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Abstract. For a Navier-Stokes-Nernst-Planck-Poisson system we con-
struct global weak solutions in a three-dimensional bounded domain. A
special feature of our approach is that we allow for non-constant diffu-
sion coefficients which may vary from species to species as well as for
L2-initial data without any further constraints. Our approach is based
on the intrinsic energy structure, Aubin-Simon compactness arguments,
and maximal Lp-regularity.

1. Introduction

A very important phenomenon, which is related to electro-kinetic flow
processes, is displayed by electro-osmosis. It describes the motion of an
aqueous solution (with charged solutes) past a solid wall as a response to an
electrical field and provides various powerful features which are employed
by many different branches of industry, e.g. micro- and nano-electronics,
filtration processes as well as separation and mixing techniques in analytical
chemistry, [11, 12, 25, 29]. For more information on the applicability of
electro-osmosis and more generally electro-kinetic effects, we refer to [10,
31, 36] and the references therein.

The important role being played by electro-osmosis motivates us to inves-
tigate the solvability question of a rather general 3D-model for electro-kinetic
flow phenomena. This model describes the evolution of a dilute viscous so-
lution with dissolved charged species, which is placed in a container Ω ⊂ R3

with solid walls, the container being situated in an electrical field. The un-
knowns are the velocity field u, the pressure π, the species concentration ci
of species Xi and the electrical potential Φ. The following system of partial
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differential equations for the just mentioned unknowns will be examined.

∂tu−∆u+ (u · ∇)u+∇π +
∑

j zjcj∇Φ = 0, t > 0, x ∈ Ω,

div u = 0, t > 0, x ∈ Ω,
u = 0, t > 0, x ∈ ∂Ω,

u(0) = u0, x ∈ Ω.

 ,

(1.1)

∂tci + div (−di∇ci − dizici∇Φ + ciu) = 0, t > 0, x ∈ Ω,
∂νci + zici∂νΦ = 0, t > 0, x ∈ ∂Ω,

ci(0) = c0
i , x ∈ Ω.

 ,

(1.2)

−∆Φ−
∑

j zjcj = σ, t > 0, x ∈ Ω,

∂νΦ + τΦ = ξ, t > 0, x ∈ ∂Ω.

}
.

(1.3)

System (1.1) represents the incompressible Navier-Stokes equations for
the velocity field u and pressure π subject to no-slip boundary conditions,
where the total density and the viscosity are set to 1 for simplicity. We
denote the charge number of species Xi by zi(∈ Z). By convention the
electrical field is −∇Φ, so the term −

∑
j zjcj∇Φ represents the Coulomb

force exerted on the fluid by the (scaled) local charge distribution
∑

j zjcj ,
which is induced by the species mixture.

The evolution of the molar concentration ci is modeled by system (1.2),
a system of electro-diffusion-advection equations. They represent species
mass balances with fluxes according to the Nernst-Planck equation. More
precisely, the mass flux ji of constituent Xi is composed of a Fickian diffusion
term −di∇ci and an electro-migration term −dizici∇Φ due to the electrical
field, where di denotes the diffusivity of species Xi. The total flux Ji is then
the sum of mass flux ji and the convective flux ciu from fluid movement.
The absence of mass flux through the boundary is displayed by the so-called
no-flux boundary condition; as a consequence total mass of each species is
conserved.

Finally the electrical potential is determined via the Poisson prob-
lem (1.3), an elliptic boundary value problem which comes from Maxwell’s
equations of electro-statics. The right-hand side σ denotes the (given) charge
distribution within Ω and again

∑
j zjcj is the charge distribution resulting

from the species mixture. By τ > 0 we mean the (constant) capacity of
the boundary and ξ is a given datum connected with an external electrical
field. This boundary condition can be motivated by the well-known fact
that electro-chemical double layers are generally present on the boundary,
i.e. the boundary is expected to be charged, see [27]. Accordingly, we may
consider the boundary ∂Ω locally as plate capacitor which results in a Robin
boundary condition, see e.g. [10] for more details.
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For a derivation of system (1.1)-(1.3) on the basis of fundamental mass
and momentum balances and the system of Maxwell-Stefan equations for
the determination of diffusive flux for species mass, we refer to [10]. Its
applicability for the non-dilute case is discussed in [16].

For the description of electrolyte solutions the so-called electro-neutrality
condition

∑
i zici = 0 has been used frequently in the mathematical lit-

erature, see e.g. [3, 11, 37]. However, this simplification seems not to be
adequate when modeling electro-kinetic flows, since the electric force being
exerted on the fluid vanishes and so no fluid motion can be expected, i.e.,
the Nernst-Planck system decouples from the Navier-Stokes equations.

In papers of P. Biler with W. Hebisch, T. Nadzieja and with J. Dol-
beault [5, 7, 6], Y.S. Choi and R. Lui, see [13, 14], as well as in papers of
H. Gajewski, A. Glitzky, K. Gröger and R. Hünlich, e.g. [17, 21, 18, 22, 23],
the electro-neutrality condition is not employed. Instead, a system consist-
ing of the Nernst-Planck equations and a Poisson equation, system (1.2)-
(1.3) with u = 0 and σ = 0, is investigated. Thus, no fluid motion is taken
into account and, hence, no momentum balance is accounted for. Employ-
ing suitable Lyapunov functionals, the existence of unique global solutions
in two dimensions is proven and a careful analysis of the long-time behav-
ior is provided. The situation in higher space dimensions is treated in the
work [9], where global weak solutions are constructed.

In [10, 24, 30, 31] the afore mentioned system of Nernst-Planck equations
and the Poisson equation is complemented by the Navier-Stokes system.
However, apart from the first one, those works allow only for two oppositely
charged species with equal and constant diffusivities, which simplifies the sit-
uation considerably, in general. From the physical point of view particularly
the latter assumption is rather strong. In fact, the diffusivity of one species
will in general depend on the full composition of the system, cf. [15]. To
be more precise, the values of the diffusivities of individual constituents can
differ significantly, up to orders of magnitude. Apart from different charge
numbers in general, it is therefore significant to model each of the species
concentrations. While in [30, 31] the electrostatic potential is assumed to
satisfy homogeneous Neumann and Dirichlet conditions respectively, [24]
accounts for mixed Dirichlet-Neumann boundary conditions, however, the
connection of those setups to the possible occurrence of double layers at the
boundary is not clear. In fact, e.g. homogeneous Neumann conditions even
imply the boundary to remain electrically neutral, thus, boundary charges
are even ruled out.

In [10] the Navier-Stokes-Nernst-Planck-Poisson system in the situation
with N species with constant and possibly different diffusivities for different
species is examined. It seems that so far [10] is the first work that considers
the Navier-Stokes-Nernst-Planck-Poisson system in this generality. Local
well-posedness in any space dimension and global well-posedness in two di-
mensions in terms of strong L2-solutions are established and exponential
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convergence to unique steady states is proved. Corresponding results in
three dimensions have only been shown under somewhat restrictive addi-
tional assumptions. These include:

(i) The initial data are small, regular and sufficiently close to the steady
state solution, [30], see also [7].

(ii) Only two oppositely charged species with equal and constant diffu-
sivities are present, [30, 31].

(iii) There is an a priori bound on c in L∞(0,∞;L2(Ω)), [30], see also [14].

Existence of unique global-in-time solutions in three dimensions without any
additional assumptions cannot be expected for two reasons. Firstly, as it
is well-known, the question for global well-posedness for the Navier-Stokes
system in 3D is unsolved up to the present day. Secondly, the nonlinearity in
the Nernst-Planck equation - similarly to the Navier-Stokes case - prevents
the derivation of suitable global (strong) estimates via the energy method.
A sufficient criterion to guarantee those estimates is assumption (iii), for
more details see [10, 14].

The goal of this paper is the construction of a global weak solution to
system (1.1)-(1.3) without any of those restrictions. In other words, we
allow for arbitrary L2-initial data, we consider the N -species case, where
the corresponding diffusivities are not restricted to being constant or the
same for different species, and we do not suppose any a priori bounds.

