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Abstract. Consider the initial value problem for the three dimensional Navier-Stokes equations with
rotation in the half-space R3

+ subject to Dirichlet boundary conditions as well as the Ekman spiral
which is a stationary solution to the above equations. It is proved that the Ekman spiral is nonlinearly
stable with respect to L2-perturbations provided the corresponding Reynolds number is small enough.
Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.

1. Introduction

Consider the the initial value problem for the three dimensional Navier-Stokes equations with rotation
in the half-space R3

+ subject to Dirichlet boundary conditions, i.e. the set of equations

(1.1)





∂tu− ν∆u+ Ωe3 × u+ (u · ∇)u+∇p = 0, t > 0, x ∈ R3
+,

div u = 0, t > 0, x ∈ R3
+,

u(t, x1, x2, 0) = 0, t > 0, x1, x2 ∈ R,
u(0, x) = u0, x ∈ R3

+,

where u = (u1, u2, u3) denotes the velocity field and p the pressure of an incompressible, viscous fluid.
Here, e3 denotes the unit vector in x3-direction, ν > 0 the viscosity of the fluid, and the constant Ω ∈ R
is called the Coriolis parameter which is equal to twice the frequency of rotation around the x3 axis.

It is well known that the above system has a stationary solution which can be expressed even explicitly
as

uE(x3) = u∞(1− e−x3/δ cos(x3/δ), e
−x3/δ sin(x3/δ), 0)T ,(1.2)

pE(x2) = −Ωu∞x2,(1.3)

where δ is defined by δ := ( 2ν
Ω )1/2 and u∞ ≥ 0 is a constant. This stationary solution of equation (1.1) is

called in honour of the swedish oceanograph V.W. Ekman, the Ekman spiral; see [8]. It describes math-
ematically rotating boundary layers in geophysical fluid dynamics (atmospheric and oceanic boundary
layers) between a geostrophic flow and a solid boundary at which the no slip boundary condition applies.
Moreover, δ denotes the thickness of the layer. In the geostrophic flow region corresponding to large x3,
there is a uniform flow with velocity u∞ in the x1 direction. Associated with u∞, there is a pressure
gradient in the x2-direction. The Ekman spiral in R3

+ matches this uniform velocity for large x3 with
the no slip boundary condition at x3 = 0, i.e. we have uE(0) = 0 and

uE(x3)→ (u∞, 0, 0) provided x3 →∞.

In this paper we are interested in stability questions for the Ekman spiral. More precisely, we consider
perturbations of the Ekman spiral by functions u solving the above equation (1.1). To this end, set

w := u− uE , and q := p− pE.
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Since (uE , pE) is a stationary solution of (1.1), the pair (w, q) formally satisfies the equations
(1.4)



∂tw − ν∆w + Ωe3 × w + (uE · ∇)w + w3∂3uE + (w · ∇)w +∇q = 0, t > 0, x ∈ R3
+,

div w = 0, t > 0, x ∈ R3
+,

w(x1, x2, 0) = 0, t > 0, x1, x2 ∈ R,
w(0, x) = w0, x ∈ R3

+,

where w0 = u0 − uE.
It is natural to conjecture that there exists a critical Reynolds number Rec with the property that

if Re < Rec, then the perturbed nonlinear flow is stable and that the flow is unstable provided Re >
Rec. Here Re = u∞δν−1 denotes the Reynolds number of the given fluid. It seems that there is no
mathematical proof of this statement so far.

Considering the linearized version of our problem, i.e.

(1.5)





∂tw − ν∆w + Ωe3 × w + (uE · ∇)w + w3∂3uE +∇q = 0, t > 0, x ∈ R3
+,

div w = 0, t > 0, x ∈ R3
+,

w(x1, x2, 0) = 0, t > 0, x1, x2 ∈ R,
w(0, x) = w0, x ∈ R3

+,

we remark that linear stability results for the Ekman spiral can be obtained fairly easily by energy
methods, again of course for small Reynolds number. Results on linear instability of w for large Reynolds
number are more difficult to obtain. It was shown in [7] that in the case of flows between infinite layers,
there exists a sequence of approximate solutions to (1.4) which is nonlinearly unstable for sufficiently
large Reynolds numbers in the sense of [7].

