
√

3
eνδ

2t

√
2νe

∫ 3t/4

0

1√
t− se−2νδ2s‖e2νδ2sf(s)‖FMds

≤
√

3
2eνδ

2t

√
2νe

3
√
t

4
sup
s>0
‖e2νδ2sf(s)‖FM (3.5)

≤ 3
√

3 e3/2

2νδ
sup
s>0
‖e2νδ2sf(s)‖FM.

Observe that
√

3 < 3
√

3 e3/2/2 implies that supt>0 ‖I1(t)‖FM =
supt≤1/2νδ2 ‖I1(t)‖FM. Hence, taking supremum on the left hand sides,

i.e. on ‖eνδ2tGf(t)‖FM ≤ ‖I1(t)‖FM + ‖I2(t)‖FM over t > 0 we arrive
at (3.1). Relation (3.2) is an easy consequence of the estimates (3.3),
(3.4), and (3.5). Hence the proposition is proved. �

Finally we turn to the proof of Theorem 1.2. Let Fδ ∈ F 3, u0 ∈
FMσ,δ , and set

Bu0,δ := {u ∈ BC([0,∞),FMσ,δ) : ‖u‖δ ≤ 2‖u0‖FM},

where ‖u‖δ := supt>0 ‖eνδ
2tu(t)‖FM. By applying the Helmholtz pro-

jection we rewrite system (1.1) in the operatorial form

{
∂tu− ν∆u+ ΩSu+ P (u · ∇)u = −∇p in (0,∞),

u|t=0 = u0.
(3.6)

Observe that the existence of a (mild) solution to (3.6) is equivalent
to the existence of a fixed point for the nonlinear map H defined by

Hu(t) := et(ν∆−ΩS)u0 −
∫ t

0
P div e(t−s)(ν∆−ΩS)u(s)u(s)Tds

= etν∆u0 − [G(uuT )](t), u ∈ Bu0,δ.
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Note that suppuuT ⊆ Fδ∪{0} by virtue of (2.3). Thus, Lemma 2.2(i),
Lemma 2.3, and Proposition 3.1 imply

‖Hu‖δ ≤ ‖u0‖FM +
K

νδ
sup
s>0
‖e2νδ2tu(s)u(s)T ‖FM

≤ ‖u0‖FM +
K

νδ
‖u‖2δ

≤ ‖u0‖FM +
4K

νδ
‖u0‖2FM, u ∈ Bu0,δ,

and we observe that H(Bu0,δ) ⊆ Bu0,δ whenever the relation ‖u0‖FM ≤
νδ/4K is satisfied. To see that H is a contraction we again employ
estimate (3.1), which yields that

‖Hu−Hv‖δ
≤ K

νδ
sup
t>0
‖e2νδ2t(u(s)u(s)T − v(s)v(s)T )‖FM

≤ K

νδ
sup
t>0
‖e2νδ2t(u(s)(u(s)− v(s))T + (u(s)− v(s))v(s)T )‖FM

≤ K

νδ
(‖u(s)‖δ + ‖v(s)‖δ)‖(u(s) − v(s))‖δ

≤ K

νδ
‖u0‖FM‖(u(s)− v(s))‖δ .

Hence, H is a contraction in Bu0,δ if

‖u0‖FM < νδ/4K (3.7)

is satisfied. Therefore, if Fδ ∈ Fn and u0 ∈ FMσ,δ , such that relation
(3.7) holds, the contraction mapping principle yields the existence of
a unique fixed point u ∈ Bu0,δ of H. As an obvious consequence of
(3.2) and Lemma 2.2(ii) we also have that u(t)→ u0 in FM. Thus the
proof of Theorem 1.2 is now completed.

We conclude this note with two remarks and an announcement.

Remark 3.2. (1) The constant K in (1.4) is not optimal. For in-
stance, if we split the integral in the proof of Proposition 3.1 at α
instead at 3/4 and set r = β/2νδ2 instead of r = 1/2νδ2, we can
obtain

K= K(α, β) =

√
3

2

(
e−1/2

√
1− α
2α − 1

+ max

{
√
β e2β α√

1− α,
eβ/2√
β

})

15



for (α, β) ∈ (1/2, 1)× (0,∞). Minimizing this expression with respect
to (α, β) yields

K ≤ 2.5 .

(2) Similar results to Theorem 1.2 and Theorem 1.3 can be obtained,
if we replace FMσ,δ by the corresponding subspace of the homogeneous
Besov space Ḃ0

∞,1(R3), i.e. the space

{f ∈ Ḃ0
∞,1(R3) : div f = 0, supp f̂ ⊆ Fδ}

for Fδ ∈ F 3. Indeed, all the assertions remain true with the only
exception that the constant K in (1.4) then depends on Ω, and it is
expected that K(Ω)→∞ if Ω→∞.