The key ingredient in our approach is the energy function V0, defined by

V0 :=
1

2

∫
Ω
|u|2 +

∫
Ω

N∑
i=1

ci log ci +
1

2

∫
Ω
|∇Φ|2 +

τ

2

∫
∂Ω
|Φ|2. (1.4)

It turns out that formally V0 is a Lyapunov functional on system (1.1)-(1.3),
cf. [10, 30]. In other words, whenever (u, π, c,Φ) solves system (1.1)-(1.3),
its time derivative d

dtV0, the dissipation rate, is nonpositive. By integrating
the dissipation rate over 0 to T in time, we directly obtain one further
natural a priori bound for the solution of (1.1)-(1.3). In general, no further
energy estimates are at hand. However, we will show that those estimates -

the bounds on V0 and
∫ T

0
d
dtV0 - are sufficient to find a global weak solution.

This article is organised as follows. In Section 2 we state our no-
tation and give a precise statement of our main result. Section 3 quotes
to some analytical results which will be employed in the sequel. For the
existence of a global weak solution to system (1.1)-(1.3) we construct global
solutions for an approximate version of (1.1)-(1.3) in Section 4. This is done
in several steps. First we consider the corresponding approximate Nernst-
Planck-Poisson subsystem and show global well-posedness in Subsection 4.1.
This will allow for finding unique local-in-time solutions for the full approx-
imate system in Section 4.2. Then energy estimates on the basis of the
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function V0, defined in (1.4), are carried out in Section 4.3. This implies
that the just mentioned local-in-time solutions exist globally. Finally, Sec-
tion 5 contains the proof of our main result, which is based on maximal
Lp-regularity and relative compactness of approximate solutions.

2. Preliminaries and Main Result

Let us fix some notation. Throughout this work Ω ⊂ Rn, n ∈ N, denotes
a domain with boundary ∂Ω. Time-space cylinders are usually written as
QT = (0, T )×Ω and ΣT = (0, T )× ∂Ω for T ∈ (0,∞). Spaces of continuous
functions will be denoted by C(Ω) in a standard way and we write C∞0 (Ω)
for the space of smooth functions with compact support defined on Ω. Note
that C∞(Ω) = {v|Ω : v ∈ C∞0 (Rn)}, if Ω is a bounded domain. We write
Lp(Ω) and Wm,p(Ω) for the usual Lebesgue and Sobolev spaces 1 ≤ p ≤ ∞
and m ∈ N0. The space of smooth compactly supported solenoidal vector
fields is denoted by C∞0,σ(Ω). We write

Lpσ(Ω) := C∞0,σ(Ω)
‖·‖Lp

for the space of solenoidal Lp-functions. For s ∈ R+\N0 we define the
Sobolev-Slobodeckii spaces W s

p (Ω) = (Lp(Ω),Wm,p(Ω))p,s/m and the Bessel
potential spaces Hs

p(Ω) = [Lp(Ω),Wm,p(Ω)]s/m, see e.g. [1, 35], where m ∈ N
with m > s and (·, ·)p,θ and [·, ·]θ denotes the real and the complex interpola-
tion functor respectively, see [4]. We write C(Ω)+, Lp(Ω)+, etc. for positive
cones of nonnegative functions. We define for m ∈ N and 1 < p < ∞
the dual spaces W−m,p(Ω) := (Wm,p′

0 (Ω))′ and W−m,p0 (Ω) := (Wm,p′(Ω))′,
where 1

p + 1
p′ = 1. We do not distinguish between spaces of scalar functions

and spaces of vector fields, i.e. we write also Lp(Ω) for Lp(Ω)n, for example.
For r ≥ 0 we also set

W r,p
loc (Ω) := {u : Ω→ Rn; u ∈W r,p(K) for every compact K ⊂ Ω}.

For a Banach space X the corresponding X-valued function spaces are de-
noted by C(Ω, X), Lp(Ω, X), etc.

In view of the affinely linear character of the Poisson equation (1.3) we
split the potential Φ into a c-independent part Φ1 and a c-dependent part
Φ2, such that Φ = Φ1 + Φ2 and

−∆Φ1 = σ in Ω, ∂νΦ1 + τΦ1 = ξ on ∂Ω, (2.1)

−∆Φ2 =

N∑
j=1

zjcj in Ω, ∂νΦ2 + τΦ2 = 0 on ∂Ω. (2.2)

Note that (1.3) is equivalent to (2.1)-(2.2).

Having this notation at hand we are in position to formulate our main
result.
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Theorem 2.1. Let Ω ⊂ R3 be a bounded C4−-domain. Let the data to
problem (1.1)-(1.3) satisfy the following conditions:

(a) di ∈ L∞loc(R+;L∞(Ω)) such that for all T > 0 there is a positive

number dT with

0 < d
−1
T ≤ di(t, x) ≤ dT <∞ for a.e. (t, x) ∈ QT . (2.3)

(b) (u0, c0) ∈ L2
σ(Ω)× L2(Ω)+

(c) (σ, ξ) ∈ Lr(Ω)×W 1−1/r
r (∂Ω) for some r > 3.

Then there exist

(u, c) ∈ L∞(0,∞;L2
σ(Ω)× L1(Ω)+),

Φ = Φ1 + Φ2 ∈W 2,r(Ω) + L∞(0,∞;W 1,2(Ω)),

π = ∂tπ̂ with π̂ ∈ L4/3
loc ([0,∞);L2

loc(Ω)),

such that (1.1)-(1.3) is satisfied in the following sense:

• For all T ∈ (0,∞), u ∈ L2(0, T ;W 1,2
0 (Ω)), c ∈ L1(0, T ;W 1, 3

2 (Ω)),

Φ2 ∈ L1(0, T ;W 3, 3
2 (Ω)) ∩ C([0, T ];Lp(Ω)), p ∈ [1, 6).

• The couple (u, c) satisfies (1.1)-(1.2) in the following sense: For
all φ ∈ C1([0, T ];C∞0,σ(Ω)) and ψ ∈ C1([0, T ], C∞(Ω)) with φ(T ) =

ψ(T ) = 0 we have∫
QT

−u∂tφ+∇u · ∇φ+ (u · ∇)u · φ =

∫
Ω
u0φ(0)−

N∑
j=1

zj

∫
QT

cj∇Φ · φ,

(2.4)∫
QT

−ci∂tψ + (di∇ci + dizici∇Φ− ciu)∇ψ =

∫
Ω
c0
iψ(0). (2.5)

• Φ1 is the unique strong solution to (2.1) and Φ2 is the unique strong
solution to (2.2) in the sense that for a.e. t ∈ R+

−∆Φ2 =
N∑
j=1

zjcj in Ω, ∂νΦ2 + τΦ2 = 0 on ∂Ω, (2.6)

i.e. Φ = Φ1 + Φ2 is a strong Lp-solution to (1.3).
• π is an associated pressure, i.e. (1.1) is satisfied in a distributional

sense.

Remark 1. We give a remark why we restrict our main result to the physi-
cally relevant cases of dimension n ≤ 3. The crucial point for this restriction
resides in the estimation of the term J 2

i in (4.27) which essentially exploits

compactness of the embedding W 1,2(Ω) ↪→ L8/3(∂Ω). Already for dimension
n = 4 this embedding becomes sharp, hence no compactness is available. To
the authors it is not clear if then estimate (4.17) still holds true. This, how-
ever, essentially enters in the proof of compactness of the approximating
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sequence for the weak solution given through Theorem 2.1 (see Section 5).
For the pure Nernst-Planck-Poisson system (i.e. without Navier-Stokes) the
problem of global-in-time solvability in higher dimensions is already ad-
dressed in [9]. There the authors circumvent the appearance of boundary
integrals of the form J 2

i by constructing spacially local solutions in the
interior of Ω.

3. Tools for the proof

Because of the divergence-free condition and the no-slip boundary condi-
tion for the velocity field u we may reformulate (1.1) as an evolution equation
with the help of the Stokes operator AS = −P∆, where P is the Helmholtz
projection, see e.g. [19, 33], and

D(AS) = W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ Lpσ(Ω).

More precisely, (1.1) is equivalent to solving

∂tu+ASu+ P (u · ∇)u+
∑

j zjP (cj∇Φ) = 0, t > 0,

u(0) = u0.