Recently it was shown in [12] that the nonlinear equation (1.4) admits a unique, local mild solution
for all non decaying initial data belonging to a certain Besov space. In this paper, we consider the
problem of global weak solutions to (1.4) and study also their nonlinear stability behaviour for initial
data belonging to L2

σ(R3
+).

We show in our first main result that there exists a global weak solution to the above set (1.4) of
nonlinear equations provided the Reynolds number Re = u∞δν−1 is small enough. Secondly, assuming
this condition, for every initial data w0 ∈ Lpσ(R3

+), there exists at least one global weak solution w to
(1.4) such that

lim
t→∞

‖w(t)‖2 = 0,

which shows in particular that the Ekman spiral is nonlinearly stable with respect to L2-perturbations.
Moreover, it is even possible to estimate the decay rate. Indeed, roughly speaking, if Re is small enough,
0 < α ≤ 1

4 and w0 ∈ L2
σ(R3

+) satisfies

‖e−tASCEw0‖2 = O(t−α),

then there exists at least one global weak solution w to the nonlinear problem (1.1) having the same
decay rate. A similar result applies for arbitrary α > 0. Here e−tASCE denotes the semigroup on L2

σ(R3
+)

generated by the Stokes-Coriolis-Ekman operator in L2
σ(R3

+) defined in the following section.
Our approach is inspired by the methods developed by Miyakawa and Sohr [15] and Borchers and

Miyakawa [3],[2] in order to construct weak solutions to the Navier-Stokes equations – without rotational
effects – on exterior domains. For more information on the Navier-Stokes equations with rotational effect,
we refer to [13] or [1] and [4]. Although the assertions of our two main results are stated completely
within the L2-framework, our proof needs so-called maximal Lp-regularity estimates for the Stokes-
Coriolis-Ekman operator in the halfspace R3

+ for p 6= 2. We sketch the proof of these estimates in
Section 3.
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2. Preliminaries and Main Results

For 1 < p <∞ denote by P the Helmholtz projection from Lp(R3
+) to Lpσ(R3

+). We then may rewrite
equation (1.4) as an evolution equation in Lpσ(R3

+) of the form

(2.1)

{
w′ +ASCEw + P (w · ∇)w = 0, t > 0,

w(0) = w0,

where the Stokes-Coriolis-Ekman operator ASCE in Lpσ(R3
+) is defined by

(2.2)

{
ASCEw := P (−ν∆w + Ωe3 × w + [(uE · ∇)w + w3∂3uE ]) = (AS +AC +AE)w

D(ASCE) := W 2,p(R3
+) ∩W 1,p

0 (R3
+) ∩ Lpσ(R3

+).

It follows for example from the results in [6] that the usual Stokes operator AS,p = −P∆ generates a
bounded analytic semigroup e−tAS,p on Lpσ(R3

+) for all p ∈ (1,∞). By standard perturbation theory, we

see that the Stokes-Coriolis-Ekman operator generates also an analytic semigroup e−tASCE,p on Lpσ(R3
+).

In particular, after possible rescaling, the square root (ASCE,2)1/2 of ASCE,2 is a well defined operator
in L2(R3

+). This allows us to define a weak solution to (1.4) as follows. For simplicity of notation, we
omit the index 2 and write in the following ASCE = ASCE,2.

