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Abstract

It is proved that the Stokes operator on a bounded domain, an exterior
domain, or a perturbed half-space Ω admits a bounded H∞-calculus on
Lq(Ω) if q ∈ (1,∞).

1. Introduction

Let AΩ be the Stokes operator in the Banach space Lq,σ(Ω) of all q-
integrable solenoidal vector fields on a domain Ω ⊂ R

n. In this article we
show that AΩ admits a bounded H∞-calculus for a fairly large class of
domains Ω and for all q ∈ (1,∞). For an arbitrary Banach space X, the
class H∞(X) of all operators admitting a bounded H∞-calculus has been
studied by many authors [McI86], [CDMY96], [DS97] [Frö98], [DHP01a].
Since it is contained in BIP(X), the class of all operators having bounded
imaginary powers, it enjoys all properties of this larger class. For further
information in this direction see [PS93], [MP97] and [DV87]. For instance,
the domain of fractional powers can be determined in terms of a complex
interpolation space. Another reason is the maximal Lq-regularity of the as-
sociated evolution equation ut + Au(t) = f(t). This property was proved
by Solonnikov for the Stokes operator in Lq,σ(Ω) by direct methods, see
[Sol77]. More recently, Fröhlich proved maximal regularity of the Stokes op-
erator in certain weighted Lω

q,σ(Ω) spaces [Frö01]. However, there are also
useful properties which do not hold true for operators in BIP(X) but which
are valid for operators belonging to H∞(X). Among those let us mention
that BIP(X) is not stable under small perturbations. In fact, there seem to
be only restrictive perturbation results known, [PS93]. However, there is a
perturbation result for the class H∞(X), whose assumptions can be verified
in the particular case of the Stokes operator.
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In 1981 Giga [Gig81] investigated the analyticity of the Stokes semigroup.
In a subsequent paper [Gig85] he considered domains of fractional powers
of the Stokes operator and proved that the Stokes operator on a bounded
C∞-domain has bounded imaginary powers. Consequently, it has maximal
Lq-regularity. In [GS91], it has been shown, that one can also obtain global
in time Lq −Ls estimates. The paper in hand extends the results of [Gig85]
in several ways. By checking the details in Giga’s proof one realizes that it
is possible to generalize that result to the H∞-case. This leads to a proof for
the bounded H∞-calculus for such domains. Giga’s proof makes use of pseu-
dodifferential operators and Seeley’s theory on the descripton of fractional
powers of an elliptic system [See71]. Our approach, however, is different
as it relies on perturbation methods of the class H∞(X). Moreover, it in-
cludes unbounded domains which might be of independent interest as well
as domains with merely C3 boundary. More precisely, exterior domains and
perturbed half-spaces can be handled.

One can also treat the problem of extending the property of having bounded
imaginary powers to the allegedly stronger property of admitting a bounded
H∞-calculus by purely functional analytic methods. This has recently be
carried out by Kalton and Weis [KW].

It is known that the class of all operators admitting a bounded H∞-calculus
coincides with the (a priori smaller) class of all operators admitting an R-
bounded H∞-calculus if the underlying Banach space has property (α), see
[KW01] and [CdPSW00]. Since the space Lq,σ(Ω) is known to enjoy this
property for any domain Ω and any q ∈ [1,∞], we can immediately conclude
that AΩ even admits an R-bounded H∞-calculus for the domains treated
in Section 3. This is relevant for handling perturbations of linear operators
in view of the results in [KW].

Our strategy of proving that the Stokes operator AΩ admits a bounded
H∞-calculus in Lq,σ(Ω) is to apply the perturbation result for the bounded
H∞-calculus to the Stokes operator on the bent half-space. Then we localize
the original problem on Ω: Cover Ω by finitely many balls and treat each
ball separately. Those balls which are entirely contained in Ω turn out to
be easy to handle by transforming the problem to R

n. On the other hand,
if a ball meets the boundary of Ω, it is possible to reduce the problem to
the bent half-space case. It is therefore enough to know that the Stokes
operator on the bent half-space admits a bounded H∞-calculus. Since it
is already known [DHP01b] that the Stokes operator on the half-space R

n
+

admits a bounded H∞-calculus it is quite natural to introduce an invert-
ible transformation which maps the bent half-space onto R

n
+. This change

of coordinates leads to a transformation AT of the corresponding Stokes
operator. By choosing the radii of the aforementioned balls small enough,
the bending function is as close to zero as we please. This implies that also
AT is close to AR

n
+

in the sense of a perturbation result for H∞-calculus
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due to Prüss. Therefore AT must also have a bounded H∞-calculus which
yields the result.

The article is organized as follows. In Section 2 we fix notation and recall
some auxillary tools on Stokes operators, interpolation theory and H∞-
calculus that will be needed in subsequent sections. Section 3 contains our
main results. We start in Section 3.1 by explaining the transition from the
Stokes operator on the bent half-space to the operator AT mentioned above.
The subsequent sections contain the proof of the bounded H∞-calculus for
the Stokes operator on the bent half-space, the bounded domain and the
perturbed half-space respectively. Finally, we provide two appendices on
regularity properties of the Helmholtz projection and on the domain of
fractional powers of the Stokes operator. These appendices contain auxil-
lary material which seems not to be contained in the standard literature.

Acknowlegments: The authors would like to thank Matthias Hieber, Jan
Prüss, Andreas Fröhlich and Reinhard Farwig for stimulating discussions
which helped to improve this article.

2. Preliminaries

2.1. Notation

Throughout the article we assume that n ≥ 3. Let Ω ⊂ R
n be an

open set, and let m ∈ N. By Cm(Ω) we denote the space of all m-times
continuously differentiable functions and by Cm

c (Ω) its subspace consist-
ing of all functions in Cm(Ω) which are compactly supported. Further, let
C∞

c (Ω) := {u ↾Ω : u ∈ C∞
c (Rn)}, and denote by Cm

b (Ω) the Banach space
of all m-times continuously differentiable functions whose derivatives up to
order m are bounded. For q ∈ [1,∞], Lq(Ω) denotes the usual Lebesgue
space of all q-integrable functions and for s ∈ R, W s,q(Ω) is the Sobolev
space of order s. If s = m ∈ N and q ∈ (1,∞), the norm in W s,q(Ω) is given

by ‖u‖m,q :=
(

∑m
j=0

∫

Ω
|∇ju|qdx

)1/q

, where ∇j is the vector of all possible

j-th order differentials. Moreover, W s,q
0 (Ω) denotes the closure of C∞

c (Ω)

in W s,q(Ω). We shall further need the homogenous Sobolev space Ŵ 1,q(Ω)
consisting of all functions u having finite Dirichlet energy

∫

Ω
|∇u|qdx, mod-

ulo constants. It becomes a Banach space when equipped with the norm

‖u‖Ŵ 1,q(Ω) :=

(∫

Ω

|∇u|qdx

)1/q

.

Its dual space (Ŵ 1,q(Ω))′ will occur frequently and is denoted by Ŵ−1,q′

(Ω),
where q′ is the Hölder conjugated exponent given by 1/q + 1/q′ = 1 and
‖ · ‖−1,q always denotes the norm in this space. Recall that Ŵ−1,q′

does

not join familar properties of W−1,q′

. For example, it does not contain
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C∞
c (Ω) in general. For further properties of these spaces, in particular for

the proof of the density of C∞
c (Ω) in Ŵ 1,q(Ω), we refer to [FS94]. If ∂Ω is

smooth enough, the trace operator defined by γ(u) := u ↾∂Ω maps W s,q(Ω)
continuously into W s−1/q,q(∂Ω) for s > 1/q. If s ≥ 1 then its kernel is
exactly the space W s,q(Ω) ∩ W 1,q

0 (Ω). See [Ada78], p. 215. For u ∈ Lq(Ω)
and v ∈ Lq′(Ω) we use the standard notation (u, v)Ω :=

∫

Ω
uvdx.

Let us remark that we will use the same notations for the corresponding
spaces of vector fields on Ω. For a domain Ω ⊂ R

n denote by Lq,σ(Ω)
the space of all q-integrable solenoidal vector fields on Ω. For the class of
domains treated in this article (see Section 2.2 for the precise definition)
is well-known that there is a compatible family (PΩ,q)q∈(1,∞) of continuous
projections from Lq(Ω) onto Lq,σ(Ω) such that PΩ,2 is orthogonal. For the
proofs, see [FM77], [McC81], [Miy82], [BM88], [ST98]. The operator PΩ,q is
called the Helmholtz projection. Since we restrict ourselves to those values
of q and q remains fixed throughout the article, we shall write PΩ for short.
Clearly, the range Gq(Ω) := (1 − PΩ)(Lq(Ω)) is also a closed subspace of
Lq(Ω).

If X and Y are Banach spaces, the space of all bounded linear operators from
X to Y is denoted by L(X,Y ), and L(X) is an abbreviation for L(X,X).
For any closed operator A in X, its domain and range are denoted by
dom(A) and ran(A) respectively. Its resolvent set is denoted by ρ(A) and
its spectrum by σ(A).

Finally, ∆Ω denotes the Dirichlet Laplacian in Lq(Ω), defined on W 1,q
0 (Ω)∩

W 2,q(Ω), and AΩ = −PΩ∆Ω is the Stokes operator in Lq,σ(Ω), defined on

W 1,q
0 (Ω) ∩ W 2,q(Ω) ∩ Lq,σ(Ω). For details on the Stokes operator and on

the Navier-Stokes equation we refer to the textbooks [Gal98] and [Soh01].

2.2. A priori estimates for the generalized Stokes resolvent problem

We will frequently make use of an inequality for the solution (u, p) of
the generalized Stokes resolvent problem

(SRP )Ω
f,g







λu − ∆u + ∇p = f on Ω,
∇ · u = g on Ω,

γu = 0,

where Ω is a C3-domain which is either bounded, exterior, R
n, a bent half-

space or a perturbed half-space. In [FS94], Farwig and Sohr proved the
following theorem.

Theorem 1 Let 1 < q < ∞, 0 < θ < π, n ≥ 2, δ > 0. Let f ∈ Lq(Ω),

g ∈ W 1,q(Ω)∩Ŵ−1,q(Ω) if Ω is unbounded or g ∈ W 1,q(Ω) with
∫

Ω
gdx = 0
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if Ω is bounded. Then there is a unique solution (u, p) ∈ dom(∆Ω)×Ŵ 1,q(Ω)
of (SRP )Ω

f,g and some constant C = C(Ω, q, θ, δ) > 0 such that

‖λu‖q + ‖∇2u‖q + ‖∇p‖q ≤ C(‖f‖q + ‖∇g‖q + ‖λg‖−1,q) (1)

and
‖λu‖q + ‖ − ∆u + ∇p‖q ≤ C(‖f‖q + ‖λg‖−1,q)

for all λ ∈ Σπ−θ := {z ∈ C\{0} : | arg z| < π−θ} with |λ| ≥ δ. The constant
C in inequality (1) is independent of δ if one of the following conditions is
satisfied:

1. Ω is bounded, Ω = R
n, or Ω = R

n
+,

2. Ω is an exterior domain or a perturbed half-space, n ≥ 3 and 1 < q <
n/2.

2.3. An interpolation property for the domain of the Dirichlet Laplacian

We will frequently make use of the following interpolation property for
the Dirichlet Laplacian in Lq(Ω): If 1 < q < ∞, 0 < α < 1/2q and Ω is as
in Section 2.2, then

[Lq(Ω),dom(∆Ω)]α = W 2α,q(Ω), (2)

where [·, ·]α denotes complex interpolation of order α. This can be seen as

follows: It is well-known, see [Tri78], that [Lq(Ω),W s,q
0 (Ω)]θ = W θs,q

0 (Ω) for
all s > 0 with s 6= 1/(θq) and [Lq(Ω),W s,q(Ω)]θ = W θs,q(Ω) for all θ ∈ [0, 1]

and all s > 0. The obvious inclusion W 2,q
0 (Ω) ⊂ dom(∆Ω) ⊂ W 2,q(Ω)

therefore implies

W 1,q
0 (Ω) = [Lq(Ω),W 2,q

0 (Ω)]1/2 ⊂ [Lq(Ω),dom(∆Ω)]1/2

⊂ [Lq(Ω),W 2,q(Ω)]1/2 = W 1,q(Ω).