}
. (3.1)

The associated pressure π can then be recovered by well-known methods,
see [33].

Let us recall the following well-known properties of the Stokes operator,
see e.g. [20, 28, 33, 34].

Proposition 1. Let 1 < p < ∞ and Ω ⊂ Rn be a bounded C3-domain.
Then (−∞, 0] ⊂ ρ(AS) and AS is sectorial, i.e., for every θ ∈ (0, π) there is
C = C(p, ϕ0) > 0 such that

‖λ(λ+AS)−1‖L(Lpσ) ≤ C (λ ∈ Σθ),

where Σθ = {z ∈ C \ {0} : | arg z| < θ}. Furthermore, AS enjoys the
property of maximal regularity, i.e. for any f ∈ Lp(0, T ;Lpσ(Ω)) there is a
solution w ∈W 1,p(0, T ;Lpσ(Ω)) ∩ Lp(0, T ;D(AS)) to the problem

d

dt
w +ASw = f, t > 0, w(0) = 0.

For its fractional powers it holds true that for α ∈ (0, 1),

D(AαS,(p)) = H2α
p (Ω) ∩Hα

p,0(Ω) ∩ Lpσ(Ω). (3.2)

An Aubin-Simon compactness result will be employed frequently through-
out this article. For convenience we state it here in the form of [32, Corol-
lary 4].

Proposition 2. Let T ∈ (0,∞) and X0, Y,X1 be Banach spaces such that
X0 is compactly embedded in Y and Y is continuously embedded in X1.
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(i) Let 1 ≤ p < ∞. If F is bounded in Lp(0, T ;X0) and d
dtF := { ddtf :

f ∈ F} is bounded in L1(0, T ;X1), then F is relatively compact in
Lp(0, T ;Y ).

(ii) If F is bounded in L∞(0, T ;X0) and d
dtF is bounded in Lr(0, T ;X1)

for some r > 1, then F is relatively compact in C([0, T ];Y ).

4. Global well-posedness for an approximate problem

The goal of this section is to show the existence of global solutions to
an approximate version of (1.1)-(1.3). As we will see, employing smoothing
operators represented by resolvents of the Robin-Laplacian and the Stokes
operator serve well for this purpose. Global well-posedness of the perturbed
version is based on

(i) the Leray-Schauder fixed-point theorem for unique global weak so-
lutions for the Nernst-Planck-Poisson subsystem, Section 4.1,

(ii) the contraction mapping principle in order to have unique local-in-
time solutions for the full approximate system, Section 4.2,

(iii) energy estimates from a perturbed version of V0, which show that
the local-in-time solutions can be uniquely extended up to any finite
time, Sections 4.3-4.4.

For the formulation of the just mentioned approximate version of (1.1)-
(1.3) we introduce the following notation. For α ∈ (0, 1) and ε > 0 we
set Rε := (1 + εAS)−1, Rαε := (1 + εAαS)−1 (Throughout, no powers of Rε
will occur, so this should not cause any confusion.), Bε := 1 − ε∆R and
Sε := B−1

ε . Remark that due to n = 3 and Sobolev’s embedding theorem
we have

‖Rεu‖L∞(Ω) ≤ C‖Rεu‖W 2,2(Ω) ≤ C‖u‖L2
σ(Ω), u ∈ L2

σ(Ω). (4.1)

For 1 < p <∞ we have

‖Rεv‖Lpσ(Ω) ≤ C‖v‖Lpσ(Ω), ‖Sεw‖Lp(Ω) ≤ C‖w‖Lp(Ω)

for v ∈ Lpσ(Ω), w ∈ Lp(Ω), where here C > 0 does not depend on ε. For Rαε
we observe that

‖Rαε v‖Lpσ(Ω) ≤ C‖v‖Lpσ(Ω), v ∈ Lpσ(Ω), α ∈ (0, 1),

where C > 0 is also independent of ε > 0, see [2, Corollary 4.6.11].

With this notation at hand we build up an approximate version of (1.1)-
(1.3) as follows.

∂tu+ASu+ P (Rεu · ∇)u+
∑

j zjR
1/2
ε (P (cj∇Φ)) = 0, t > 0,

u(0) = u0.

}
,

(4.2)
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∂tci + div(−di∇ci − dizici∇Φ + ciR
1/2
ε u) = 0, t > 0, x ∈ Ω,

∂νci + zici∂νΦ = 0, t > 0, x ∈ ∂Ω,

ci(0) = c0
i , x ∈ Ω.

 ,

(4.3)

−∆Φ2 = Sε
∑

j zjcj , t > 0, x ∈ Ω,

∂νΦ2 + τΦ2 = 0, t > 0, x ∈ ∂Ω.

}
,

(4.4)

where Φ = Φ1 + Φ2 and Φ1 solves (2.1).

Remark 2. The role of the smoothing terms in system (4.2)-(4.4) is not
exclusively for regularity reasons. Indeed, it would be possible to construct

a local-in-time solution without R
1/2
ε u in (4.3). However, the regularization

of ciu incorporated in (4.3) is present in accordance to the smoothing of
the term

∑
j zjcj∇Φ in (4.2), see the proof of Lemma 4.3. In other words,

it keeps the energy structure, which in turn allows us to extend the local
solution.

4.1. The Nernst-Planck-Poisson subsystem. In order to construct a
global solution to (4.2)-(4.4) we first investigate existence and uniqueness of
global weak solutions to the following subsystem of Nernst-Planck-Poisson:

∂tci + div(−di∇ci + civi − dizici∇Φ2) = 0, t > 0, x ∈ Ω,

−di∂νci + civi · ν − dizici∂νΦ2 = 0, t > 0, x ∈ ∂Ω,

ci(0) = c0
i , x ∈ Ω.

 ,

(4.5)

−∆Φ2 = Sε(
∑

j zjcj), t > 0, x ∈ Ω,

∂νΦ2 + τΦ2 = 0, t > 0, x ∈ ∂Ω.

}
,

(4.6)

where vi is a given function.

Lemma 4.1. Let Ω ⊂ R3 be a bounded C4−-domain, T ∈ (0,∞), s > 3 and
let the following conditions hold true:

• di ∈ C(QT ; (0,∞)) satisfying (2.3) with ∇di ∈ L∞(0, T ;Ls(Ω)).
• vi ∈ L∞(0, T ;Ls(Ω)).
• c0 ∈ L∞(Ω)+.

Then for the problem (4.5), (4.6) there exist a unique vector of concentra-

tions c ∈ L∞(QT )+ ∩ L2(0, T ;W 1,2(Ω)) with ∂tc ∈ L2(0, T ;W−1,2
0 (Ω)) and

a Φ2 ∈ C([0, T ],W 4,2(Ω)), such that (4.5) is satisfied in the sense that for
all ψ ∈ C∞(QT ) such that ψ(T ) = 0,∫
QT

−ci∂tψ + (di∇ci + civi + dizici∇Φ2)∇ψ =

∫
Ω
c0
iψ(0), i = 1, . . . , N,

(4.7)
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and (4.6) is satisfied in a pointwise sense.

Proof. Existence. We will use Leray-Schauder’s fixed-point theorem. To
this end let us fix 3 < r <∞, set X := L∞(0, T ;W 1,r(Ω)), and let Φ2 ∈ X.
According to [26, Theorem 5.1 on page 170], there exists a unique (non-

negative) c ∈ L∞(QT )+ ∩ L2(0, T ;W 1,2(Ω)) with ∂tc ∈ L2
(
0, T ;W−1,2

0 (Ω)
)
,

satisfying (4.5) with data Φ2 in the sense of (4.7), see also [8]. Moreover,

c ∈ C([0, T ];L2(Ω)), so we can define Φ̂2 ∈ C([0, T ];W 4,2(Ω)) as the solu-
tion of (4.6) with data c. Note that we have W 4,2(Ω) ↪→ C1(Ω) ↪→W 1,r(Ω),
which is even compact. Therefore we can define

T : X → X, Φ2 7→ Φ̂2.