(3) An inspection of the proof of Theorem 1.2 shows that the crucial
ingredient in our approach is the increasing exponential decay rate
of the heat semigroup. This gives rise to the conjecture that this
approach might work in much greater generality. In fact, it can be
shown that the pair (FMσ,δ,−∆) can be replaced by many other pairs
(Xδ, Aδ) such that Aδ is a Stokes operator on the space Xδ satisfy-
ing similar properties as −∆ on FMσ,δ, in particular an increasing
exponential decay rate for δ → ∞. Another concrete example for Xδ

might be the scale Lpσ(Dδ), where Dδ denotes a layer with thickness
δ. A detailed discussion of this issue will be part of the content of
the forthcoming paper [11]. There we will even demonstrate how our
approach extends to more general semilinear equations.

Acknowledgements. This paper developed during a stay of
the fourth author at the Graduate School of Mathematical Sciences
at The University of Tokyo. He would like to thank the Graduate
School for support and hospitality. The work of the first author
is partly supported by the Grant-in-Aid for Scientific Research, No.
18204011, No. 1764037, the Japan Society of the Promotion of Science
(JSPS). He is also partly supported by the Grant-in-Aid for forma-
tion of COE ’Mathematics of Nonlinear Structures via Singularities’
(Hokkaido University). The work of the second author was supported
by Keio University COE ’Integrative Mathematical Sciences: Progress
in Mathematics Motivated by Natural and Social Phenomena’ (JSPS),
the work of the third author by the AFOSR Contract FG9620-02-1-
0026 and the work of the fourth author by Deutsche Forschungsge-
meinschaft.

16



References

[1] A. Babin, A. Mahalov, and B. Nicolaenko, Global regularity of
the 3D Navier-Stokes equations for resonant domains, Indiana
Univ. Math. J., 48, No. 3 (1999), 1133-1176.

[2] A. Babin, A. Mahalov, and B. Nicolaenko, 3D Navier-Stokes and
Euler equations with initial data characterized by uniformly large
vorticity, Indiana Univ. Math. J., 50 (2001), 1-35.

[3] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot
Editeur, Paris (1995).

[4] J.Y. Chemin and I. Gallagher, On the global wellposedness of the
3-D Navier-Stokes equations with large initial data,
arXiv:math.AP/0508374.

[5] H. Fujita and T. Kato, On the Navier-Stokes initial value prob-
lem, Arch. Rat. Mech. Anal., 16 (1964), 269-315.

[6] A. Mahalov and B. Nicolaenko, Global solubility of the three-
dimensional Navier-Stokes equations with uniformly large vortic-
ity, Russ. Math. Surveys, 58, No. 2 (2003), 287-318.

[7] Y. Giga, Solutions for semilinear parabolic equations in Lp and
regularity of weak solutions of the Navier-Stokes system, J. Dif-
ferential Equations, 62, No.2 (1986), 186-212.

[8] Y. Giga, K. Inui, and S. Matsui, On the Cauchy problem for the
Navier-Stokes equations with nondecaying initial data, Quaderni
di Matematika, 4 (1999), 28-68.

[9] Y. Giga, K. Inui, A. Mahalov, and S. Matsui, Uniform local solv-
ability for the Navier-Stokes equations with the Coriolis force,
Methods and Applications of Analysis, (2005), to appear.

[10] Y. Giga, A. Mahalov and B. Nicolaenko, The Cauchy problem for
the Navier-Stokes equations with spatially almost periodic initial
data, Annals of Math. Studies (2005), Princeton University Press,
to appear.

[11] Y. Giga, A. Mahalov, and J. Saal, A condition on global regularity
for parabolic systems for large initial data, in preparation.

[12] Y. Giga, S. Matsui, and O. Sawada, Global existence of two-
dimensional Navier-Stokes flow with nondecaying initial data, J.
Math. Fluid Mech., 3, No.3 (2001), 302-315.

17



[13] Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes
initial value problem, Arch. Rational Mech. Anal., 89 (1985),
267-281.

[14] T. Kato, Strong Lp-solutions of the Navier-Stokes equation in
Rm, with applications to weak solutions, Math. Z., 187, No. 4
(1984), 471-480.

[15] T. Kato, On the non-stationary Navier-Stokes system, Rend.
Sem. Mat. Univ. Padova, 32 (1962), 243-260.

[16] A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Me-
chanics of Turbulence, Volume 1 and 2, MIT Press, Cambridge,
Mass., 1971.

[17] O. Sawada and Y. Taniuchi, A remark on L∞ solutions to the
2-D Navier-Stokes equations, preprint.

[18] L. Simon, Lectures on Geometric Measure Theory, Proc. of the
Center for Math. Anal., Australian National University, 1983.

[19] M.J. Vishik and A.V. Fursikov, Mathematical Problems of Sta-
tistical Hydromechanics, Kluwer Academic Publisher, Dordrecht,
Netherlands, Boston, 1988.

Graduate School of Mathematical Sciences, University of Tokyo,
Komaba 3-8-1 Meguro, Tokyo 153-8914, Japan

email: labgiga@ms.u-tokyo.ac.jp

Department of Mathematics, Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522 Japan

email: inui@math.keio.ac.jp

Department of Mathematics, Arizona State University,
Tempe, AZ 85287-1804, USA

email: mahalov@asu.edu

Department of Mathematics and Statistics, University of Konstanz,
Box D 187, 78457 Konstanz, Germany

email: juergen.saal@uni-konstanz.de

18