In particular, the norm in [Lq(Ω),dom(∆Ω)]1/2 is equivalent to ‖ · ‖1,q on

dom(∆Ω) ⊂ W 1,q
0 (Ω). By [Tri78], Theorem 1.9.3/1 (c), dom(∆Ω) is dense

in [Lq(Ω),dom(∆Ω)]1/2. Therefore we also have

[Lq(Ω),dom(∆Ω)]1/2 = dom(∆Ω)
‖·‖[Lq(Ω),dom(∆Ω)]1/2

= dom(∆Ω)
‖·‖1,q ⊂ W 1,q

0 (Ω)
‖·‖1,q

= W 1,q
0 (Ω),

i.e., we have [Lq(Ω),dom(∆Ω)]1/2 = W 1,q
0 (Ω). The reiteration property,

[Tri78] Remark 1.9.3/1, gives us

[Lq(Ω),dom(∆Ω)]α = [Lq(Ω), [Lq(Ω),dom(∆Ω)]1/2]2α

= [Lq(Ω),W 1,q
0 (Ω)]2α = W 2α,q

0 (Ω),

but W 2α,q(Ω) = W 2α,q
0 (Ω) by our assumption on α, see again [Tri78], The-

orem 4.3.2/1 (a).
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2.4. Operators with bounded H∞-calculus

Recall that a closed operator A on a complex Banach space X is called
sectorial, if it satisfies the following two conditions:

(i) A is densely defined, injective and has dense range,
(ii) (−∞, 0) ⊂ ρ(A) and there is some M ≥ 0 such that ‖λ(λ + A)−1‖ ≤ M

for all λ > 0.

In this case there is some φ ∈ [0, π) such that the sector

Σπ−φ := {z ∈ C \ {0} : | arg z| < π − φ}.

is contained in ρ(−A), and sup{‖λ(λ + A)−1‖ : λ ∈ Σπ−φ} < ∞. The
infimum of all such φ is called the spectral angle of A and is denoted by φA.
Oberserve that σ(A)\{0} ⊂ ΣφA

. Moreover, if A is sectorial, and φA ≤ π
2 , it

generates a bounded and holomorphic C0-semigroup on X. For instance, the
Stokes operator in Lq,σ(Ω) generates a bounded and holomorphic semigroup
for all domains treated in this article.

A special class of sectorial operators on which we will focus throughout the
article is the set of operators which admit a bounded H∞-calculus. Before
we can introduce these operators we need to define for φ ∈ (0, π) the space

H∞(Σφ) := {h : Σφ → C : h is holomorphic and bounded}

as well as its subspace H∞
0 (Σφ) given by

H∞
0 (Σφ) := {h ∈ H∞(Σφ) : |h(z)| ≤ C

|z|s
1 + |z|2s

for some C ≥ 0, s > 0}.
(3)

Let A be a sectorial operator on X with spectral angle φA, and let φ ∈
(φA, π) and θ ∈ (φA, φ). The path

Γ : R → C, Γ (t) :=

{

−teiθ , t < 0,
te−iθ , t ≥ 0,

(4)

stays in the resolvent set of A with the only possible exception at t = 0. In
view of Cauchy’s integral formula, for h ∈ H∞

0 (Σφ), we may define h(A) by
the Bochner integral

h(A) :=
1

2πi

∫

Γ

h(λ)(λ − A)−1dλ, (5)

which exists according to (3). A is said to admit a bounded H∞-calculus, if
there is some C ≥ 0 with

‖h(A)x‖ ≤ C‖h‖∞‖x‖ (6)

for all h ∈ H∞
0 (Σφ) and all x ∈ X. The infimum of all possible φ for which

inequality (6) holds is called the H∞-angle of A and is denoted by φ∞
A .
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Clearly, we always have φ∞
A ≥ φA. We denote by H∞(X) the class of all

sectorial operators that admit a bounded H∞-calculus. If A ∈ H∞(X), we
may define h(A) for arbitrary h ∈ H∞(Σφ) by the following method. Put
g(z) = z(1 + z)−2 and let

h(A) =
1

2πi

(∫

Γ

h(λ)
λ

(1 + λ)2
(λ − A)−1dλ

)

(1 + A)2A−1

= (hg)(A)g(A)−1,

initially defined on the dense subspace dom(A) ∩ ran(A) of X. It is known
that inequality (6) is still valid for those h. Consequently, h(A) extends to
a unique element in L(X), again denoted by h(A). Moreover, it is easy to
see that this definition of h(A) is compatible with the definition (5) in the
case h ∈ H∞

0 (Σφ).

The following classes of operators are known to admit a bounded H∞-
calculus: Bounded operators, normal sectorial operators in Hilbert spaces
(in particular self-adjoint operators) and negative generators of positivity
preserving contraction semigroups in Lp-spaces. For details see the survey
article [DHP01a]. In [DHP01b], it has been proved that also the Stokes
operator in Lq,σ(Rn

+) admits a bounded H∞-calculus if 1 < q < ∞.

Remark 2 For Banach spaces X,Y , a densely defined linear operator A :
dom(A) → X and a continuous isomorhism J : X → Y the following easy
statements are well-known. For details see e.g. [DHP01a], Proposition 2.11.

(i) A generates a bounded holomorphic C0-semigroup on X, if and only if
JAJ−1 generates a bounded holomorphic C0-semigroup on Y .

(ii) A ∈ H∞(X) if and only if JAJ−1 ∈ H∞(Y ). In that case we also have
φ∞

A = φ∞
JAJ−1 .

(iii) A ∈ H∞(X) if and only if A−1 ∈ H∞(X). If this is true, then φ∞
A =

φ∞
A−1 .

3. The main result

This section contains our main result which reads as follows.

Theorem 3 Let n ≥ 3 and let Ω ⊂ R
n be a C3-domain which is either

bounded, exterior, or a perturbed half-space. Then the Stokes operator AΩ

admits a bounded H∞-calculus in Lq,σ(Ω) if 1 < q < ∞.

As already mentioned in the introduction, we get the following slightly
stronger assertion for free, because for 1 < q < ∞, Lq,σ(Ω) is a Banach
space with property (α). For details on R-boundedness and Banach spaces
with property (α) we refer to [CdPSW00] and to [DJT95].

Theorem 4 Under the assumptions of Theorem 3, the operator AΩ admits
an R-bounded H∞-calculus in Lq,σ(Ω) if 1 < q < ∞.
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We shall prove Theorem 3 in several steps. First of all we may restrict
ourselves to the case q ∈ (1, 1 + ε) for some ε > 0. The general case follows
by taking adjoints and interpolation. The Stokes operator AHω

on the bent
half-space Hω associated with ω is introduced in Section 3.1. It is shown
that AHω

is similar to some perturbation AT of the Stokes operator AR
n
+

on the half-space R
n
+. In view of Remark 2 (ii) AHω

admits a bounded H∞-
calculus if this is true for AT , which is proved in Section 3.2. In Sections 3.3
and 3.4 the general case is proved by reducing the problem to the cases
already treated before.

3.1. The Stokes operator on bent half-spaces

Given a three times continuously differentiable and compactly supported
function ω : R

n−1 → [0,∞), let

Hω := {x = (x′, xn) ∈ R
n : xn > ω(x′)}

Hω

R
ω(x) n−1

Fig. 1: The bent half-space determined by ω

be the bent half-space deter-
mined by ω, see Figure 1. The
transformation φ : R

n → R
n

defined by φ(x′, xn) := (x′, xn−
ω(x′)) maps Hω onto the half-
space R

n
+ = {(x′, xn) ∈ R

n :

xn > 0} and satisfies det φ′(x) = 1 for all x ∈ R
n. Therefore we may

define Φ(u) := u ◦ φ−1 for any function defined on Hω. Clearly, Φ is a con-
tinuous isomorphism from W s,q(Hω) to W s,q(Rn

+) and also from W s,q
0 (Hω)

to W s,q
0 (Rn

+) for s ∈ [0, 3]. In what follows, we shall omit the subscript Ω if

Ω = R
n
+, i.e. we set P = PR

n
+
, ∆ = ∆R

n
+

and A = AR
n
+
.

Let λ ∈ C. It is easy to see that a pair (u, p) is a solution of the Stokes
resolvent problem

(λ − ∆Hω
)u + ∇p = f, ∇ · u = 0

on Lq(Hω) if and only if (ũ, p̃) := (u ◦ φ−1, p ◦ φ−1) solves the equations

(λ − (∆ + R1))ũ + (∇ + R2)p̃ = f ◦ φ−1, (∇ + R2) · ũ = 0 (7)

on Lq(R
n
+), where R1, R2 are given by

R1 = |∇′ω|2∂2
n − 2(∇′ω, 0) · (∇∂n) − (∆′ω)∂n, R2 = −∂n(∇′ω, 0). (8)

Since
Φ(Lq(Hω)) = Φ(Lq,σ(Hω)) ⊕ Φ(Gq(Hω))

it is natural to introduce the spaces

C∞
c,σ,R(Rn

+) := {u ∈ C∞
c (Rn

+) : (∇ + R2) · u = 0}

LR
q,σ(Rn

+) := Φ(Lq,σ(Hω)) = C∞
c,σ,R(Rn

+)
‖·‖q
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as well as the projection PRu = ΦPHω
Φ−1 which maps Lq(R

n
+) continuously

onto LR
q,σ(Rn

+). In terms of this modified Helmholtz projection equation (7)
may be rephrased as the operator equation (λ + AR)ũ = f ◦ φ−1, where
AR = −PR(∆ + R1), defined on W 2,q(Rn

+) ∩ W 1,q
0 (Rn

+) ∩ LR
q,σ(Rn

+).

One problem in comparing AR and AR
n
+

is that these operators act in the

different Banach spaces LR
q,σ(Rn

+) and Lq,σ(Rn
+). To overcome this prob-

lem we introduce the bounded linear operator T in Lq(R
n
+) by Tu(x) =

(φ−1)′(x)u(x) = (I − S)u(x) with

Su = (0, . . . , 0, (∇′ω, 0) · u)

and I being the identity in Lq(R
n
+). Note that T is invertible with T−1 =

I + S. Moreover, since ω ∈ C3(Rn−1), T maps LR
q,σ(Rn

+) continuously onto
Lq,σ(Rn

+) as well as dom(AR) continuously onto dom(A). Hence our smooth-
ness assumption on ω is due to the introduction of T . Note, however, that
assuming ω ∈ C3(Rn−1) allows us to treat domains with C3-boundary only.

3.2. H∞-calculus for the Stokes operator on bent half-spaces

In this section we use the notation of the previous section. Our aim is
to prove the following:

Theorem 5 Let 1 < q < ∞ and let ω : R
n−1 → [0,∞) be three times

differentiable and compactly supported. The Stokes operator AHω
admits a

bounded H∞-calculus on Lq,σ(Hω) if ‖ω‖C1 is sufficiently small.

This result will proved in several steps. We shall use the fact that the Stokes
operator AR

n
+

admits a bounded H∞-calculus which has been proved by

Desch, Hieber and Prüss, [DHP01b], by utilizing the symmetry of R
n
+ to

obtain an explicit expression for the resolvent of AR
n
+
. We shall apply a

recent perturbation result due to Prüss [DDH+02] to show that AR
n
+

may be
perturbed by a purely second order differential operator without destroying
this property, provided the perturbation is relatively bounded with small
enough bound. The main ingredients for the treatment of the lower order
terms are the inequalities for the generalized Stokes resovent problem that
have been stated in Theorem 1. We start by recalling the perturbation
theorem.

Theorem 6 (Prüss): Let X be a UMD space and let A be a linear operator
in X which admits a bounded H∞-calculus. Let B be a closed linear operator
in X satisfying the following conditions.

(i) dom(A) ⊂ dom(B) and ‖Bx‖ ≤ κ‖Ax‖ for all x ∈ dom(A) and some
constant κ < 1,

(ii) there is some α ∈ (0, 1) such that B(dom(A1+α)) ⊂ dom(Aα),
(iii) There is a constant C such that ‖AαBx‖ ≤ C‖A1+αx‖ for all x ∈

dom(A1+α).
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Then A+B admits a bounded H∞-calculus provided that κ is small enough.

Recall that a Banach space X is a UMD space, if and only if the Hilbert
transform acts boundedly in Lq(R,X) for all ∈ (1,∞) and note that every
Lq(Ω) space with q ∈ (1,∞) and Ω being an open subset of R

n has this
property. In order to apply Theorem 6 with A being the Stokes operator in
R

n
+ we define AT := TART−1 on dom(A) as well as B := AT − A. From

Remark 2 (ii) we get that AHω
admits a bounded H∞-calculus if and only if

this is true for AT . However, we can not apply Theorem 6 directly to A and
B because the inequality ‖Bu‖ ≤ κ‖Au‖ does not hold since Bu contains
lower order derivatives. Therefore we decompose B as B = B1 + B2 where
B2 is purely of second order. First note that on dom(B)

B = TART−1 − A

= −TPR(∆ + R1)(I + S) + T (I + S)P∆

= −TPRR1T
−1 − T (PR − P )∆ + TSP∆ − TPR∆S.