Let us show that T maps bounded sets into relatively compact ones. To
this end suppose (Φm

2 )m∈N is a bounded sequence in X. Let cm be the solu-

tion to (4.5) with data Φm
2 and let Φ̂m

2 = T Φm
2 . Using [8], ∂tc

m is bounded

in L2(0, T ;W−1,2
0 (Ω)) and cm is bounded in L∞(QT ). Differentiating (4.6)

in time ∂tΦ̂
m
2 is bounded in L2(0, T ;W 3,2(Ω)). Since cm is also bounded in

L∞(QT ), using elliptic Lp-regularity, Φ̂m
2 is bounded in L∞(0, T ;W 4,p(Ω))

for any p < ∞. Choosing p = 2 we already observed that the embedding
W 4,2(Ω) ↪→ W 1,r(Ω) is compact. Then, using Aubin-Simon, see Proposi-

tion 2, the set
{

Φ̂m
2 ,m ∈ N

}
is relatively compact in X.

To prove continuity of T , let Φm
2 → Φ2 in X. As a consequence

{
Φ̂m

2 =

T Φm
2 , m ∈ N

}
is relatively compact in X. Let Φ̂2 be a limit point. Sim-

ilarly as before, the estimates mentioned above guarantee that (cm)m∈N is
bounded in L∞(QT ) and relatively compact in L2(QT ) by Aubin-Simon.
Therefore, we may extract a subsequence that converges a.e. and in any
Lp(QT ) for p <∞ to a limit c, and such that ∇cm → ∇c weakly in L2(QT ).
Then we pass to the limit m → ∞ in (4.7) and using uniqueness for linear
parabolic equations from [26], c is the solution of (4.5) with data Φ2. Then
we pass to the limit m→∞ in equation (4.6), so that Φm

2 → Φ2, where Φ2

is the solution of (4.6) with data c, which yields Φ̂2 = T Φ2. Thus, the only
possible limit point for (T Φm

2 )m∈N is T Φ2 and (T Φm
2 )m∈N lies in a compact

subset of X. This implies T Φm
2 → T Φ2, whence the continuity of T .

Now, let λ ∈ [0, 1] and Φλ
2 = λT Φλ

2 with Φλ
2 ∈ X. Let us denote the solution

to (4.5) with data Φλ
2 by cλ. By integration of (4.5) on Qt for any t ∈ (0, T ),

we have ∫
Ω
cλi (t) =

∫
Ω
c0
i , i = 1, . . . , N. (4.8)

Nonnegativity of cλ implies that (cλ)λ is bounded in L∞(0, T ;L1(Ω)). Using
elliptic L1- and Lp regularity theory, for equation (4.6), (Φλ

2)λ is bounded
in L∞(0, T ;W 3,q(Ω)) for any q ∈ [1, 3

2), since Φλ
2 satisfies (4.6) with data
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λSε
∑

j zjc
λ
j instead of Sε

∑
j zjcj . Thus, (Φλ

2)λ is bounded in

L∞(0, T ;W 3,1(Ω)) ↪→ L∞(0, T ;W 1,r(Ω)).

Therefore, the set {Φ2 ∈ X : ∃λ ∈ [0, 1] : Φ2 = λT Φ2} is bounded in X.

By Leray-Schauder’s fixed-point theorem, T has a fixed point Φ2. Thus, the
couple (c,Φ2) satisfies (4.5)-(4.6) in the sense as claimed and by construction
we have Φ2 ∈ C([0, T ];W 4,2(Ω)).

Uniqueness. Let (c,Φ2), (ĉ, Φ̂2) be two solutions to (4.5)-(4.6). Then we
have∫

QT

−(ci − ĉi)ψt +∇ψ ×(
di∇(ci − ĉi) + (ci − ĉi)vi + dizi

(
(ci − ĉi)∇Φ2 + ĉi∇(Φ2 − Φ̂2)

))
= 0

(4.9)

for all ψ ∈ C∞(QT ) with ψ(T ) = 0. The diffusivities di are bounded on
QT from below and from above by (2.3) and from the proof of existence

we know that the L∞(Lr(Ω))-norms of ∇Φ2,∇Φ̂2 are finite for some r > 3.
We also have v ∈ Lr(Ω). So testing (4.9) formally with ψ = (ci − ĉi)χ(0,t0),
t0 ∈ (0, T ), by employing the Hölder and the Young inequality as well as
the Sobolev embedding it is straight forward to derive an estimate as

‖(ci − ĉi)(t0)‖2L2(Ω) + d
−1
T

∫
Qt0

|∇(ci − ĉi)|2

≤ d
−1
T

2

∫
Qt0

|∇(ci − ĉi)|2 + C

∫
Qt0

|ci − ĉi|2.

Since (ci − ĉi)(0) = 0, Gronwall’s inequality implies ci = ĉi, whence unique-
ness. It is possible to make this computation rigorous e.g. by choosing test

functions ψh(t) := 1
2h

∫ t+h
t−h χ(0,t0)(ci − ĉi)(s)ds, h > 0 small, and passing to

the limit h→ 0. �

Remark 3. We will frequently refer to (4.8) (without parameter λ) as mass
conservation.

4.2. Local-in-time solutions for the approximate problem. Let T0 >
0 and assume the following stronger conditions on the data to problem (4.2)-
(4.4):

(A1) di ∈ C
(
QT0 ; (0,∞)

)
satisfying (2.3) with ∇di ∈ L∞(0, T0;Ls(Ω)) for

some s > 3.
(A2) (u0, c0) ∈ D(A

1/2
S )× L∞(Ω)+,

where, unless stated otherwise, from now on AS denotes the L2-realization
of the Stokes operator.
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Let the Banach space XT be defined by

XT := C([0, T ];D(A
1/2
S )).

Note that D(A
1/2
S ) = W 1,2

0 (Ω) ∩ L2
σ(Ω) up to equivalent norms. We equip

XT with the norm ‖ · ‖T given by

‖u‖T := sup
t∈[0,T ]

(
‖u(t)‖L2 + ‖A1/2

S u(t)‖L2

)
, u ∈ XT .

Let u ∈ XT . Note that u ∈ L∞(0, T ;L6(Ω)) by Sobolev’s embedding theo-

rem and that ∇Φ1 ∈ L∞(0, T ;L∞(Ω)). Setting vi = −dizi∇Φ1 + R
1/2
ε u in

Lemma 4.1 there is a unique weak solution (c,Φ2) ∈ YT ,

YT :=
(
L2(0, T ;W 1,2(Ω)) ∩ L∞(QT )

)
× L∞(0, T ;W 4,2(Ω)),

to problem (4.3)-(4.4). Therefore we may define operators Fε, Gε by

Fεu := P (Rεu · ∇)u, u ∈ XT ,

Gεu :=
N∑
j=1

zjR
1/2
ε (P (cj∇Φ)), u ∈ XT ,

with Φ = Φ1 + Φ2 as before. We now construct approximate solutions to
system (4.2)-(4.4) by solving the variation of constants formula for (4.2)

u(t) = e−tASu0 −
∫ t

0
e−(t−s)AS

(
Fεu(s) +Gεu(s)

)
ds, t > 0. (4.10)

Lemma 4.2. Suppose conditions (A1), (A2) hold true. Let ε > 0 and set

Z(M,T ) := {u ∈ XT ; u(0) = u0, ‖u‖T ≤M}.

Then there are M > 0, T ∈ (0, T0) such that problem (4.2)-(4.4) has a
unique solution (u, c,Φ2) ∈ Z(M,T )× YT , in the following sense:

• u is a mild solution to (4.2), i.e. it satisfies (4.10).
• c is a weak solution to (4.3), i.e. for all ψ ∈ C∞(QT ) with ψ(T ) = 0

it holds true that∫
QT

−ci∂tψ + (di∇ci + dizici∇Φ− ciR1/2
ε u)∇ψ =

∫
Ω
c0
iψ(0),

where Φ = Φ1 + Φ2.
• Φ is a strong solution to (4.4).

Proof. For the proof it is sufficient to show that (4.10) has a unique solution.
For this purpose let Γε be defined as

(Γεu)(t) := e−tASu0 −
∫ t

0
e−(t−s)AS

(
Fεu(s) +Gεu(s)

)
ds, u ∈ XT .
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We will show that Γε is a contraction on Z(M,T ), if M,T > 0 are chosen
in an appropriate way.