Definition 2.1. Let w0 ∈ L2
σ(R3) and f ∈ L2((0, T );L2

σ(R3
+) for all T > 0. We call w : [0,∞)→ L2

σ(R3
+)

a weak solution of equation (1.4) if for all T > 0,

i) w ∈ L∞((0, T );L2
σ(R3

+)) ∩ L2((0, T );D(A
1/2
SCE)) and

ii)

−
∫ T

0

〈w, φ〉h′(t)dt + ν

∫ T

0

〈∇w,∇φ〉h(t)dt +

∫ T

0

〈(uE · ∇)w, φ〉h(t)dt

+

∫ T

0

〈w3 · ∂3uE , φ〉h(t)dt + Ω

∫ T

0

〈e3 × w, φ〉h(t)dt + 〈w · ∇w, φ〉h(t)dt = 〈w0, φ〉h(0),

holds for all φ ∈ D(A
1/2
SCE) and all h ∈ C1([0, T ],R) with h(T ) = 0.

Note that the sixth term on the left hand side above is meaningful since the dimension of the underlying
space is 3.
We are now in the position to state our main results concerning global weak solutions of (1.4) and
nonlinear stability of the Ekman spiral.

Theorem 2.2. Assume that u∞δν−1 ≤ 3
2
√

2
. Then the following assertions hold.

a) There exists a weak solution to (1.4).
b) For every w0 ∈ L2

σ(R3
+) there exists at least one global weak solution w of (1.4) such that

lim
t→∞

‖w(t)‖2 = 0.

c) Assume that for w0 ∈ L2
σ(R3

+) and some α > 0

‖e−tASCEw0‖2 = O(t−α).

Then there exists at least one global weak solution w of (1.4) such that

‖w(t)‖2 =

{
O(t−α), α ≤ 1

4 ,

O(t−
1
4 ), α > 1

4 .

3. Tools for the proof

Let 1 < r <∞ and for f ∈ Lr((0, T ), Lrσ(R3
+)) consider the inhomogeneous equation

(3.1)

{
u′ +Au = f, t ∈ (0, T ),

u(0) = 0,
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associated with a sectorial operator A in Lrσ(R3
+). We say that A admits maximal Lr-regularity if there

exists a unique function u ∈W 1,r((0, T );Lrσ(R3
+))∩Lr((0, T );D(A)) satisfying (3.1). In this case, there

exists a constant C > 0 such that

‖u′‖Lr(0,T ;Lrσ(R3
+)) + ‖Au‖Lr(0,T ;Lrσ(R3

+)) ≤ C‖f‖Lr(0,T ;Lrσ(R3
+))

holds. It is well known that the Stokes operator AS in Lrσ(R3
+) admits maximal Lr-regularity; see e.g.

[17],[6], or [10]. In order to prove that this holds true also for the Stokes-Coriolis-Ekman operator, we
show that ASCE−AS is relatively bounded with respect to AS and apply Proposition 4.3 of [5]. Observe
that there exists a constant µ > 0 such that

R{λ(λ+ µ+ASCE)−1 : λ ∈ Σθ} <∞,
where Σθ := {z ∈ C\{0} : arg z < θ} for some θ > π

2 and R denotes the R-bound of a family of bounded

operators on Lrσ(R3
+). Thus, Proposition 4.3 in [5] implies the following proposition.

Proposition 3.1. Let 1 < r < ∞, f ∈ Lr((0, T );Lrσ(R3
+)) and ASCE in Lrσ(R3

+) be given as in (2.2).
Then there exists µ > 0 such that ASCE + µ admits maximal Lr-regularity on Lrσ(R3

+). In particular,
there exists a constant C > 0 such that

‖u′‖Lr(0,T ;Lrσ(R3
+)) + ‖(ASCE + µ)u‖Lr(0,T ;Lrσ(R3

+)) ≤ C‖f‖Lr(0,T ;Lrσ(R3
+))

holds.

Besides the above maximal Lr-estimates for our evolution equation, we need the following simple
lemma on interpolation of Lp-spaces.

Lemma 3.2. If 1 < p < q < r <∞, then Lp(Rn+) ∩ Lr(Rn+) ⊂ Lq(Rn+) and

‖u‖q ≤ ‖u‖αp‖u‖1−αr , where α =
q−1 − r−1

p−1 − r−1
.

In fact, taking Hölder’s inequality with exponents p
αq and r

(1−α)q yields the claim.