With en = (0, . . . , 0, 1) ∈ R
n we get for u ∈ W 2,q(Rn

+)

∆Su = en∆(∇′ω · u′)

= en



∇′∆′ω · u′ + 2
n−1
∑

j=1

n−1
∑

k=1

(∂j∂kω)∂kuj + ∇′ω · ∆u′



 (9)

and

R1T
−1u = (10)

= R1u + R1Su

= |∇′ω|2∂2
nu − ∆′ω∂nu − 2(∇′ω, 0) · ∂n∇u

+en

(

|∇′ω|2∂2
n∇′ω · u′ − ∆′ω∂n∇′ω · u′ − 2(∇′ω, 0) · ∂n∇∇′ω · u′

)

= |∇′ω|2∂2
nu − ∆′ω∂nu − 2(∇′ω, 0) · ∂n∇u

+en



|∇′ω|2∂2
n∇′ω · u′ − ∆′ω∂n∇′ω · u′ − 2∇′ω ·

n−1
∑

j=1

(∇′∂jω)∂nuj

−2

n−1
∑

j=1

n−1
∑

k=1

(∂jω)(∂kω)∂k∂nuj



 . (11)

This yields
B = B1 + B2

where

B2u := −T (PR − P )∆u + TSP∆u − TPR

(

|∇′ω|2∂2
nu + 2(∇′ω, 0) · ∂n∇u

)

−TPRen

(

∇′ω · ∆u′ − |∇′ω|2∇′ω · ∂2
nu′

+2

n−1
∑

j=1

n−1
∑

k=1

(∂jω)(∂kω)∂k∂nuj

)
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and
B1 := B − B2.

Since B2u contains only second order derivatives of u we may write

B2 = −T (PR − P )∆ + TSP∆ + TPR

∑

|α|=2

aαDα (12)

with certain matrices aα ∈ C2
c (Rn−1)n×n. Similarly,

B1 = TPR

n
∑

k=1

bk∂k + TPRc

with bk ∈ C1
c (Rn−1)n×n and c ∈ Cc(R

n−1)n×n. Due to (9) and (10) we get
for ‖ω‖C3

b (Rn−1) ≤ 1

∑

|α|=2

‖aα‖∞ ≤ C‖ω‖C1
b (Rn−1), (13)

n
∑

k=1

‖bk‖∞ ≤ C‖ω‖C2
b (Rn−1), (14)

‖c‖∞ ≤ C‖ω‖C3
b (Rn−1). (15)

In what follows, we will apply the perturbation Theorem 6 only to B2,
whereas B1 will be treated directly. To estimate the first term in (12) we
need the following lemma.

Lemma 7 It holds

‖(PR − P )u‖q ≤ C‖∇′ω‖∞‖u‖q

for all u ∈ Lq(R
n
+).

Proof. As is well known, see [Gal98] p. 107, we have Pu = u − ∇p with
p ∈ Ŵ 1,q(Rn

+) being the unique solution of the weak Neumann problem

(∇p,∇ϕ) = (u,∇ϕ), ϕ ∈ Ŵ 1,q′

(Rn
+), (16)

where (·, ·) denotes dual pairing. Similarly, PRu = u − (∇ + R2)pR, where
pR solves the following problem:

((∇ + R2)pR, (∇ + R2)ϕ) = (u, (∇ + R2)ϕ), ϕ ∈ Ŵ 1,q′

(Rn
+) (17)

(observe that Ŵ 1,q′

(Rn
+) = {p ∈ Lq′,loc(R

n
+) : (∇ + R2)p ∈ Lq′,loc(R

n
+)}

modulo constants, since ‖(∇+ R2) · ‖q and ‖∇ · ‖q are equivalent norms on

Ŵ 1,q′

(Rn
+)). From (17) we conclude

(∇pR,∇ϕ)=(u, (∇ + R2)ϕ) − ((R2pR,∇ϕ) + (∇pR, R2ϕ) + (R2pR, R2ϕ))

=(u,∇ϕ) + (u,R2ϕ) − ((∇ + R2)pR, R2ϕ) − (R2pR,∇ϕ). (18)



12 André Noll, Jürgen Saal

Subtracting (16) from (18) yields

(∇pR −∇p,∇ϕ) = (u,R2ϕ) − ((∇ + R2)pR, R2ϕ) − (R2pR,∇ϕ).

Since ∇pR,∇p ∈ Gq and G′
q = Gq′ we get

‖∇pR −∇p‖q

= sup
φ∈Gq′ ,‖φ‖q′=1

|(∇pR −∇p, φ)| = sup
ϕ∈Ŵ 1,q′ ,‖∇ϕ‖q′=1

|(∇pR −∇p,∇ϕ)|

≤ sup
ϕ∈Ŵ 1,q′ ,‖∇ϕ‖q′=1

(

‖u‖q‖R2ϕ‖q′ + ‖(∇ + R2)pR‖q‖R2ϕ‖q′

+‖R2pR‖q‖∇ϕ‖q′

)

≤ sup
ϕ∈Ŵ 1,q′ ,‖∇ϕ‖q′=1

‖∇′ω‖∞
(

‖u‖q‖∂nϕ‖q′ + ‖(∇ + R2)pR‖q‖∂nϕ‖q′

+‖∂npR‖q‖∇ϕ‖q′

)

≤ ‖∇′ω‖∞ (‖u‖q + ‖(∇ + R2)pR‖q + ‖∂npR‖q) .

Since

‖∂npR‖q ≤ C‖(∇ + R2)pR‖q = C‖(1 − PR)u‖q ≤ C‖u‖q

we obtain the desired estimate. ¤

With this lemma at hand it is not difficult to verify the first condition of
Theorem 6.

Proposition 8 Condition (i) of Theorem 6 holds true for A being the
Stokes operator in Lq,σ(Rn

+) and B2 defined by identity (12), provided that
‖ω‖C1

b (Rn−1) is small enough.

Proof. First note that dom(B) = dom(A) by the definition of B. We will
treat the three different terms in (12) separately. Let u ∈ dom(A). By the
preceeding lemma and Proposition 21 (b) with k = 2, the first term can be
estimated as follows.

‖T (PR − P )∆u‖q ≤ C‖∇′ω‖∞‖∆u‖q ≤ C‖∇′ω‖∞‖Au‖q.

The corresponding inequality for the second term is trivial:

‖TSP∆u‖q ≤ C‖∇′ω‖∞‖Au‖q.

In view of inequality (13) and Proposition 21, the third expression in (12)
has the following upper bound:

‖TPR

∑

|α|=2

aαDαu‖q ≤ C
∑

|α|=2

‖aα‖∞‖Dαu‖q ≤ C‖ω‖C1
b (Rn−1)‖Au‖q.

These inequalities together immediately prove the assertion. ¤
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In order to verify the second and the third hypothesis of the perturbation
theorem we need the following lemma which follows easily from Sobolev’s
inequality. Recall that Sobolev’s inequality states that for n ∈ N and q ∈
(1, n)

‖u‖Lq∗ (Rn) ≤ C‖∇u‖Lq(Rn), u ∈ W 1,q(Rn),

where q∗ is the Sobolev-conjugated exponent given by 1/q∗ = 1/q − 1/n.

Lemma 9 Let n ≥ 3, q ∈ (1, n − 1). For any a ∈ C1
b (Rn−1) with compact

support there is a constant C > 0 such that

‖∇(au)‖Lq(Rn
+) ≤ C‖∇u‖Lq(Rn

+)

for all u ∈ W 1,q(Rn
+). On the LHS, a has to be regarded as a function of n

variables in the obvious way.

Proof. Since ∇(au) = a∇u+u∇a it is enough to prove that ‖u∂ja‖Lq(Rn
+) ≤

C‖∇u‖Lq(Rn
+). With K := supp(a) we get

‖u∂ja‖q
Lq(Rn

+) =

∫ ∞

0

‖u(·, xn)∂ja(·)‖q
Lq(Rn−1)dxn

=

∫ ∞

0

‖u(·, xn)∂ja(·)‖q
Lq(K)dxn

≤ C

∫ ∞

0

‖u(·, xn)‖q
Lq(K)dxn.

Denoting by q∗ the Sobolev-conjugated exponent, the calculation continues
and Sobolev’s inequality yields

‖u∂ja‖q
Lq(Rn

+) ≤ C

∫ ∞

0

‖u(·, xn)‖q
Lq∗ (K)dxn ≤ C

∫ ∞

0

‖u(·, xn)‖q
Lq∗ (Rn−1)dxn

≤ C

∫ ∞

0

‖∇u(·, xn)‖q
Lq(Rn−1)dxn = C‖∇u‖q

Lq(Rn
+).

¤

For fixed λ > 0 and any function u defined on R
n
+ we set

(Jλu)(x) := u(λx).

Observe that Jλ is an isomorphism in each of the spaces W s,q(Rn
+), s > 0,

q ≥ 1 with J−1
λ = J1/λ. Moreover, it is also an isomorphism in Lq,σ(Rn

+) and
in dom(Aα) with α > 0 because Jλ commutes with the Helmholtz projection
P . For any bounded operator K in Lq(R

n
+), define Kλ ∈ L(Lq(R

n
+)) by

Kλ := J−1
λ KJλ. Because of

∇kJλ = λkJλ∇k, k ∈ N,

we have for u ∈ W k,q(Rn
+)

‖Jλu‖k,q = λ−n/q
k

∑

j=0

λj‖∇ju‖q. (19)
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This gives us for k = 0 the inequality

‖Kλu‖q = ‖J−1
λ KJλu‖q = λn/q‖KJλu‖q

≤ λn/q‖K‖L(Lq(Rn
+))‖Jλu‖q = ‖K‖L(Lq(Rn

+))‖u‖q.

By symmetry we also get ‖Ku‖q ≤ ‖Kλ‖L(Lq(Rn
+))‖u‖q. Hence we even have

‖Kλ‖L(Lq(Rn
+)) = ‖K‖L(Lq(Rn

+)). (20)

We shall further need an expression for the commutator between Jλ and
fractional powers of (A + µ), where µ ∈ ρ(−A). Commuting Jλ with the
Stokes operator yields

(A + µ)Jλ = (−P∆ + µ)Jλ = (−λ2PJλ∆ + µ) = Jλ(λ2A + µ),

which implies
(A + µ)−1Jλ = Jλ(λ2A + µ)−1.

By induction we deduce

(A + µ)kJλ = Jλ(λ2A + µ)k

for all k ∈ Z and λ > 0. Since A admits a bounded H∞-calculus, so does
rA for r > 0, see [DHP01a]. By this fact we obtain the same equality for
0 < α < 1:

(A + µ)−αJλ =
1

2πi

∫

Γ

(µ + z)−α(z − A)−1Jλdz

=
1

2πi

∫

Γ

(µ + z)−αJλ(z − λ2A)−1dz

= Jλ(λ2A + µ)−α,

where Γ is the contour defined in (4). Writing s ∈ R as s = k − α with
k ∈ Z and 0 < α < 1 it follows

(A + µ)sJλ = (A + µ)k(A + µ)−αJλ

= Jλ(λ2A + µ)k(λ2A + µ)−α = Jλ(λ2A + µ)s (21)

for arbitrary s ∈ R, λ > 0 and µ ∈ ρ(−A).

With the aid of Lemma 9 we can prove the following proposition which
establishes the key-estimate for verifying the remaining assumptions of the
perturbation Theorem 6.

Proposition 10 Let λ > 0 be fixed and let 1 < q < n − 1. Define B2,λ :=
J−1

λ B2Jλ on dom(A). Then B2,λ(dom(A)) ⊂ Lq,σ(Rn
+) and

(a) ‖B2,λ(A + 1)−1u‖q ≤ Cλ2‖u‖q, u ∈ Lq,σ(Rn
+),

(b) ‖B2,λ(A + 1)−1u‖1,q ≤ Cλ2‖u‖dom(A1/2), u ∈ dom(A1/2).

The constant C does not depend on λ.
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Proof. We first rewrite B2 as

B2 = −T (PR − P )∆ + TSP∆ + TPR

∑

|α|=2

aαDα

= TPR(−∆ +
∑

|α|=2

aαDα) + T (I + S)P∆

= TPR(−∆ +
∑

|α|=2

aαDα) − A.

From the last line it can be read off that B2,λ(dom(A)) ⊂ Lq,σ(Rn
+).