Self-map property. Let u ∈ Z(M,T ). For the term Fεu we estimate with
Hölder’s inequality, Sobolev’s embedding theorem and Young’s inequality

‖Fεu(t)‖L2 ≤ ‖(Rεu(t) · ∇)u(t)‖L2 ≤ ‖Rεu(t)‖L∞‖∇u(t)‖L2

≤ C‖u(t)‖L2‖∇u(t)‖L2 ≤ C
(
‖u(t)‖2L2 + ‖A1/2

S u(t)‖2L2

)
. (4.11)

For Gε we need a priori estimates for Φ2 and c. Checking the proof
of Lemma 4.1 the L∞(QT )-norms of c and of ∇Φ = ∇Φ1 + ∇Φ2 can be
estimated by a constant which depends on T0 and ‖u‖T . By the fact that
‖u‖T ≤M it hence depends only on M and T0. This yields

‖Gεu(t)‖L∞(Ω) ≤ C(M,T0), for a.e. t ∈ (0, T ). (4.12)

With the help of relations (4.11)-(4.12) we may estimate

‖Γεu(t)‖L2

≤ ‖u0‖L2 +

∫ t

0
‖e−(t−s)AS‖L(L2

σ)

(
‖Fεu(s)‖L2 + ‖Gεu(s)‖L2

)
ds

≤ ‖u0‖L2 + C

(∫ t

0

(
‖u(s)‖2L2 + ‖A1/2

S u(s)‖2L2 + C(M,T0)
)
ds

)
≤ ‖u0‖L2 + CT

(
M2 + C(M,T0)

)
,

‖A1/2
S Γεu(t)‖L2

≤ ‖A1/2
S u0‖L2 +

∫ t

0
‖A1/2

S e−(t−s)AS‖L(L2
σ)

(
‖Fεu(s)‖L2 + ‖Gεu(s)‖L2

)
ds

≤ ‖A1/2
S u0‖L2 + C

∫ t

0

1√
t− s

(
M2 + C(M,T0)

)
ds

≤ ‖A1/2
S u0‖L2 + C

√
T
(
M2 + C(M,T0)

)
.

Choosing first M > 0 large enough such that

‖u0‖L2 + ‖A1/2
S u0‖L2 ≤

M

2

and then T > 0 small enough such that

C(T +
√
T )
(
M2 + C(M,T0)

)
≤ M

2

ensures Γε to be a self-map.

Contraction property. Let u1, u2 ∈ Z(M,T ). We estimate

‖Fεu1(t)− Fεu2(t)‖L2

≤
∥∥(Rεu

2(t) · ∇)
(
u1(t)− u2(t)

)∥∥
L2 +

∥∥((Rε(u1(t)− u2(t))) · ∇
)
u1(t)

∥∥
L2

≤
∥∥Rεu2(t)

∥∥
L∞

∥∥∇(u1(t)− u2(t)
)∥∥
L2 +

∥∥Rε(u1(t)− u2(t)
)∥∥
L∞

∥∥∇u1(t)
∥∥
L2
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≤ C(M)
∥∥u1(t)− u2(t)

∥∥
T
.

For u1, u2 let (c1,Φ1
2) and (c2,Φ2

2) be the corresponding solutions to (4.3)-

(4.4) with data u1, u2 respectively. Setting vk = R
1/2
ε uk, k = 1, 2, it holds

true that

∂t(c
1
i − c2

i ) + div
(
− di∇(c1

i − c2
i )− dizic2

i∇(Φ1
2 − Φ2

2)

− dizi(c1
i − c2

i )(∇Φ1 +∇Φ1
2) + (c1

i − c2
i )v

1 + c2
i (v

1 − v2)
)

= 0

in a weak sense. Recall that from (4.4) we can estimate ‖∇(Φ1
2 − Φ2

2)‖L2 ≤
C‖c1− c2‖L2 by elliptic regularity. Since the L∞(QT )-norms of ck,∇Φk

2 are
controlled by a constant depending only on M,T0 and since we have (4.1) at
our disposal, multiplication with c1

i − c2
i and integration over Ω employing

integration by parts yields

1

2

d

dt
‖c1
i − c2

i ‖2L2 + d
−1
T ‖∇(c1

i − c2
i )‖2L2

≤ C(M,T0)‖c1 − c2‖L2‖∇(c1
i − c2

i )‖L2

+ C(M,T0)‖c1
i − c2

i ‖L2‖∇(c1
i − c2

i )‖L2

+ C(M,T0)‖v1 − v2‖L2‖∇(c1
i − c2

i )‖L2 .

Taking into account that ‖v1−v2‖L2 ≤ C‖u1−u2‖L2 and employing Young’s
inequality we deduce

1

2

d

dt
‖c1
i − c2

i ‖2L2 ≤ C
(
dT ,M, T0

)(
‖c1
i − c2

i ‖2L2 + ‖c1 − c2‖2L2 + ‖u1 − u2‖2L2

)
,

hence summation over i and Gronwall’s inequality result in

‖(c1 − c2)(t)‖2L2 ≤ C
(
dT ,M, T0

)
‖u1 − u2‖T exp

(
C
(
dT ,M, T0

)
· T
)

for t ∈ (0, T ). Thus, we infer for the Gε-term

‖Gεu1(t)−Gεu2(t)‖L2

≤ C
(∥∥∥ N∑

j=1

(c1
j − c2

j )(t)∇(Φ1 + Φ1
2)(t)

∥∥∥
L2

+
∥∥∥ N∑
j=1

c2
j (t)∇(Φ1

2 − Φ2
2)(t)

∥∥∥
L2

)
≤ C

(
dT ,M, T0

)
‖u1 − u2‖T exp

(
C
(
dT ,M, T0

)
· T
)

+ C
(
dT ,M, T0

)
‖(c1 − c2)(t)‖L2

≤ C
(
dT ,M, T0

)
exp

(
C
(
dT ,M, T0

)
T
)
‖u1 − u2‖T ,

where we again used elliptic regularity in the second step in order to estimate
‖∇(Φ1

2 − Φ2
2)‖L2 . Finally we deduce the contraction property:

‖Γεu1 − Γεu
2‖T ≤

∫ t

0
‖Fεu1(s)− Fεu2(s)‖L2 + ‖Gεu1(s)−Gεu2(s)‖L2ds

+ C

∫ t

0

1√
t− s

(
‖Fεu1(t)− Fεu2(t)‖L2 + ‖Gεu1(t)−Gεu2(t)‖L2

)
ds
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≤ C
(
dT ,M, T0

)(
T +
√
T
)(

1 + exp
(
C
(
dT ,M, T0

)
· T
))
‖u1 − u2‖T .

With possibly smaller choice of T > 0 such that

C
(
dT ,M, T0

)(
T +
√
T
)(

1 + exp
(
C
(
dT ,M, T0

)
· T
))
≤ 1

2
,

the map Γε becomes a contraction on Z(M,T ). Thus, there is a unique fixed
point. �

4.3. Energy estimates. We will work with the auxiliary variable Ψ, de-
fined by

Ψ = Sε

( N∑
j=1

zjcj

)
, (4.13)

which is equivalent to

(1− ε∆)Ψ =
N∑
j=1

zjcj in Ω, ∂νΨ + τΨ = 0, on ∂Ω.