4. The Stokes-Coriolis-Ekman semigroup on L2
σ(R3

+)

In this section we show that the Stokes-Coriolis-Ekman operator generates a contraction semigroup
on L2

σ(R3
+) provided the Reynolds number Re = u∞δν−1 is small enough. To this end, consider the

Stokes-Coriolis-Ekman operator ASCE in L2
σ(R3

+) defined by

(4.1)

{
ASCEw = −νP∆w + ΩPJPw + (P (uE · ∇)w + Pw3∂3uE) = (AS +AC +AE)w

D(ASCE) = H2(R3
+) ∩H1

0 (R3
+) ∩ L2

σ(R3
+).

Then the following result holds:

Theorem 4.1. The Stokes-Coriolis-Ekman operator ASCE generates an analytic C0-semigroup TSCE
of contractions on L2

σ(R3
+) provided

(4.2)
u∞δ
ν
≤ 3

2
√

2
.

Note that by the results of the previous sections we already know that T pSCE is an analytic C0-
semigroup on Lpσ(R3

+) for 1 < p <∞. The uniform boundedness of TSCE in L2
σ(R3

+) will be essential in
the following.

Lemma 4.2. Let p ∈ [1,∞], q ∈ [1,∞) and α > 0. Then there exists a constant C > 0 such that

‖e−(·)/αw(·)‖Lp(R+) ≤ Cα1−1/q+1/p‖ d

dx
w‖Lq(R+)

for all w ∈ W 1,q
0 (R+).
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Proof. Note first that it suffices to show the assertion for w ∈ C∞c (R+). In this case the result then
follows from the representation

e−s/αw(s) = e−s/α
∫ s

0

w′(t)dt, s > 0,

and the fact that the function s 7→ e−s/α belongs to Lp(R+) for all p ∈ [1,∞]. �

Proof. of Theorem 4.1. For w0 ∈ L2
σ(R3

+) set w(t) := TSCE(t)w0. Then w satisfies

{
w′ +ASCEw = 0, t > 0,

w(0) = w0.

Multiplying the above equation with w and taking into account the skew symmetry of the second and
third term of ASCE we obtain

1

2

d

dt

∫

R3
+

|w(t)|2dx+ ν

∫

R3
+

|∇w(t)|2dx+

∫

R3
+

w(t) · (w3(t) · ∂3uE)dx = 0, t > 0.

Since
∫

R3
+

w · (w3 · ∂3uE)dx ≤
2∑

j=1

‖e(·)/2δ(∂3uE)jw3‖2‖e−(·)/2δwj‖2.

and since

∂3uE(x3) =
u∞
δ

e−x3/δ




cos(x3/δ) + sin(x3/δ)
cos(x3/δ)− sin(x3/δ)

0


 ,

we see that

(4.3) ‖e(·)/2δ(∂3uE)jw3‖2 ≤
√

2
u∞
δ
‖e−(·)/2δw3‖2.

The above Lemma 4.2 implies

‖e−(·)/2δwj‖2 ≤
√

2

3
δ‖∂3w

j‖2, j = 1, 2, 3.

Combining these estimates, we finally have

∫

R3
+

w · (w3 · ∂3uE)dx ≤ 2
√

2

3
u∞δ‖∇w‖22.

Thus
d

dt
‖w(t)‖22 ≤ 0

for all t > 0, provided

u∞δ ≤
3ν

2
√

2
.

Therefore

‖TSCE(t)w0‖2 = ‖w(t)‖2 ≤ ‖w0‖2, t > 0,

and the assertion is proved.
�
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5. Existence of global weak solutions

In this section we prove the existence of a global weak solution to problem (1.4) or to problem (2.1)
in the case where the Reynolds number Re = u∞δν−1 is small enough. We therefore assume throughout
this section that

Re =
u∞δ
ν
≤ 3

2
√

2
.

We subdivide the proof into three steps.