(a) According to (20) we get for u ∈ Lq,σ(Rn
+)

‖B2,λ(A + 1)−1u‖q =

= ‖J−1
λ (TPR(−∆ +

∑

|α|=2

aαDα) − A)Jλ(A + 1)−1u‖q

≤ ‖J−1
λ TPRJλJ−1

λ ∆Jλ(A + 1)−1u‖q

+‖J−1
λ TPR

∑

|α|=2

aαJλJ−1
λ DαJλ(A + 1)−1u‖q

+‖J−1
λ PJλJ−1

λ ∆Jλ(A + 1)−1u‖q

≤ C



2‖J−1
λ ∆Jλ(A + 1)−1u‖q +

∑

|α|=2

‖J−1
λ DαJλ(A + 1)−1u‖q





≤ Cλ2



‖∆(A + 1)−1u‖q +
∑

|α|=2

‖Dα(A + 1)−1u‖q





≤ Cλ2‖u‖q.

(b) Since q ∈ (1, n− 1) we may apply Lemma 9 to obtain for u ∈ W 1,q(Rn
+)

‖∇Tu‖q ≤ ‖∇u‖q + ‖∇Su‖q ≤ ‖∇u‖q + C‖∇u‖q ≤ C‖∇u‖q.

The same argument applied to aα gives us

‖∇
∑

|α|=2

aαDαu‖q ≤ C‖∇3u‖q, u ∈ W 3,q(Rn
+).

Because ‖(∇ + R2) · ‖q and ‖∇ · ‖q are equivalent norms on W 1,q(Rn
+), it

is easy to see that the regularity, proved for PHω
in Appendix 20, holds

also true for PR = ΦPHω
Φ−1. This implies together with the above two

inequalities

‖∇B2,λ(A + 1)−1u‖q =

= ‖∇J−1
λ (TPR(−∆ +

∑

|α|=2

aαDα) − A)Jλ(A + 1)−1u‖q
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= λn/qλ−1‖∇(TPR(−∆ +
∑

|α|=2

aαDα) − A)Jλ(A + 1)−1u‖q

≤ λ−1+n/q

(

‖∇TPR∆Jλ(A + 1)−1u‖q

+‖∇TPR

∑

|α|=2

aαDαJλ(A + 1)−1u‖q + ‖∇P∆Jλ(A + 1)−1u‖q

)

≤ Cλ−1+n/q 3‖∇3Jλ(A + 1)−1u‖q

= Cλ2+n/q‖Jλ∇3(A + 1)−1u‖q

= Cλ2‖∇3(A + 1)−1u‖q.

In view of Proposition 21, we can further estimate this last expression and
obtain

‖∇B2,λ(A + 1)−1u‖q ≤ Cλ2‖A3/2(A + 1)−1u‖q

= Cλ2‖A(A + 1)−1A1/2u‖q ≤ Cλ2‖A1/2u‖q.

This together with part (a) implies the assertion of (b). ¤

Proposition 11 Let 1 < q < n − 1 and let 0 < α < 1
2q . Then conditions

(ii) and (iii) of Theorem 6 hold true for A being the Stokes operator in
Lq,σ(Rn

+) and B = B2.

Proof. Since A admits a bounded H∞-calculus it obviously has bounded
imaginary powers which implies by [Tri78], Theorem 1.15.3 that

dom(Aα) = [Lq,σ(Rn
+),dom(A)]α,

where [·, ·]α denotes complex interpolation of order α. By general properties
of interpolation functors (see [Tri78], Theorem 1.17.1.1) we have

[Lq,σ(Rn
+),dom(A1/2)]2α = [Lq,σ(Rn

+),dom(A)]α

= [Lq(R
n
+),dom(∆)]α ∩ Lq,σ(Rn

+).

The interpolation space on the right hand side is known to be W 2α,q(Rn
+)

by our assumption 0 < α < 1
2q , see Section 2.3. Therefore we have

dom(Aα) = W 2α,q(Rn
+) ∩ Lq,σ(Rn

+).

By similar arguments we see that

[Lq,σ(Rn
+),W 1,q(Rn

+) ∩ Lq,σ(Rn
+)]2α = W 2α,q(Rn

+) ∩ Lq,σ(Rn
+) = dom(Aα).

Proposition 10 implies that B2,λ(A + 1)−1 is a bounded operator in
Lq,σ(Rn

+) and also from dom(A1/2) to W 1,q
σ (Rn

+) := W 1,q(Rn
+) ∩ Lq,σ(Rn

+).

Again, by interpolation it is also bounded from [Lq,σ(Rn
+),dom(A1/2)]2α to

[Lq,σ(Rn
+),W 1,q

σ (Rn
+)]2α, i.e.

B2,λ(A + 1)−1 ∈ L(dom(Aα))
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with

‖B2,λ(A + 1)−1‖L(dom(Aα)) ≤
≤ ‖B2,λ(A + 1)−1‖2α

L(Lq,σ(Rn
+))‖B2,λ(A + 1)−1‖1−2α

L(dom(A1/2),W 1,q
σ (Rn

+))

≤Cλ2.

By putting λ = 1 we see that

B2(dom(A1+α)) = B2,1(dom(A1+α))

= B2,1(A + 1)−1(dom(Aα)) ⊂ dom(Aα),

proving that condition (ii) of Theorem 6 is satisfied. For the proof of con-
dition (iii) we use the scaling method introduced in [McC81] and [BM88].
For u ∈ dom(A1+α) let v = (A + 1)u. By using the fact that ‖(A + 1)α · ‖q

and ‖ · ‖dom(Aα) are equivalent norms on dom(Aα), see Proposition 21, we
get

‖(A + 1)αB2,λu‖q = ‖(A + 1)αB2,λ(A + 1)−1v‖q

≤ C‖B2,λ(A + 1)−1v‖dom(Aα)

≤ Cλ2‖v‖dom(Aα)

≤ Cλ2‖(A + 1)αv‖q = Cλ2‖(A + 1)1+αu‖q.

Next, for arbitrary w ∈ dom(A), define u ∈ dom(Aα) by u = J−1
λ w. Then

‖(A + λ2)αB2w‖q = λ2αλ−n/q‖J−1
λ (λ−2A + 1)αB2w‖q

= λ2α−n/q‖(A + 1)αJ−1
λ B2JλJ−1

λ w‖q

= λ2α−n/q‖(A + 1)αB2,λu‖q

≤ Cλ−n/q+2α+2‖(A + 1)1+αu‖q

= Cλ−n/q+2α+2‖(A + 1)1+αJ−1
λ w‖q

= Cλ−n/q+2α+2‖J−1
λ (λ−2A + 1)1+αw‖q

= C‖λ2α+2(λ−2A + 1)1+αw‖q

= C‖(A + λ2)1+αw‖q.

Passing to the limit λ → 0 yields

‖AαB2w‖q ≤ C‖A1+αw‖q,

i.e., condition (iii) of Theorem 6 is verified. ¤

Proposition 8 und 11 now immediately imply the following.

Corollary 12 Let 1 < q < n − 1. The operator A + B2 admits a bounded
H∞-calculus on Lq,σ(Rn

+) if ‖ω‖C1
b (Rn−1) is sufficiently small.
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Proof. (of Theorem 5). Of course we want to apply Corollary 12 and
Theorem 1. Therefore we first assume 1 < q < min{n − 1, n/2} = n/2,
because n ≥ 3. Let φ ∈ (φ∞

A , π), and fix θ ∈ (φ∞
A , φ). By Γr,R we denote the

contour
Γr,R = {seiθ : s ∈ [r,R]} ∪ {se−iθ : s ∈ [r,R]}

for 0 ≤ r < R ≤ ∞. Now we write

1

2πi

∫

Γ

h(λ)(λ − A − B)−1dλ =
1

2πi

∫

Γ0,1

h(λ)(λ − A − B)−1dλ

+
1

2πi

∫

Γ1,∞

h(λ)(λ − A − B)−1dλ

and start by examining the latter integral on the RHS which turns out to
be easy to handle: By the resolvent identity we get

(λ − A − B)−1 = (λ − A − B2)
−1 + (λ − A − B2)

−1B1(λ − A − B)−1.

It is easily seen that Gagliardo-Nirenberg’s inequality (see [Fri69] and Ap-
pendix 19) implies together with Theorem 1 that

‖∇((λ − AHω
)−1)‖L(Lq,σ(Hω),Lq(Hω)) ≤ C|λ|−1/2.

Therefore

‖(λ − A − B2)
−1B1(λ − A − B)−1‖L(Lq,σ(Hω),Lq(Hω)) ≤ C|λ|−3/2

for all λ ∈ C \ ΣφA
with |λ| ≥ 1. Therefore we obtain

∥

∥

∥

∥

∥

1

2πi

∫

Γ1,∞

h(λ)(λ − A − B)−1fdλ

∥

∥

∥

∥

∥

Lq(Rn
+)

≤ C‖h‖∞‖f‖Lq(Rn
+)

for f ∈ Lq,σ(Rn
+) and h ∈ H∞(Σφ). This gives us

∥

∥

∥

∥

∥

1

2πi

∫

Γ1,∞

h(λ)(λ − AHω
)−1fdλ

∥

∥

∥

∥

∥

Lq(Hω)

≤ C‖h‖∞‖f‖Lq(Hω) (22)

for all f ∈ Lq,σ(Hω) and all h ∈ H∞(Σφ) since we may write AHω
=

Φ−1T−1(A + B)TΦ, where T and Φ are isomorphisms.

The case |λ| ≤ 1 is more involved. Here we reduce the bent half-space
problem to problems on a half-space and a bounded domain through a
localization. Let R > 0 such that Hω \ BR(0) = R

n
+ \ BR(0). We choose

a cut-off function η0 ∈ C∞
c (Rn) satisfying 0 ≤ η0 ≤ 1, η0 ≡ 1 on BR(0)

and supp(η0) ⊂ B2R(0) and set η1 := 1 − η0. Further, we put Ω1 := R
n
+

and choose a bounded domain Ω0 ⊂ Hω with B2R(0) ∩ Hω ⊂ Ω0 and such
that ∂Ω0 is C3. See Figure 2 for an illustration of this construction. For
f ∈ Lq,σ(Hω), let (u, p) ∈ dom(AHω

) × Ŵ 1,q(Hω) be the unique solution

of the Stokes resolvent problem (SRP )Hω

f,0 . It is easy to see that the pair
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η = 1
1

η = 1
1

η
0

= 0

η
0

= 0

n−1R

η = 1
0 1

= 0η

xω(  )

Ω

R 2R

0

Fig. 2. Resolution of the unity subordinate Ω0, Ω1

(ηju, ηjp) solves the generalized Stokes resolvent problem (SRP )
Ωj

fj ,gj
, where

fj = ηjf − 2∇u · ∇ηj − u∆ηj + p∇ηj and gj = u∇ηj . In order to apply
previous results on the Stokes operator AΩj

we have to split the solutions
(uj , pj) of the above problems in the following way:

(ηju, ηjp) = (vj , p
v
j ) + (wj , p

w
j ),

with (vj , p
v
j ), (wj , p

w
j ) being the unique solutions of (SRP )

Ωj

PΩj
fj ,0 and

(SRP )
Ωj

(I−PΩj
)fj ,gj

, respectively. Since (I−PΩj
)fj ∈ Gq(Ωj), it can be writ-

ten as the gradient of a function q ∈ Ŵ 1,q(Ωj), i.e.

(I − PΩj
)fj = ∇qj .

Hence, wj can also be regarded as the unique flow of the problem (SRP )
Ωj

0,gj

with pressure pw
j − qj . For this reason we have to look at the two integrals

on the right hand side of

∫

Γ0,1

h(λ)ηjudλ =

∫

Γ0,1

h(λ)vjdλ +

∫

Γ0,1

h(λ)wjdλ, j = 0, 1. (23)

We begin with the case j = 0. Clearly, f0 satisfies the estimate

‖f0‖Lq(Ω0) ≤ C
(

‖f‖Lq(Hω) + ‖∇u‖Lq(Hω) + ‖u‖Lq(Ω0) + ‖p‖Lq(Ω0)

)

.