Hence we have −∆Φ2 = Ψ with the approximate potential Φ2 solving (4.6).
In the following, we derive a priori estimates that assure the local solution
(u, c,Φ2) from Lemma 4.2 to exist globally on the one hand. On the other
hand, they will allow us to pass to the limit ε→ 0 in equations (4.3)-(4.4).
As already mentioned above, the function V0, defined by

V0(t) =
1

2

∫
Ω
|u|2 +

∫
Ω

N∑
i=1

ci log ci +
1

2

∫
Ω
|∇Φ|2 +

τ

2

∫
∂Ω

Φ2,

is a Lyapunov functional for system (1.1)-(1.3), see e.g. [10]. In the subse-
quent lemma, we show that our approximation procedure does preserve this
energetic structure:

Lemma 4.3. Let (u0, c0) ∈ L2
σ(Ω) × L2(Ω)+ and suppose that (u, c,Φ2)

satisfies (4.2)-(4.4) in the sense of Lemma 4.2 on the maximal time interval
[0, Tmax), let Ψ be defined as in (4.13) and set

V (t) =
1

2

∫
Ω
|u|2 +

∫
Ω

N∑
i=1

ci log ci +
1

2

∫
Ω
|∇Φ|2 +

τ

2

∫
∂Ω

Φ2

+ ε

(
1

2

∫
Ω
|Ψ|2 +

∫
Ω
σΨ +

∫
∂Ω
ξΨ

)
.

Then

(i)

d

dt
V (t) = −

∫
Ω
|∇u|2 −

∫
Ω

N∑
i=1

1

dici
|di∇ci + dizici∇Φ|2 ≤ 0. (4.14)
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(ii) There is C > 0 (independent of t and ε), such that for almost all
t ∈ (0, T ) we have

‖Ψ(t)‖L3/2(Ω) + ‖Ψ(t)‖L1(∂Ω) ≤
C

ε
. (4.15)

(iii) There is C > 0 (independent of T and ε), such that∫
QT

|∇u|2 +

∫
QT

N∑
i=1

1

dici
|di∇ci + dizici∇Φ|2 ≤ C. (4.16)

(iv) There is a constant C = C(T ) > 0 not depending on ε > 0 such that∫
QT

|∇u|2 +

∫
QT

N∑
i=1

|∇ci|2

ci
+ ci|∇Φ|2 + |∆Φ|2 ≤ C. (4.17)

Proof. We only provide a formal proof, Remark 4 will indicate how the
computations can be made rigorous. Set ji = −di∇ci − dizici∇Φ and Ji =

ji + ciR
1/2
ε u. We compute

d

dt

∫
Ω

N∑
i=1

ci log ci =

∫
Ω

N∑
i=1

(log ci + 1) div(di∇ci + dizici∇Φ− ciR1/2
ε u)

=

∫
Ω

N∑
i=1

Ji
∇ci
ci

= −
∫

Ω

N∑
i=1

1

dici
Ji(ji + dizici∇Φ)

= −
∫

Ω

N∑
i=1

1

dici
|ji|2 +

∫
Ω

N∑
i=1

zici∇Φ ·R1/2
ε u+

∫
Ω

(R1/2
ε u) · ∇ci

−
∫

Ω

N∑
i=1

ziJi · ∇Φ

= −
∫

Ω

N∑
i=1

1

dici
|ji|2 +

∫
Ω

N∑
i=1

ziR
1/2
ε (P (ci∇Φ)) · u−

∫
Ω

N∑
i=1

ziJi · ∇Φ

(4.18)

by the divergence-free condition of u and self-adjointness of AS . Forming
the dual pairing of (4.2) with u we determine

1

2

d

dt
‖u‖2L2 = −

∫
Ω
|∇u|2 −

∫
Ω

N∑
i=1

ziR
1/2
ε (P (ci∇Φ)) · u, (4.19)

since 〈(Rεu ·∇)u, u〉L2 = 0. For the last term in (4.18) it is easy to see that,
using integration by parts,

−
∫

Ω

N∑
i=1

ziJi · ∇Φ =

∫
Ω

N∑
i=1

zi(div Ji)Φ = −
∫

Ω
∂t

( N∑
i=1

zici

)
Φ
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= −
∫

Ω
(BεΨt) · (Φ1 + Φ2). (4.20)

For the Φ1-term we obtain with integration by parts and exploiting the
boundary condition in (2.1) and the fact that Ψt = −∆Φ2,t = −∆Φt,∫

Ω
[BεΨt]Φ1 = −

∫
Ω

∆Φt · Φ1 − ε
∫

Ω
∆ΨtΦ1

=

∫
Ω
∇Φt · ∇Φ1 + τ

∫
∂Ω

ΦtΦ1 + ε
d

dt

[∫
Ω
σΨ +

∫
∂Ω
ξΨ

]
. (4.21)

With a similar computation we arrive at∫
Ω

[BεΨt]Φ2 =

∫
Ω
∇Φt · ∇Φ2 + τ

∫
∂Ω

ΦtΦ2 +
ε

2

d

dt

∫
Ω
|Ψ|2 (4.22)

for the Φ2-term. Thus, combining (4.20)-(4.22) we conclude

−
∫

Ω

N∑
i=1

ziJi · ∇Φ

= − d

dt

[
1

2

∫
Ω
|∇Φ|2 +

τ

2

∫
∂Ω

Φ2 + ε
(∫

Ω
|Ψ|2 +

∫
Ω
σΨ +

∫
∂Ω
ξΨ
)]
. (4.23)

Thus, (4.14) is a consequence of (4.18), (4.19), and (4.23). Relation (4.15)
is easily seen by mass conservation and elliptic L1-regularity. From (4.14)
and (4.15) V is bounded from above and from below independently of ε,
hence (4.16) follows.

Let us show (4.17). Because of ∇Φ1 ∈ C(Ω), mass conservation, and the
fact that ∆Φ1 = −σ ∈ L2(Ω), it is sufficient to show∫

QT

|∇ci|2

ci
+ ci|∇Φ2|2 + |∆Φ2|2 ≤ C. (4.24)

Recall that 4|∇√ci|2 = |∇ci|2
ci

and 0 < d
−1
T ≤ di ≤ dT < ∞ in QT . So after

expanding the square in (4.16) we get∫
QT

N∑
i=1

(
4|∇
√
ci|2 + z2

i ci|∇Φ2|2 + 2zi∇ci · ∇Φ2

)
≤ C. (4.25)

In this situation after integrating by parts the third term on the left-hand
side we need to deal with a boundary integral:∫
QT

N∑
i=1

zi∇ci ·∇Φ2 = −
∫
QT

N∑
i=1

zici∆Φ2+
N∑
i=1

∫
ΣT

zici∂νΦ2 =: J 1+
N∑
i=1

J 2
i .

(4.26)
Recalling the boundary conditions for Φ2 integral J 2

i can be rephrased by

J 2
i = −

∫
ΣT

τziciΦ2.
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From (i) it is known that ‖Φ‖L∞(W 1,2(Ω)) can be estimated by a constant

independent of ε. The same holds true for Φ2 because of Φ1 ∈ C1(Ω). So
employing Hölder’s inequality there is C > 0 depending on T such that

J 2
i ≥ −C

∫
ΣT

|ciΦ2| ≥ −‖
√
ci‖2L2(L8/3(∂Ω))

‖Φ2‖L∞(L4(∂Ω))

≥ −C‖
√
ci‖2L2(L8/3(∂Ω))

‖Φ2‖L∞(W 1,2(Ω))

≥ −‖∇
√
ci‖2L2(QT ) − C‖

√
ci‖2L2(QT ) ≥ −‖∇

√
ci‖2L2(QT ) − C. (4.27)

In the third step we utilized the compactness of the map W 1,2(Ω) →
L8/3(∂Ω) in order to deduce for δ > 0

‖v‖L8/3(∂Ω) ≤ δ‖∇v‖L2(Ω) + Cδ‖v‖L2(Ω), v ∈W 1,2(Ω). (4.28)

Finally replacing
∑

i zici in J 1 with the help of (4.13), we obtain, again
using integration by parts, that

J 1 =

∫
QT

Bε(∆Φ2) ·∆Φ2 =

∫
QT

|∆Φ2|2 − ε
∫
QT

∆2Φ2∆Φ2

=

∫
QT

|∆Φ2|2 + ε

∫
QT

|∇(∆Φ2)|2 + ετ

∫
ΣT

|∆Φ2|2. (4.29)

Thus, (4.25)-(4.29) imply (4.17).

�

Remark 4. Since x 7→ x log x is not differentiable in 0 we cannot dif-
ferentiate

∫
Ω ci log ci directly. However, the formal calculation in the

proof of Lemma 4.3 can be made rigorous, if
∫
ci log ci is replaced by∫

(ci + δ) log(ci + δ), δ > 0; passage to the limit δ → 0 then yields (4.14); see
also [10, Proof of Lemma 3.7].

4.4. Global-in-time solutions for the approximate problem. Here we
will see that Lemma 4.3 allows us to show that the local-in-time solutions
to (4.2)-(4.4) are global.

Lemma 4.4. Suppose conditions (A1), (A2) hold true. Then for every
ε > 0 the local solution (u, c,Φ2) to system (4.2)-(4.4) from Lemma 4.2 can
be uniquely extended up to any finite time T ∈ (0,∞).

Proof. For the proof C > 0 always is a positive constant only depending on
ε, T and the initial data.

Lemma 4.3 (i) and (iii) imply that u can be bounded in L∞(0, T ;L2
σ(Ω))∩

L2(0, T ;D(A
1/2
S )) by a constant C > 0. From mass conservation and

Lemma 4.3 (iv) it holds true that there is C > 0 that controls
√
ci in

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)). Sobolev’s embedding theorem and

Hölder’s inequality imply that ci is bounded in L2(0, T ;L3/2(Ω)). From
mass conservation und elliptic L1-regularity we deduce that ∇Φ2 is bounded
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in L∞(0, T ;W 2,p(Ω)), p ∈ [1, 3
2), therefore ∇Φ2 ∈ L∞(0, T ;Lq(Ω)) for ev-

ery q < ∞. Recall that ∇Φ1 ∈ L∞(Ω) and that W 1, 6
5 (Ω) ↪→ L2(Ω).

For the Lp-realization AS,(p) of the Stokes operator we have D(A
1/2
S,(p)) =

W 1,p
0 (Ω) ∩ Lpσ(Ω), 1 < p <∞. So therefore

‖R1/2
ε (P (cj∇Φ))‖L2(QT ) ≤ C‖R1/2

ε (P (cj∇Φ))‖
L2(W 1, 65 )

≤ C‖cj∇Φ‖L2(L6/5)

≤ C‖cj‖L2(L3/2)‖∇Φ‖L∞(L6) ≤ C. (4.30)

From maximal regularity of AS we deduce that u is a solution to (4.2).
Multiplying this equation by ASu, integrating over Ω, using the fact that
〈ut, ASu〉L2 = 1

2
d
dt‖∇u‖

2
L2 , and employing Young’s inequality results in

1

2

d

dt
‖∇u‖2L2 + ‖ASu‖2L2

≤
∫

Ω
|(Rεu · ∇)u ·ASu|+

∫
Ω

∣∣∣ N∑
j=1

zjR
1/2
ε (P (cj∇Φ)) ·ASu

∣∣∣
≤ ‖ASu‖2L2 + C

(
‖∇u‖2L2 +

N∑
j=1

‖R1/2
ε (P (cj∇Φ))‖2L2

)
.

Note that in the last step we used Young’s inequality and ‖u(t)‖L2 ≤ C
independently of t due to Lemma 4.3 in order to estimate ‖Rεu‖L∞ ≤ C.
Integration over t, t ∈ (0, T ), yields

‖∇u(t)‖2L2 ≤ ‖∇u0‖2L2 + C

(
‖∇u‖2L2(QT ) +

N∑
j=1

‖R1/2
ε (P (cj∇Φ))‖2L2(QT )

)
.

From Lemma 4.3 (iv) we have ‖∇u‖L2(QT ) < ∞ for T < ∞. So together
with (4.30) we deduce ‖u‖T ≤ C for T < ∞, hence the solution is global.
Uniqueness follows from uniqueness of local solutions by Lemma 4.2. �

5. Proof of the Main Result

Let T > 0. For m ∈ N let dmi ∈ C(QT , (0,∞)) with ∇dmi ∈
L∞(0, T ;Ls(Ω)) for some s > 3 and dmi (t, x) → di(t, x) almost everywhere.
Moreover, let (εm)m∈N be a sequence of positive numbers with εm → 0 as

m → ∞, set u0m := Rεmu
0 ∈ D(AS) ⊂ D(A

1/2
S ), and let c0m ∈ L∞(Ω)+

such that c0m → c0 in L2(Ω). From Lemma 4.2 and Lemma 4.4 there is
a unique solution (um, cm,Φm

2 ) to problem (4.2)-(4.4) on QT with param-
eter εm subject to the data dmi , c

0m, u0m. We write Φm = Φ1 + Φm
2 ,

jmi = −dmi ∇cmi − dmi zicmi ∇Φm, and Jmi = jmi + cmi R
1/2
εm u

m.

Lemma 4.3 implies that

um is bounded in Y = L∞(0, T ;L2
σ(Ω)) ∩ L2(0, T ;D(A

1/2
S )), (5.1)



20 A. FISCHER AND J. SAAL

so there exists u ∈ Y such that

um → u weakly-* in L∞(0, T ;L2
σ(Ω)) and weakly in L2

(
0, T ;D(A

1/2
S )

)
.

We will show that (um)m is relatively compact in L2(QT ). To this end we
set

um(t) = e−tASu0m −
∫ t

0
e−(t−s)AS

(
Fεmu

m(s) +Gεmu
m(s)

)
ds

=: wm1 (t) + wm2 (t), t ∈ [0, T ].

Clearly wm1 (·)→ e−·ASu0 in L2(QT ). Note that w = wm1 is a solution to

∂tw(t) +ASw(t) = 0, w(0) = u0m.

Forming the dual pairing with w and integrating by parts shows that
(wm1 )m∈N is bounded in Y , since u0m is bounded in L2

σ(Ω). As a consequence,
wm2 is also bounded in Y . In order to apply maximal regularity arguments
for wm2 we estimate Fεmu

m and Gεmu
m independently of m. Employing

Hölder’s inequality, W 1,2(Ω) ↪→ L6(Ω) by Sobolev’s embedding theorem,
and Poincaré’s inequality we compute

‖Fεmum(t)‖L5/4(Ω) ≤ ‖Rεmu
m(t)‖L10/3‖∇um(t)‖L2

≤ C‖um(t)‖L10/3‖∇um(t)‖L2

≤ C‖um(t)‖2/5
L2 ‖um(t)‖3/5

L6 ‖∇um(t)‖L2

≤ C ′‖∇um(t)‖8/5
L2 .

Thus

‖Fεmum‖L5/4(QT ) ≤ C independently of m. (5.2)

From Lemma 4.3 and mass conservation the sequence
√
cmi is bounded

in L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)) independently of m. Employing
Hölder’s inequality and Sobolev’s embedding theorem we have

L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)) ↪→ L10/3(QT ). (5.3)

For Gεmu
m we estimate using Hölder’s inequality and Lemma 4.3 (iv)

‖Gεmum‖L5/4(QT ) = ‖
N∑
j=1

zjR
1/2
ε (P (cmj ∇Φm))‖L5/4(QT )

≤ C
N∑
j=1

‖cmj ∇Φm‖L5/4(QT )

≤ C
N∑
j=1

‖
√
cmj ‖L10/3(QT )‖

√
cmj ∇Φ‖L2(QT ) ≤ C. (5.4)
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independently of m. By maximal regularity of AS , see Proposition 1, we
observe that w = wm2 is a solution to

∂tw(t) +ASw(t) = Fεmu
m(t) +Gεmu

m(t), w(0) = 0.

Moreover (5.2)-(5.4) and maximal regularity of AS imply that

wm2 is bounded in W 1, 5
4 (0, T ;L

5
4 (Ω)) ∩ L

5
4 (0, T ;W 2, 5

4 (Ω)).

With the facts that wm2 is bounded in L2(0, T ;D(A
1/2
S )) and that ∂tw

m
2 is

bounded in L5/4(QT ) we deduce that wm2 is relatively compact in L2(QT )
by Aubin-Simon, see Proposition 2. Thus, we may assume um → u strongly

in L2(QT ). As a consequence, we also have R
1/2
εm u

m → u and Rεmu
m → u

in L2(QT ). From the bound in L2(0, T ;D(A
1/2
S )) we infer that ∇um → ∇u

weakly in L2(QT ).