Since u ∈ W 1,q
0 (Hω), it follows from Sobolev’s inequality

‖u‖Lq(Ω0) ≤ C‖u‖Lq∗ (Ω0) ≤ C‖u‖Lq∗ (Hω) ≤ C‖∇u‖Lq(Hω),

and by Poincaré’s inequality

‖p‖Lq(Ω0) ≤ C‖∇p‖Lq(Ω0)
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because we may assume
∫

Ω0
p(x)dx = 0. In view of Theorem 1 we get the

estimate

‖f0‖Lq(Ω0) ≤ C
(

‖f‖Lq(Hω) + ‖∇u‖Lq(Hω) + ‖∇p‖Lq(Hω)

)

≤ C

(

2 +
1

√

|λ|

)

‖f‖Lq(Hω),

for all λ ∈ C\ΣφA
with |λ| ≤ 1. Hence, having in mind that 0 ∈ ρ(AΩ0

), we
know that ‖(λ − AΩ0

)−1‖ ≤ C/(1 + |λ|). Therefore we obtain for the first
integral in (23)

‖
∫

Γ0,1

h(λ)v0dλ‖Lq(Ω0) = ‖
∫

Γ0,1

h(λ)(λ − AΩ0
)−1PΩ0

f0dλ‖Lq(Ω0)

≤ C‖h‖∞
∫ 1

0

1

|seiθ + 1| ‖f0‖Lq(Ω0)ds

≤ C‖h‖∞
∫ 1

0

1

|seiθ + 1|

(

1 +
1√
s

)

ds‖f‖Lq(Hω)

≤ C‖h‖∞‖f‖Lq(Hω)

for all f ∈ Lq,σ(Hω) and all h ∈ H∞(Σφ). For w0 we have according to
Theorem 1 and again Sobolev’s inequality the estimate

‖w0‖Lq(Ω0) ≤ C‖g0‖−1,q ≤ C‖g0‖Lq(Ω0)

≤ C‖u‖Lq∗ (Ω0) ≤ C‖∇u‖Lq(Hω) ≤
C

√

|λ|
‖f‖Lq(Hω). (24)

This implies for the second integral in (23)

‖
∫

Γ0,1

h(λ)w0dλ‖Lq(Ω0) ≤ C‖h‖∞‖f‖Lq(Hω)

for all f ∈ Lq,σ(Hω) and all h ∈ H∞(Σφ).

In the second case, j = 1, we have to treat the terms of f1 separately. For
each q ∈ (1,∞) there exists α ∈ (0, 1) and q1 ∈ (1, q) satisfying

1

q
= α

(

1

q1
− 2

n

)

+ (1 − α)
1

q1
= −2α

n
+

1

q1
.

Therefore we may apply Gagliardo-Nirenberg’s inequality, see [Fri69], The-
orem 9.3 for the R

n case and Appendix 19 for the half-space case. Using
the fact that P is bounded in each Lr(R

n
+), 1 < r < ∞, we obtain

‖(λ − A)−1P (∇u · ∇η1)‖Lq(Rn
+) ≤

≤ C‖∇2(λ − A)−1P (∇u · ∇η1)‖α
Lq1

(Rn
+)‖(λ − A)−1P (∇u · ∇η1)‖1−α

Lq1
(Rn

+)

≤ C|λ|α−1‖∇u · ∇η1‖Lq1
(Rn

+).
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Because of supp∇η1 ⊂ Ω0 we further get

‖∇u · ∇η1‖Lq1
(Rn

+) ≤ C‖∇u‖Lq1
(Ω0) ≤ C‖∇u‖Lq∗ (Ω0) ≤ C‖∇2u‖Lq(Hω).

(25)
Consequently,

‖(λ − A)−1P (∇u · ∇η1)‖Lq(Rn
+) ≤ C|λ|α−1‖f‖Lq(Hω) (26)

for all λ ∈ C \ ΣφA
with |λ| ≤ 1. For the terms (λ − A)−1P (u∆η1), (λ −

A)−1P (p∇η1) one gets in a completely analogous way an inequality like
(26). This time, instead of (25), one has to use

‖u∆η1‖Lq1
(Rn

+) ≤ C‖u‖Lq∗∗(Hω) ≤ C‖∇u‖Lq∗ (Hω) ≤ C‖∇2u‖Lq(Hω), (27)

which we can get by applying Sobolev’s inequality on Hω (see Appendix
18) and

‖p‖Lq(Ω0) ≤ C‖∇p‖Lq(Ω0),

respectively. With these preparations we obtain

‖
∫

Γ0,1

h(λ)v1dλ‖Lq(Rn
+) =

= ‖
∫

Γ0,1

h(λ)(λ − A)−1Pf1dλ‖Lq(Rn
+)

≤ ‖
∫

Γ0,1

h(λ)(λ − A)−1P (η1f)dλ‖Lq(Rn
+)

+ ‖
∫

Γ0,1

h(λ)(λ − A)−1P (2∇u · ∇η1 + u∆η1 + p∇η1)dλ‖Lq(Rn
+)

≤ C

(

‖h‖∞‖f‖Lq(Hω) + ‖h‖∞
∫ 1

0

sα−1ds‖f‖Lq(Hω)

)

≤ C‖h‖∞‖f‖Lq(Hω)

for all f ∈ Lq,σ(Hω) and all h ∈ H∞(Σφ). The estimate of the w1-term is
completely analogous to the case j = 0.

Summarizing, we obtain

‖
∫

Γ0,1

h(λ)(λ − AHω
)−1fdλ‖Lq(Rn

+) = ‖
∫

Γ0,1

h(λ)udλ‖Lq(Hω)

≤
∑

j=0

‖
∫

Γ0,1

h(λ)ηjudλ‖Lq(Hω)

≤ C‖h‖∞‖f‖Lq(Hω)

for all f ∈ Lq,σ(Hω) and all h ∈ H∞(Σφ). This proves the assertion for
q ∈ (1, n/2). By taking adjoints it also follows for q ∈ (n/(n − 2),∞). The
general case then follows by interpolation. ¤
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3.3. H∞-calculus for the Stokes operator on bounded domains

Let Ω be a bounded C3-domain. It is well known that in this case 0 ∈
ρ(AΩ), which immediately implies

‖ 1

2πi

∫

Γ0,1

h(λ)(λ − AΩ)−1dλ‖L(Lq,σ(Ω)) ≤ C‖h‖∞ (28)

for all h ∈ H∞
0 (Σφ) and some φ ∈ (0, π/2). Hence it suffices to consider the

case |λ| ≥ 1 to which we want to apply the following localization method
which is described in more detail in [SS]. For some δ > 0 to be fixed later,
consider the open covering of ∂Ω consisting of all open balls Bδ(x) of radius
δ, centered at x ∈ ∂Ω. By assumption, ∂Ω is compact, so we have

∂Ω ⊂
N
⋃

j=1

Bδ(xj)

for some N = N(δ) ∈ N and certain x1, . . . , xN ∈ ∂Ω. Choose an open

subset Ω0 of Ω such that Ω0 ⊂ Ω and Ω ⊂ Ω0 ∪ ⋃N
j=1 Bδ(xj). Put Ωj :=

B2δ(xj) ∩ Ω, j = 1, . . . , N , and let ηj ∈ C∞
c (Rn), j = 1, . . . , N , be such

that ηj ≡ 1 on Bδ(xj) and supp(ηj) ⊂ B2δ(xj) as well as η0 ≡ 1 on Ω0 and

supp(η0) ⊂ Ω. Next, for given f ∈ Lq,σ(Ω), let (u, p) ∈ dom(AΩ)×Ŵ 1,q(Ω)

Ω

Ω

j

ω(x)

R
 −1n

Fig. 3. The localization method

be the unique solution of the Stokes resolvent problem (SRP )Ω
f,0. We get

the localized equations

(SRP )
Ωj

fj ,gj







ληju − ∆ηju + ∇ηjp = fj on Ωj ,
∇ · ηju = gj on Ωj ,

γηju = 0,
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j = 0, . . . , N , where fj = ηjf − 2∇u · ∇ηj − u∆ηj + p∇ηj and gj = u∇ηj ,
which shall be reduced either to the bent half-space case (j = 1, . . . , N)
or to the R

n case (j = 0). To do so we have to rotate and translate the
localized problems. However, it is easy to see that such transformations lead
to an equivalent Stokes resolvent problem. For example, if U and P solve
the Stokes resolvent problem (SRP )Q

F,G on some open subset Q ⊂ R
n and

x := V x̃ := Ox̃+x0, where O is an orthogonal transformation, then Ũ(x̃) :=
OtU(V x̃) and P̃ (x̃) := P (V x̃) solve the equivalent Stokes resolvent problem

(SRP )V −1Q

F̃ ,G̃
on V −1Q where F̃ (x̃) := OtF (V x̃) and G̃(x̃) := G(V x̃). Thus,

for simplicity, we shall omit this kind of transformations in the sequel.
Since ∂Ω ∈ C3 we can, by choosing δ small enough, for each j = 1, . . . , N
find a function ωj ∈ C3

c (Rn−1) such that (with Hj = Hωj
)

Ωj ⊂ Hj , B2δ(xj) ∩ ∂Ω ⊂ ∂Hj

and ‖ωj‖C1 ≤ κ with κ as in Theorem 5. Thus, by extending the localized
functions by 0 we can regard every localized equation as Stokes resolvent
problem on Hj , where H0 := R

n. We cannot apply Theorem 5 directly,
because divηju = gj 6= 0 in general. Therefore let L be the solution operator
of the problem







(1 − ∆)w + ∇pw = 0 on H,
∇ · w = g on H,

γw = 0,
(29)

where H may be any domain in R
n satisfying the assumptions of Theorem 1.

According to [FS94] Corollary 1.5 the operator

L : Ŵ−1,q(H) ∩ W 1,q(H) → W 2,q(H) ∩ W 1,q
0 (H)

if H is unbounded or with Lq,0(H) := {u ∈ Lq(H) :
∫

H
udx = 0}

L : Lq,0(H) ∩ W 1,q(H) → W 2,q(H) ∩ W 1,q
0 (H)

if H is bounded is continuous and satisfies in any case both of the following
estimates:

‖Lg‖q ≤ C‖g‖−1,q and ‖Lg‖2,q ≤ C(‖g‖−1,q + ‖∇g‖q) (30)

for all g ∈ dom(L). Now we set wj := Lgj and vj := ηju−wj , i.e., we write
ηju as

ηju = vj + wj , j = 1, . . . , N.

The vj ’s satisfy the equations

(λ − ∆)vj + ∇(ηjp − pwj ) = fj + (1 − λ)wj

= PHj
(fj + (1 − λ)wj)

+(I − PHj
)(fj + (1 − λ)wj).
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Now (I − PHj
)(fj + (1 − λ)wj) is a gradient field, so it can be written in

the form
(I − PHj

)(fj + (1 − λ)wj) = ∇qj

for some qj ∈ Ŵ 1,q(Hj), j = 1, . . . , N . Thus vj can also be regarded as the
Stokes flow of the unique solution (vj , ηjp − pwj − qj) of the generalized

Stokes resolvent problem (SRP )
Hj

PHj
(fj+(1−λ)wj),0

. Consequently

vj = (AHj
+ λ)−1PHj

(fj + (1 − λ)wj)

The identity

λ(AHj
+ λ)−1PHj

wj = PHj
wj − AHj

(AHj
+ λ)−1PHj

wj

gives us the following formula for ηju

ηju = vj + wj

= (λ + AHj
)−1PHj

fj + (λ + AHj
)−1PHj

wj

+AHj
(λ + AHj

)−1PHj
wj + (1 − PHj

)wj , (31)

j = 1, . . . , N . We treat these four addends separately and begin with the
second one. Since ∇ηj is compactly supported, we get by (30) and Poincaré’s
inequality

‖wj‖Lq(Hj) = ‖Lgj‖q ≤ C‖gj‖−1,q = C‖u · ∇ηj‖−1,q

= sup
ψ∈Ŵ 1,q′ (Hj),‖∇ψ‖q′=1

∣

∣

∣

∣

∣

∫

supp(ηj)∩Ω

u∇ηjψ dx

∣

∣

∣

∣

∣

≤ C sup
ψ∈Ŵ 1,q′ (Hj),‖∇ψ‖q′=1

‖u‖Lq(Ω)‖ψ‖Lq′ (supp(ηj)∩Ω)

≤ C‖u‖Lq(Ω) ≤ C|λ|−1‖f‖Lq(Ω).

This implies

‖(λ + AHj
)−1PHj

wj‖Lq(Hj) ≤ C
1

|λ| ‖PHj
wj‖Lq(Hj)

≤ C
1

|λ| ‖wj‖Lq(Hj) ≤ C
1

|λ|2 ‖f‖Lq(Ω),

for λ ∈ Σπ−θ, |λ| ≥ 1. Hence

‖ 1

2πi

∫

Γ1,∞

h(λ)(λ − AHj
)−1PHj

wjdλ‖Lq(Hj) =

=
1

2π
‖
∫

Γ1,∞

h(λ)((−λ) + AHj
)−1PHj

wjdλ‖Lq(Hj)

≤ C‖h‖∞‖f‖Lq(Ω) (32)

for all h ∈ H∞
0 (Σφ), j = 1, . . . , N .
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The remaining three addends are more involved. For the first one of (31)
we need the following preparations. For a bounded domain G ⊂ R

n we use
the following identification of the homogenous Sobolev space

Ŵ 1,q(G) = W 1,q(G) ∩ Lq,0(G).

We want to remark that for an arbitrary Ω ⊂ R
n and G ⊂ Ω for every

p ∈ Ŵ 1,q(Ω) it is always possible to choose a constant c = c(G, p) such that
pG = p + c ∈ Lq,0(G). The next lemma states an extra decay in λ of the
pressure of the Stokes resolvent problem.

Lemma 13 Let θ ∈ (π/2, π), 1 < q < ∞, Ω ⊂ R
n as in Theorem 1

and (u, p) ∈ dom(AΩ) × Ŵ 1,q the unique solution of the Stokes resolvent
problem (SRP )Ω

f,0, where f ∈ Lq,σ(Ω). Then, for each α ∈ (0, 1
2q′

) and for

every bounded domain G ⊂ Ω of class C1,1 we have

‖pG‖Lq,0(G) ≤ C|λ|−α‖f‖Lq,σ(Ω), λ ∈ Σθ, |λ| ≥ 1

with some constant C = C(G,α) > 0 independent of λ and f .

Proof. It is easy to see that (Lq,0(G))′ = Lq′,0(G). We estimate (pG, ϕ)G :=
∫

G
pGϕ for an arbitrary ϕ ∈ Lq′,0(G). According to [Bog79], [Bog80] or

[Gal98], for every ϕ ∈ Lq′,0(G) there is a solution φ ∈ W 1,q′

0 (G) of the
divergence problem

{

∇ · φ = ϕ on G,
φ = 0 on ∂G,

with

‖φ‖W 1,q′ (G) ≤ C‖ϕ‖Lq′,0(G). (33)

Since φ ∈ W 1,q′

0 (G) we may regard φ also as an element in W 1,q′

(Ω). Using

∇pG(x) = (I − PΩ)∆u(x), x ∈ Ω,

which can be obtained by recalling ∇pG = ∇p and applying (I−PΩ) to the
first line of (SRP )Ω

f,0, we may calculate

(pG, ϕ)G = (pG,∇ · φ)G = −(∇pG, φ)G = −(∇pG, φ)Ω

= −((I − PΩ)∆Ωu, φ)Ω = (−∆Ωu, (I − PΩ)φ)Ω .

Since −∆Ω has bounded imarinary powers, (see e.g. [PS93]) we get by the
interpolation property proved in Section 2.3 that

dom((−∆Ω)α) = [Lq(Ω),dom(−∆Ω)]α = W 2α,q(Ω)

for q ∈ (1,∞) and α ∈ [0, 1
2q ). Since PΩ ∈ L(W 1,q′

(Ω)), see [Fra00], we
have

(I − PΩ)φ ∈ W 1,q′

(Ω) ⊂ W 2α,q′

(Ω) = dom((−∆Ω)α).
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Hence, the above calculation yields together with inequality (33)

|(pG, ϕ)G| = |((−∆Ω)1−αu, (−∆Ω)α(I − PΩ)φ)Ω |
≤ ‖(−∆Ω)1−αu‖Lq(Ω)‖(−∆Ω)α(I − PΩ)φ‖Lq′ (Ω)

≤ C‖(−∆Ω)1−αu‖Lq(Ω)‖(I − PΩ)φ‖W 1,q′ (Ω)

≤ C‖(−∆Ω)1−αu‖Lq(Ω)‖φ‖W 1,q′ (G)

≤ C‖(−∆Ω)1−αu‖Lq(Ω)‖ϕ‖Lq′,0(G).

To estimate the term (−∆Ω)1−αu we write u in the form

u = (λ − ∆Ω)−1(f −∇pG)

and obtain by a simple interpolation argument and Theorem 1

‖(−∆Ω)1−αu‖Lq(Ω) = ‖(−∆Ω)1−α(λ − ∆Ω)−1(f −∇pG)‖Lq(Ω)

≤ C|λ|−α‖f‖Lq(Ω)

for all λ ∈ Σθ, |λ| ≥ 1. This gives us

|(pG, ϕ)G| ≤ C|λ|−α‖f‖Lq(Ω)‖ϕ‖Lq′,0(G)

for all ϕ ∈ Lq′,0(G). Consequently,

‖pG‖Lq,0(G) = sup
ϕ∈Lq′,0(G),ϕ 6=0

|(pG, ϕ)G|
‖ϕ‖Lq′,0(G)

≤ C|λ|−α‖f‖Lq(Ω),

and the lemma is proved. ¤

With the above lemma it is easy to verify the desired estimate for the first
addend of (31). We have

(λ − AHj
)−1PHj

fj = (λ − AHj
)−1PHj

(ηjf − 2∇u · ∇ηj − u∆ηj + p∇ηj).

We may set p = pG since p ∈ Ŵ 1,q(Ω), where G ⊂ Ω shall be a bounded
domain of class C2 satisfying Ω ∩ supp(∇ηj) ⊂ G for all j = 0, . . . , N (in
the situation here we can choose G = Ω). By using inequality (22), for AHj

,
j = 0, . . . , N , Theorem 1 and Lemma 13 we may estimate

‖ 1

2πi

∫

Γ1,∞

h(λ)(λ − AHj
)−1PHj

fjdλ‖Lq(Hj)

≤ ‖ 1

2πi

∫

Γ1,∞

h(λ)(λ − AHj
)−1PHj

ηjfdλ‖Lq(Hj)

+‖ 1

2πi

∫

Γ1,∞

h(λ)(λ − AHj
)−1PHj

(−2∇u · ∇ηj − u∆ηj + p∇ηj)dλ‖Lq(Hj)

≤ C

(

‖h‖∞‖f‖Lq(Ω) + ‖h‖∞
∫ ∞

1

1

s

(

1

s
+

1

s1/2
+

1

sα

)

‖f‖Lq(G)ds

)

≤ C‖h‖∞‖f‖Lq(Ω) (34)
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for all h ∈ H∞
0 (Σφ), j = 0, . . . , N , and any fixed α ∈ (0, 1

2q′
).

For the third addend of (31) we write wj as

wj = LM∇ηj
u

where M∇ηj
u := ∇ηj ·u. The estimate for the operator Kj := LM∇ηj

stated
in the next lemma will be useful.

Lemma 14 Let 1 < q < ∞, Hj, Kj and G ⊂ Ω defined as above. Then for
some constant C = C(G) it holds

‖Kju‖W 1,q(Hj) ≤ C‖u‖Lq(G)

for all u ∈ Lq(G) and all j = 0, . . . , N .

Proof. Set Gj := Ω ∩ supp∇ηj . For ψ ∈ C∞
c (Hj) with

∫

Gj
ψdx = 0 we

have by Poincaré’s inequality

‖∇ηjψ‖W 1,q′ (Gj)
≤ C‖∇ψ‖Lq′ (Gj) ≤ C‖∇ψ‖Lq′ (Hj). (35)

This yields

‖M∇ηj
u‖Ŵ−1,q(Hj)

= sup
ψ∈C∞

c (Hj)

|
∫

Hj
(u · ∇ηj)ψdx|

‖∇ψ‖Lq′ (Hj)

= sup
ψ∈C∞

c (Hj)

|
∫

G
u · (∇ηjψ)dx|

‖∇ηjψ‖W 1,q′ (G)

‖∇ηjψ‖W 1,q′ (Gj)

‖∇ψ‖Lq′ (Hj)

≤ C‖u‖(W 1,q′ (G))′

for all u ∈ W 1,q(G) ⊂
(

W 1,q′

(G)
)′

, j = 0, . . . , N . Together with (30) this

leads to

‖Kju‖Lq(Hj) = ‖LM∇ηj
u‖Lq(Hj) ≤ C‖M∇ηj

u‖Ŵ−1,q(Hj)

≤ C‖u‖(W 1,q′ (G))
′

and

‖Kju‖W 2,q(Hj) ≤ C
(

‖M∇ηj
u‖Ŵ−1,q(Hj)

+ ‖∇M∇ηj
u‖Lq(Hj)

)

≤ C
(

‖u‖(W 1,q(G))′ + ‖∇(∇ηj · u)‖Lq(Hj)

)

≤ C‖u‖W 1,q(G)

for all u ∈ W 1,q(G), j = 0, . . . , N . Since W 1,q(G) is a dense subspace of
(

W 1,q′

(G)
)′

the first inequality above implies that Kj can be extended to a

bounded operator from
(

W 1,q′

(G)
)′

to Lq(Hj). From the second one we get

that Kj is also bounded from W 1,q(G) to W 2,q(Hj). By interpolation, Kj
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is also bounded from Lq(G) =

[

(

W 1,q′

(G)
)′

,W 1,q(G)

]

1/2

to W 1,q(Hj) =

[Lq(Hj),W
2,q(Hj)]1/2 for j = 0, . . . , N , which yields the assertion. ¤

Using the fact that PHj
∈ L(W 1,q(Hj)) and again the identity

dom(Aα
Hj

) = [Lq,σ(Hj),dom(AHj
)]α = W 2α,q(Hj)∩Lq,σ(Hj), α ∈ [0,

1

2q
)

(see also, [Tri78] and [Fra00]), we deduce, if we set α := 1
4q , say,

PHj
wj ∈ W 1,q(Hj) ∩ Lq,σ(Hj) ⊂ W 2α,q(Hj) ∩ Lq,σ(Hj) = dom(Aα

Hj
).

By a simple interpolation argument and Lemma 14 we get

‖AHj
(λ − AHj

)−1PHj
wj‖Lq(Hj) =

= ‖A1−α
Hj

(λ − AHj
)−1Aα

Hj
PHj

wj‖Lq(Hj)

≤ C|λ|−α‖Aα
Hj

PHj
wj‖Lq(Hj) ≤ C|λ|−α‖PHj

wj‖W 2α,q(Hj)

≤ C|λ|−α‖PHj
wj‖W 1,q(Hj) ≤ C|λ|−α‖wj‖W 1,q(Hj)

= C|λ|−α‖Kju‖W 1,q(Hj) ≤ C|λ|−α‖u‖Lq(Ω)

≤ C|λ|−1−α‖f‖Lq(Ω)

for |λ| ≥ 1. It follows

‖ 1

2πi

∫

Γ1,∞

h(λ)AHj
(λ − AHj

)−1PHj
wjdλ‖Lq(Hj) ≤ C‖h‖∞‖f‖Lq(Ω) (36)

for all h ∈ H∞
0 (Σφ), j = 1, . . . , N .

The estimate for the fourth addend of (31) will follow from Lemma 15
below. Because we will need a similar estimate in the next section, we state
this lemma, just as we did with Lemma 13, in a more general form as is
needed here. Let Ω ⊂ R

n be a domain which fulfills the assumptions of
Theorem 1. For f ∈ Lq,σ(Ω), let (u, p) the unique solution of (SRP )Ω

f,0

which exists according to this theorem. Further, let ϕ : R
n → R be a

smooth function such that ∇ϕ has compact support, supp∇ϕ∩Ω 6= ∅, and
let Q ⊂ R

n be a (possibly unbounded) domain such that Ω ∩ supp∇ϕ ⊂ Q
and ∂Ω ∩ supp∇ϕ ⊂ ∂Q.

Lemma 15 Let L be the solution operator of problem (29) on the domain
Q. Then, for the trivial extension of u · ∇ϕ on Q (also denoted by u · ∇ϕ)
we have u · ∇ϕ ∈ dom(L) and

‖ 1

2πi

∫

Γ

h(λ)L(u · ∇ϕ)dλ‖Lq(Q) ≤ C‖h‖∞‖f‖Lq(Ω)

for all h ∈ H∞
0 (Σφ) with some constant C that may depend on ϕ but not

on f .
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Proof. We have u · ∇ϕ ∈ Ŵ−1,q(Q) ∩ W 1,q(Q) if Q is unbounded, since
u · ∇ϕ has compact support. Assume for the moment that f ∈ dom(AΩ).
Then we may write for h ∈ H∞

0 (Σφ)

1

2πi

∫

Γ

h(λ)u · ∇ϕdλ = ∇ϕ · h(AΩ)f

= ∇ϕ · 1

2πi

∫

Γ

h(λ)

1 + λ
(λ − AΩ)−1dλ(1 + AΩ)f.