Next, we deduce relative compactness for cm. Recall that
√
cmi is bounded

in L2(0, T ;W 1,2(Ω)). In order to avoid singularities at zero, we consider√
cmi + 1. For its time derivative we have

2∂t
√
cmi + 1 =

∂tc
m
i√

cmi + 1
=
−div Jmi√
cmi + 1

= −div
( jmi√

cmi + 1

)
− jmi · ∇cmi

2(cmi + 1)3/2
− R

1/2
εm u

m · ∇cmi√
cmi + 1

= −div
( jmi√

cmi + 1

)
−
( 1

2
√
cmi + 1

jmi√
cmi + 1

+R
1/2
εm u

)
· ∇cmi√

cmi + 1
,

which is bounded in L1(0, T ;W−1,2(Ω)+L1(Ω)) by Lemma 4.3 (iii) and (iv).
Thus, using Aubin-Simon, it follows that

√
cmi + 1 is relatively compact in

L2(0, T ;Lp(Ω)) for any p ∈ [1, 6). Since
√
cmi is bounded in L2(0, T ;L6(Ω))

there exists ci ∈ L1(0, T ;L3(Ω)) such that, up to a subsequence,√
cmi →

√
ci strongly in L2(0, T ;Lp(Ω)) for p ∈ [1, 6). (5.5)

Since ∇
√
cmi is bounded in L2(QT ), we may assume ∇

√
cmi → ∇√ci

weakly in L2(QT ). So ∇cmi = 2
√
cmi ∇

√
cmi converges weakly to ∇ci in

L1(0, T ;Lq(Ω)), q ∈ [1, 3
2). With

‖∇cmi ‖L1(0,T ;L3/2(Ω)) ≤ ‖
√
cmi ‖L2(0,T ;L6(Ω))‖(cmi )−1/2∇cmi ‖L2(QT ) ≤ C,

we deduce that in fact ∇ci ∈ L1(0, T ;L3/2(Ω)), hence c ∈ L1(0, T ;W 1, 3
2 (Ω)).

Note that from mass conservation, we also have ci ∈ L∞(0, T ;L1(Ω)+).

To prove relative compactness for the sequence Φm
2 recall the bound in

L∞(0, T ;W 1,2(Ω)) from Lemma 4.3. Regarding regularity in time, note
that we have −∆Φm

2 = Sεm
∑

k zkc
m
k . Taking the time derivative, we get
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−∆∂tΦ
m
2 = Sεm

∑
k zk∂tc

m
k . Recall that ∂tc

m
k = −div

(
jmk + cmk R

1/2
εm u

m
)
.

With Lemma 4.3 (iv) we estimate the contributing flux terms by

‖jmk ‖L5/4(QT ) ≤ ‖
√
cmk ‖L10/3(QT )‖(c

m
k )−1/2∇jmk ‖L2(QT ) ≤ C,

‖cmk R
1/2
εm u

m‖L10/9(QT ) ≤ C‖c
m
k ‖L5/3(QT )‖u

m‖L10/3(QT ) ≤ C

uniformly in m ∈ N. In the last step we used (5.1) and (5.3). As a

consequence, ∂tc
m
i can be bounded in L10/9(0, T ;W

−1, 10
9

0 (Ω)), so ∂tΦ
n
2 is

bounded in L10/9(0, T ;W 1, 10
9 (Ω)). Then, again using Aubin-Simon, we ob-

serve that Φm
2 is relatively compact in C([0, T ];Lr(Ω)), r ∈ [1, 6). Note

that the bound in L∞(0, T ;W 1,2(Ω)) implies also weak relative compact-
ness in Lq(0, T ;W 1,2(Ω)) for any q ∈ [1,∞). Therefore there is Φ2 ∈
L∞(0, T ;W 1,2(Ω)) ∩ C([0, T ];Lr(Ω)), r ∈ [1, 6), such that, up to a sub-
sequence, we can assume

Φm
2 → Φ2

{
weakly in Lq(0, T ;W 1,2(Ω)) for any q <∞,
strongly in C([0, T ];Lr(Ω)), r ∈ [1, 6),

as m→∞. Remark that um and cm are solutions to∫
QT

−um∂tφ+∇um · ∇φ+
(

(Rεmu
m · ∇)um · φ

)
= −

N∑
j=1

zj

∫
QT

R
1/2
εm (P (cmj ∇Φm)) · φ+

∫
Ω
u0mφ(0), (5.6)∫

QT

−cmi ∂tψ +
(
dmi ∇cmi + dmi zic

m
i ∇Φm − cmi R

1/2
εm u

m
)
∇ψ =

∫
Ω
c0m
i ψ(0).

(5.7)

We analyze the limit behavior of the nonlinear terms. Since Rεmu
m → u

strongly in L2(QT ) and ∇um → ∇u weakly in L2(QT ) we have (Rεmu
m ·

∇)um → (u ·∇)u weakly in L1(QT ). Lemma 4.3 (iv) implies that
√
cmi ∇Φm

is weakly relatively compact in L2(QT ). Since ∇Φm is weakly* convergent
in L∞(0, T ;L2(Ω)) and cmi by (5.5) is strongly convergent in L1(0, T ;L2(Ω))
we conclude that cmi ∇Φm → ci∇Φ weakly in L1(QT ). Finally, by cmi → ci

strongly in L1(0, T ;L2(Ω)) and R
1/2
εm u

m → u weakly-* in L∞(0, T ;L2(Ω)),

it follows that cmi R
1/2
εm u

m → ciu weakly in L1(QT ).

Let (Tk)k∈N be a sequence of positive numbers with Tk → ∞ as k → ∞
and let (uk,m, ck,m,Φk,m

2 ) be the solution of (4.2)-(4.4) on QTk with pa-
rameter εm. From the above compactness results we find (u, c,Φ2) : R+ →
L2
σ(Ω) × L1(Ω)+ ×W 1,2(Ω) such that, up to a diagonal extraction, for all

k ∈ N

uk,m −→ u

{
weakly in L2(0, Tk;D(A

1/2
S )),

strongly in L2(QTk),
(5.8)
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ck,m −→ c

{
weakly in L1(0, Tk;W

1, 3
2 (Ω)),

strongly in L1(0, Tk;L
p(Ω)), p ∈ [1, 3),

(5.9)

Φk,m
2 −→ Φ2

{
weakly in Lq(0, Tk;W

1,2(Ω)), q ∈ [1,∞),

strongly in C([0, Tk];L
r(Ω)), r ∈ [1, 6),

(5.10)

as m→∞. In this situation it holds true that

(Rεmu
k,m · ∇)uk,m −→ (u · ∇)u, weakly in L1(QTk),

ck,m∇Φk,m −→ c∇Φ, weakly in L1(QTk),

ck,mR
1/2
εm u

k,m −→ cu, weakly in L1(QTk),

u0m −→ u0, strongly in L2
σ(Ω),

c0m −→ c0, strongly in L2(Ω).

Thus, passing to the limit in (5.6)-(5.7) yields (2.4)-(2.5).

With (5.9) we see that for a.e. t ∈ (0, Tk), c
m(t) −→ c(t) in L2(Ω). By

well-known properties of the resolvent of ∆R this yields Φm
2 (t) −→ Φ2(t) in

W 2,2(Ω) for a.e. t ∈ (0, Tk), where Φ2(t) is the solution to

−∆Φ2 =
N∑
j=1

zjcj in Ω, ∂νΦ2 + τΦ2 = 0 on ∂Ω.

Since Tk →∞, this is true for almost all t ∈ R+. The limit c enjoys better

regularity, so Φ2 ∈ L1(0, T ;W 3, 3
2 (Ω)).

It remains to show the assertion on the pressure π. We employ results
on the pressure from [33]. In this respect, note that ci∇Φ ∈ L1(0, T ;L2(Ω))
for any T < ∞ by Hölder’s inequality and Sobolev’s embedding the-
orem. Then [33, Theorem V.1.7.1.] implies that there is a function

π̂ ∈ L4/3(0, T ;L2
loc(Ω)) such that π = ∂tπ̂ is an associated pressure. This

means that (u, π) satisfies (1.1) in the sense of distributions in [0, T )×Ω for
every T <∞. �
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