By this representation it is easy to see that we also have

1

2πi

∫

Γ

h(λ)u · ∇ϕdλ ∈ Ŵ−1,q(Q) ∩ W 1,q(Q).

If Q is bounded we use
u · ∇ϕ = ∇ · uϕ

to get in view of uϕ ↾∂Q= 0 and the Gauss Theorem that

u · ∇ϕ,
1

2πi

∫

Γ

h(λ)u · ∇ϕdλ ∈ W 1,q(Q) ∩ Lq,0(Q).

The continuity of L implies together with (30) that

‖ 1

2πi

∫

Γ

h(λ)L(u · ∇ϕ)dλ‖Lq(Q) = ‖L(∇ϕ · h(AΩ)f)‖q

≤ C‖∇ϕ · h(AΩ)f‖−1,q.

To estimate the norm on the right hand side recall that supp(u·∇ϕ) ⊂ Ω. By
(2) and the identity dom((−∆Ω)α) = [Lq′(Ω),dom(−∆Ω)]α = W 2α,q′

(Ω),
α ∈ (0, 1

2q′
), we get for ψ ∈ C∞

c (Q)

(∇ϕ · h(AΩ)f, ψ)Q =

=

(

∇ϕ · (1 + AΩ)
1

2πi

∫

Γ

h(λ)

1 + λ
(λ − AΩ)−1fdλ, ψ

)

Ω

=

(

(1 − ∆Ω)
1

2πi

∫

Γ

h(λ)

1 + λ
(λ − AΩ)−1dλf, PΩψ∇ϕ

)

Ω

=

(

1

2πi

∫

Γ

h(λ)

1 + λ
(1 − ∆Ω)1−α(λ − AΩ)−1dλf, (1 − ∆Ω)αPΩψ∇ϕ

)

Ω

.

Completely analogous to (35) we get

‖ψ∇ϕ‖W 1,q′ (Ω) ≤ C‖∇ψ‖Lq′ (Q).

Thus, as in the proof of Lemma 13 we obtain

‖(1 − ∆Ω)αPΩψ∇ϕ‖Lq′ (Ω) ≤ C‖ψ∇ϕ‖W 1,q′ (Ω) ≤ C‖∇ψ‖Lq′ (Ω)

and
‖(1 − ∆Ω)1−α(λ − AΩ)−1f‖Lq(Ω) ≤ C|λ|−α‖f‖Lq(Ω).
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This yields

| (∇ϕ · h(AΩ)f, ψ)Q | ≤ C‖h‖∞
∫ ∞

0

1

(1 + s)sα
‖f‖Lq(Ω)ds‖∇ψ‖Lq′ (Ω)

≤ C‖h‖∞‖f‖Lq(Ω)‖∇ψ‖Lq′ (Ω)

for all h ∈ H∞
0 (Σφ). Consequently,

‖ 1

2πi

∫

Γ

h(λ)L(u · ∇ϕ)dλ‖Lq(Q) ≤ C‖∇ϕ · h(AΩ)f‖−1,q

= sup
ψ∈C∞

c (Q),∇ψ 6=0

| (∇ϕ · h(AΩ)f, ψ)Q |
‖∇ψ‖Lq′ (Q)

≤ C‖h‖∞‖f‖Lq(Ω)

for all h ∈ H∞
0 (Σφ) and the assertion follows. ¤

Similar to (24) we obtain the estimate

‖L(u · ∇ηj)‖Lq(Hj) ≤
C

√

|λ|
‖f‖Lq(Ω).

Thus, setting Hj = Q and ηj = ϕ, j ∈ {0, . . . , N} we obtain by Lemma 15
for the fourth addend of (31)

‖ 1

2πi

∫

Γ1,∞

h(λ)(I − PHj
)wjdλ‖Lq(Hj) ≤

≤ C
(

‖ 1

2πi

∫

Γ

h(λ)L(u · ∇ηj)dλ‖Lq(Hj)

+‖ 1

2πi

∫

Γ0,1

h(λ)L(u · ∇ηj)dλ‖Lq(Hj)

)

≤ C

(

‖h‖∞‖f‖Lq(Ω) + ‖h‖∞
∫ 1

0

‖L(u · ∇ηj)‖Lq(Hj)ds

)

≤ C

(

‖h‖∞‖f‖Lq(Ω) + ‖h‖∞
∫ 1

0

1√
s
‖f‖Lq(Ω)ds

)

≤ C‖h‖∞‖f‖Lq(Ω) (37)

for all h ∈ H∞
0 (Σφ). Combining (32), (36), (34) and (37) we get

‖ 1

2πi

∫

Γ1,∞

h(λ)(λ − AΩ)−1fdλ‖Lq(Ω) = ‖ 1

2πi

∫

Γ1,∞

h(λ)udλ‖Lq(Ω)

≤
N

∑

j=0

‖ 1

2πi

∫

Γ1,∞

h(λ)ηjudλ‖Lq(Ωj)

≤
N

∑

j=0

‖ 1

2πi

∫

Γ1,∞

h(λ)ηjudλ‖Lq(Hj)

≤ C‖h‖∞‖f‖Lq(Ω)
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for all h ∈ H∞
0 (Σφ). In view of (28) we thus have proved the following

theorem.

Theorem 16 Let 1 < q < ∞ and Ω ⊂ R
n be a bounded domain whose

boundary is of class C3. Then the Stokes operator AΩ admits a bounded
H∞-calculus in Lq,σ(Ω).

3.4. H∞-calculus for the Stokes operator on exterior domains and on
perturbed half-spaces

In this section we consider the Stokes operator AΩ , where Ω ⊂ R
n

is either an exterior domain, i.e. the complement of a compact set, or a
perturbed half-space by which we mean that there is a compact set K in
R

n such that R
n
+ \ K = Ω \ K, see Figure 4. We will show that the Stokes

operator AΩ on such a domain also admits a bounded H∞-calculus. This
is more or less a consequence of the results in Subsections 3.1 and 3.3.
Using the same localization as in the proof of Theorem 5 we can reduce
the perturbed half-space problem to the case of a bounded domain and
the half-space. If Ω is exterior we can reduce the problem to the bounded
domain case and to R

n. Instead of repeating large parts of the proofs of
Theorem 5 and Theorem 16, we only explain the essential steps that differ
in this situation.

Theorem 17 Let 1 < q < ∞ and Ω ⊂ R
n be an exterior domain or a

perturbed half-space whose boundary is of class C3. Then the Stokes operator
AΩ admits a bounded H∞-calculus in Lq,σ(Ω).

Proof. Let BR(0) a ball such that Ω\BR(0) = R
n
+\BR(0) if Ω is a perturbed

half-space or Ω \ BR(0) = R
n \ BR(0) if Ω is an exterior domain. In both

of the two cases we can use the same construction of Ω0, Ω1, η0, η1 as in the
proof of Theorem 5 with the only difference that we set Ω0 = B2R(0) and
Ω1 = R

n if Ω is an exterior domain. As before, we split the H∞ integral
into the two parts |λ| ≤ 1 and |λ| > 1. For the treatment of the former
integral we only have to modify inequality (27) since we applied Sobolev’s
inequality for Hω at this point. The remaining parts of the proof can be
copied verbatim, because nowhere else we have used the special structure of
Hω again. To obtain an estimate like (27) if Ω is a perturbed half-space or
an exterior domain we will apply the following generalization of Poincaré’s
inequality on Ω0. If Q ⊂ R

n is a bounded Lipschitz domain and V is a
closed subspace of W 1,q(Q), then there are equivalent:

(i) There is some u0 ∈ V and some constant C0 ≥ 0 such that u0 + ξ ∈ V
implies |ξ| ≤ C0 for ξ ∈ R

n.
(ii) There is a constant C > 0 such that

‖u‖Lq(Q) ≤ C‖∇u‖Lq(Q), u ∈ V.
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R 2R

Ω
c

Ω0

R
n−1

Fig. 4. Resolution of the identity for the perturbed half-space

A proof of that result can be found e.g. in [Alt99]. If S ⊂ ∂Q is not a null
set with respect to the boundary measure it is easy to see, that W 1,q

0,S(Q) :=

{u ∈ W 1,q(Q) : γu ↾S= 0} is a closed subspace of W 1,q(Q), which satisfies
condition (i) of the above equivalence. Thus, if we set S := ∂Ω0 ∩ ∂Ω,
we deduce the validity of Poincaré’s inequality on W 1,q

0,S(Ω0). This gives us

for the Stokes flow u ∈ dom(AΩ) of the solution (u, p) of (SRP )Ω
f,0, where

f ∈ Lq,σ(Ω),

‖u∆η1‖Lq1
(Ω1) ≤ C‖u‖Lq(Ω0) ≤ C‖∇u‖Lq(Ω0), (38)

with q1 as in Theorem 5. To see that we may estimate the last term again
by Poincaré’s inequality we have to verify (i) for the subspace

V := ∇
[

W 1,q
0,S(Ω0) ∩ W 2,q(Ω0)

]

=
{

∇v : v ∈ W 1,q
0,S(Ω0) ∩ W 2,q(Ω0)

}

.

of W 1,q(Ω0). Clearly, (i) follows if we can show that there is no non-trivial
constant function in V . If w = ∇v ∈ V is constant for some v ∈ W 1,q

0,S(Ω0)∩
W 2,q(Ω0), then v(x) = Mx+b, where M ∈ R

n×n and b ∈ R
n. Hence, the set

of zeros for v is an affine subspace of R
n. But the only affine subspace that

contains S is R
n, since we may assume that ∂Ω is not an affine subspace

of R
n (otherwise we are in the half-space case). This implies v = 0 which

in turn implies w = 0. It remains to show that V is closed in W 1,q(Ω0).
This can be seen by direct calculation or by the following argument: We set
X := W 1,q

0,S(Ω0) ∩ W 2,q(Ω0) and

T : X → W 1,q(Ω0), Tu := ∇u.



H∞-calculus for the Stokes operator on Lq-spaces 33

Since T is injective its inverse is well-defined on ran(T ) = V . The bounded-
ness of T implies the closedness of T−1. We will show that T−1 is continuous,
which immediately yields the closedness of its domain V . By Poincaré’s in-
equality on W 1,q

0,S(Ω0) we obtain

‖T−1u‖X = ‖T−1u‖2,q ≤ C
(

‖T−1u‖q + ‖∇T−1u‖1,q

)

≤ C
(

‖∇T−1u‖q + ‖∇T−1u‖1,q

)

= C (‖u‖q + ‖u‖1,q) ≤ C‖u‖1,q = C‖u‖V

for all u ∈ V proving the continuity of T−1. Consequently, Poincaré’s in-
equality is valid on V which gives us together with (38)

‖u∆η1‖Lq1
(Ω1) ≤ C‖∇u‖Lq(Ω0) ≤ C‖∇2u‖Lq(Ω0) ≤ C‖∇2u‖Lq(Ω).

So, replacing (27) by the above line the proof for |λ| ≤ 1 is finished.

For |λ| ≥ 1 we can transfer the proof in Theorem 16 for that λ’s. Instead
of the localization used there which reduces the problem on Ω to problems
on Hω and R

n, we take the above localization and reduce it to problems on
the bounded domain Ω0 and the unbounded domain Ω1 (which is either R

n

or R
n
+). The localized equations remain unchanged as well as formula (31)

for the localized functions ηju, j = 0, 1. This allows us to copy the proof
of Theorem 16 without any further change. Applying Theorem 16 to AΩ0

and using the bounded H∞-calculus of AR
n
+

and ARn complete the proof of
Theorem 17. ¤

Appendix A. Regularity of the Helmholtz projection

Lemma 18 Let ω ∈ C1
c (Rn−1) and let Hω be the bent half-space associated

with ω as introduced in Section 3.1. Further, let 1 < q, q∗ < ∞ with 1
q∗

=
1
q − 1

n . Then the Sobolev inequality is valid for Hω, i.e. there is a C > 0
such that

‖u‖q∗ ≤ C‖∇u‖q

for all u ∈ W 1,q(Hω).

Proof. First recall that R
n
+ is a so-called (ε,∞) domain, i.e. there is some

ε > 0 with the following property: For all x, y ∈ R
n
+ there is a rectifiable arc

γ, joining x to y and satisfying L(γ) ≤ 1
ε |x − y| as well as

d(z) ≥ ε
|x − z||y − z|

|x − y| , z ∈ γ,
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y

z

|x−z|

|y−z|

x

γ

|x−y|

Fig. 5: The half-space is an
(ε,∞) domain

where L(γ) denotes the length of γ and d(z) =
zn is the distance from z to the boundary of
R

n
+. This can be easily seen by taking for γ

the upper half of the circle with diameter be-
ing the segment connecting x and y, see Figure
5. It is known, see [Jon81] for details, that un-
bounded (ε,∞) domains are extension domains
for the Dirichlet energy space, i.e. there is a
bounded operator E : Ŵ 1,q(Rn

+) → Ŵ 1,q(Rn)

with Ef ↾R
n
+
= f for all f ∈ Ŵ 1,q(Rn

+). Since

φ(x′, xn) = (x′, xn − ω(x)) is a C1-diffeomorphism mapping Hω to R
n
+, the

assertion follows.
¤

Remark 19 Actually, it can be shown that one has more general extension
operators for unbounded (ε,∞) domains: If Ω is a domain of this type,
N ∈ N, and q0, . . . , qN ∈ (1,∞), there is an extension operator

E :

N
⋂

j=0

Ŵ j,qj (Ω) →
N
⋂

j=0

Ŵ j,qj (Rn) with ‖∇jEu‖Lqj
(Rn) ≤ C‖∇ju‖Lqj

(Ω)

for all j = 1, . . . , N and all u ∈ ⋂N
j=0 Ŵ j,qj (Ω). For details concerning

extension operators in Sobolev spaces, see [Chu92]. As an easy consequence,
Gagliardo-Nirenberg’s inequality extends to (ε,∞) domains. In particular,
it holds true for R

n
+ and the bent half-space Hω with ω as in Lemma 18.

Let Ω be either a bounded domain or Ω = R
n
+. It is well-known that the

solution of the Neumann problem on Ω associated to the Helmholtz pro-
jection admits higher regularity. This implies immediately the regularity of
PΩ , i.e. PΩ ∈ L(W k,q(Ω)) for 1 < q < ∞ and k ∈ N ∪ {0}. The next
proposition shows that this also holds true for Ω = Hω.

Proposition 20 Let 1 < q < ∞ and k ∈ N ∪ {0} and ω ∈ Ck
c (Rn−1).

Then the Helmholtz projection PHω
is a bounded operator in W k,q(Hω). In

particular, if 1 < q < n, then

‖∇kPHω
u‖q ≤ C‖∇ku‖q, u ∈ W k,q(Hω).

Proof. Let η0, η1, Ω0, Ω1 as in Theorem 5. The case k = 0 is well-known,
so we only prove the assertion for k = 1. The general case then follows by
induction. We consider the localized Neumann-Problems

(NP )

{

∆(ηjp) = ηjdivu + 2∇ηj · ∇p + p∆ηj =: fj on Ωj ,
∂
∂ν (ηjp) = (uηj + p∇ηj) · ν =: gj on ∂Ωj

for j = 0, 1. From well-known regularity properties for the Neumann prob-
lem on R

n
+ (see [Fra00]) we get

‖∇2η1p‖Lq(Ω1) ≤
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≤ C
(

‖f1‖Lq(Ω1) + ‖g1‖Ŵ 1−1/q,q(∂Ω1)

)

≤ C
(

‖∇u‖Lq(Hω) + ‖p‖W 1,q(Ω0) + ‖uη1 + p∇η1‖Ŵ 1−1/q,q(∂Ω1)

)

,

where Ŵ 1−1/q,q(∂Ω1) is the trace Sobolev space, treated in detail e.g. in
[Gal98]. By [Gal98], Theorem II 8.2, we can estimate the latter term on the
right hand side which yields

‖∇2η1p‖Lq(Ω1) ≤ C
(

‖∇u‖Lq(Hω) + ‖p‖W 1,q(Ω0) + ‖uη1 + p∇η1‖Ŵ 1,q(Ω1)

)

≤ C
(

‖∇u‖Lq(Hω) + ‖u‖Lq(Ω0) + ‖p‖W 1,q(Ω0)

)

.

By using regularity properties for the Neumann problem on bounded do-
mains, we can treat the case j = 0 in a similar way which gives us

‖∇2η0p‖Lq(Ω0) ≤ C
(

‖∇u‖Lq(Hω) + ‖u‖Lq(Ω0) + ‖p‖W 1,q(Ω0)

)

.

It is always possible to choose p such that
∫

Ω0
p(x)dx = 0. From Poincaré’s

inequality and PHω
∈ L(Lq(Hω)) we therefore obtain

‖p‖Lq(Ω0) ≤ ‖∇p‖Lq(Ω0) ≤ ‖∇p‖Lq(Hω) ≤ ‖u‖Lq(Hω).

Hence, the above two estimates imply

‖∇2p‖Lq(Hω) ≤ ‖∇2η1p‖Lq(Ω1) + ‖∇2η0p‖Lq(Ω0)

≤ ‖u‖W 1,q(Hω),

which gives us

‖PHω
‖W 1,q(Hω) ≤ ‖u‖W 1,q(Hω).

Assume now 1 < q < n. With Lemma 18 and the boundedness of Ω0 we
may conclude

‖u‖Lq(Ω0) ≤ C‖u‖Lq∗ (Ω0) ≤ C‖u‖Lq∗ (Hω) ≤ C‖∇u‖Lq(Hω).

The Helmholtz-Projection PHω
does not depend on q and is continuous for

all 1 < q < ∞. Together with Lemma 18 this leads to

‖p‖W 1,q(Ω0) ≤ ‖∇p‖Lq(Ω0) ≤ C‖∇p‖Lq∗ (Hω)

≤ C‖u‖Lq∗ (Hω) ≤ C‖∇u‖Lq(Hω).

The above two estimates for ∇2η1p and ∇2η0p now imply

‖∇PHω
u‖Lq(Hω) ≤ ‖∇u‖Lq(Hω) + ‖∇2p‖Lq(Hω) ≤ C‖∇u‖Lq(Hω)

for u ∈ W 1,q(Hω). ¤
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Appendix B. Sobolev estimates for powers of the Stokes
operator on R

n
+

Proposition 21 Let 1 < q < ∞ and let A be the Stokes operator in
Lq,σ(Rn

+). Then

(a) For each 0 < s < 1, the norms ‖(A + 1)s · ‖q and ‖ · ‖dom(As) are
equivalent,

(b) for each k ∈ N, the norms ‖Ak/2 · ‖q and ‖∇k · ‖q are equivalent.

Proof. To prove (a), note that for r < 0, (A + 1)r is a bounded operator in
Lq,σ(Rn

+). From Remark 2 (iii) we know that A−1 ∈ H∞(Lq,σ(Rn
+)) with the

same H∞-angle which immediately implies that also (A−1 +1)r is bounded
on Lq,σ(Rn

+) for r < 0. From

(A + 1)r = (A−1 + 1)rAr,

valid for all r ∈ R, we can therefore conclude

‖u‖dom(As) = ‖u‖q + ‖Asu‖q

= ‖(A + 1)−s(A + 1)su‖q + ‖(A−1 + 1)−s(A + 1)su‖q

≤ C‖(A + 1)su‖q

for all u ∈ dom(As). The converse inequality can be proved by the same
arguments:

‖(A + 1)su‖q = ‖(A + 1)(A + 1)s−1u‖q

≤ C
(

‖A(A + 1)s−1u‖q + ‖(A + 1)s−1u‖q

)

≤ C
(

‖A1−s(A + 1)s−1Asu‖q + ‖u‖q

)

= C
(

‖(A−1 + 1)s−1Asu‖q + ‖u‖q

)

≤ C‖u‖dom(As).

To verify (b) we first establish the estimates

‖u‖k,q ≤ C‖(A + 1)k/2u‖q ≤ C‖u‖k,q (B.39)

for each k ∈ N and all u ∈ dom(Ak/2). The equivalence of the norms
in question is then obtained from these estimates by the scaling method
which was already used in the proof of Proposition 11. Since ‖ · ‖dom(A)

and ‖ · ‖2,q are equivalent norms on dom(A), the resolvent (A + 1)−1 is a
bounded operator from (Lq,σ(Rn

+), ‖ · ‖q) to (dom(A), ‖ · ‖2,q). This implies
for u ∈ dom(A)

‖u‖2,q = ‖(A+1)−1(A+1)u‖2,q ≤ C‖(A+1)u‖q ≤ C‖u‖dom(A) ≤ C‖u‖2,q.
(B.40)

Since A ∈ H∞(Lq,σ(Rn
+)) we know from [Tri78] and [BM88] that

dom(A1/2) = [Lq,σ(Rn
+),dom(A)]1/2 = [Lq(R

n
+),dom(∆)]1/2 ∩ Lq,σ(Rn

+)

= W 1,q
0 (Rn

+) ∩ Lq,σ(Rn
+).
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In particular, the norms ‖·‖dom(A1/2) and ‖·‖1,q are equivalent on dom(A1/2).

By (a), the norm ‖ · ‖dom(A1/2) is also equivalent to ‖(A + 1)1/2 · ‖q. This
yields

‖u‖1,q ≤ C‖(A + 1)1/2u‖q ≤ C‖u‖1,q (B.41)

for all u ∈ dom(A1/2). Consider the Stokes equations on the half-space:






u − ∆u + ∇p = f on R
n
+,

∇ · u = 0 on R
n
+,

γu = 0.
(B.42)

For f ∈ Lq,σ(Rn
+) this equation has the unique solution u = (A + 1)−1f ∈

dom(A) which satisfies
‖u‖2,q ≤ C‖f‖q, (B.43)

(see e.g. [FS94] or [Sol77]). Moreover, for k ∈ N∪{0} and g ∈ W k,q(Rn
+) we

get from [Gal98] Theorem IV.3.2, that for any solution v of the stationary
equation

(SSE)
R

n
+

g,0







−∆v + ∇p = g on R
n
+,

∇ · v = 0 on R
n
+,

γv = 0,

which satisfies ∇2v ∈ Lq(R
n
+) we have

‖∇k+2v‖q ≤ C‖g‖k,q. (B.44)

Next, let f ∈ W 1,q(Rn
+) ∩ Lq,σ(Rn

+), u be the solution of (B.42) and put

g = f − u ∈ W 1,q(Rn
+). Trivially, u is a solution of (SSE)

R
n
+

g,0 with ∇2u ∈
Lq(R

n
+). Hence by (B.43) and (B.44) we get that ∇3u ∈ Lq(R

n
+) with

‖∇3u‖q ≤ C‖g‖1,q ≤ C(‖f‖1,q + ‖u‖1,q) ≤ C‖f‖1,q.

By induction over k we obtain that for every k ∈ N and each f ∈ W k,q(Rn
+)∩

Lq,σ(Rn
+) the solution u of (B.42) satisfies

‖u‖k+2,q ≤ C‖f‖k,q.

Since u = (A+1)−1f , this implies in view of the regularity of the Helmholtz
projection (Proposition 20) that

‖u‖k+2,q ≤ C‖f‖k,q = C‖(A + 1)u‖k,q ≤ C‖u‖k+2,q (B.45)

for all u ∈ dom(A) ∩ W k,q(Rn
+). We will prove (B.39) by induction: The

inequalities (B.41) and (B.40) yield (B.39) for k = 1 and k = 2 respectively.
Suppose now u ∈ dom(A(k+2)/2) and that (B.39) holds true for all j ≤
k +1 ∈ N. This implies (A+1)u ∈ dom(Ak/2) ⊂ W k,q(Rn

+) and with (B.45)
we obtain

‖u‖k+2,q ≤ C‖(A + 1)u‖k,q ≤ C‖(A + 1)k/2(A + 1)u‖q

= C‖(A + 1)(k+2)/2u‖q.
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Conversely, the calculation

‖(A + 1)(k+2)/2u‖q = ‖(A + 1)k/2(A + 1)u‖q

≤ C‖(A + 1)u‖k,q ≤ C‖u‖k+2,q

shows that (B.39) is valid for all k ∈ N.

Now let w ∈ dom(Ak/2) and λ > 0. As in the proof of Proposition 11 we
set u = J−1

λ w = w( 1
λ ·) ∈ dom(Ak/2). By equality (21) we get

‖(A + λ2)k/2w‖q = λk−n/q‖(A + 1)k/2u‖q.

Moreover, by (19) we have

λk−n/q‖u‖k,q = λk−n/q‖J−1
λ w‖k,q =

k
∑

j=0

λk−j‖∇jw‖q.

The above two inequalities imply together with (B.39) that

k
∑

j=0

λk−j‖∇jw‖q ≤ C‖(A + λ2)k/2w‖q ≤ C

k
∑

j=0

λk−j‖∇jw‖q

for all w ∈ dom(Ak/2) and all λ > 0 (note that Jλ is an automorphism of
this space). Passing to the limit λ → 0 yields the assertion. ¤
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