Step 1: Approximate local solutions
We start by constructing first approximate solutions to our problem. To this end, we introduce smooth-
ing operators Jk given by

Jk := (1 + k−1ASCE)−1, k ∈ N.
Since ASCE is dissipative in L2

σ(R3
+), see Theorem 4.1, Jk is a bounded operator in L2

σ(R3
+) with

‖Jk‖L2
σ(R3

+) ≤ 1 for all k ∈ N. By Sobolev’s embedding theorem we have

(5.1) ‖Jku‖∞ ≤ C(k)‖u‖2.

Moreover, if 1 < p <∞, then there exist k0 ∈ N and C > 0 such that

(5.2) ‖Jku‖Lpσ(R3
+) ≤ C‖u‖Lpσ(R3

+), k ≥ k0.

Indeed, this follows from the fact that ASCE generates analytic semigroup on Lpσ(R3
+) and general

properties of sectorial operators. We now set

w0k := Jkw0 and Fkw := −P (Jkw · ∇)w

and construct approximate solutions wk to equation (2.1) by solving the integral equations

(5.3) wk(t) = e−tASCEw0k +

∫ t

0

e−(t−s)ASCEFkwk(s)ds.

To this end, consider for T > 0 the Banach space X := C([0, T ];D(A
1/2
SCE)) equipped with the norm

‖u‖T := sup
0≤t≤T

(‖u(t)‖2 + ‖A1/2
SCEu(t)‖2)

and for M > 0 and k ∈ N the closed set

S(k,M, T ) := {u ∈ X,u(0) = w0k, ‖u‖T ≤M}.

as well as the nonlinear operator Γk defined on S(k,M, T ) by

Γku(t) := e−tASCEw0k +

∫ t

0

e−(t−s)ASCEFku(s) ds.

Note that ‖Fku‖2 ≤ C(k)‖u‖2‖∇u‖2. Since D(A
1/2
SCE) = H1

0 (R3
+) ∩ L2

σ(R3
+) and therefore

(5.4) ‖∇u‖2 ≤ ‖u‖2 + ‖A1/2
SCEu‖2

we see that

(5.5) ‖Fku‖2 ≤ C(k)(‖u‖22 + ‖u‖2‖A1/2
SCEu‖2).

Since e−tASCE is an analytic semigroup of contractions we also have

‖∇e−tASCEw‖2 ≤ Ct−
1
2 ‖w‖2, t > 0.
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We thus may estimate Γku(t) as follows

‖Γku(t)‖T ≤ ‖w0k‖2 + ‖A1/2
SCEw0k‖2

+ sup
0≤t≤T

{
∫ t

0

C(k)‖u‖22 ds}+ sup
0≤t≤T

{
∫ t

0

C(k)‖u‖2‖A1/2
SCEu‖2 ds}

+ sup
0≤t≤T

{
∫ t

0

t−
1
2C(k)‖u‖22 ds}+ sup

0≤t≤T
{
∫ t

0

t−
1
2C(k)‖u‖2‖A1/2

SCEu‖2 ds}

≤ ‖w0k‖2 + ‖A1/2
SCEw0k‖2 + C1(k)M2(T + T

1
2 ).

Furthermore, since

||Fku1 − Fku2||2 ≤ ||Jku2∇(u1 − u2)||2 + ||(Jku1 − Jku2)∇u1||2
≤ CM ||u1 − u2||T , u1, u2 ∈ S(k,M, T ).

we obtain

‖Γku1(t)− Γku2(t)‖T ≤ C2(k)M(T + T
1
2 )‖u1(t)− u2(t)‖T .

Fix now M in such a way that ‖w0k‖2+‖A1/2
SCEw0k‖2 ≤ M

2 and then T such that C1(k)M2(T+T
1
2 ) ≤ M

2

and C2(k)M(T + T
1
2 ) < 1. Then Γk is a strict contraction in S(k,M, T ) and by Banach fixed point

theorem, there exists a unique wk in S(k,M, T ) satisfying (5.3) for t ∈ (0, T ).

Step 2: Approximate global solutions

In the following we prove a priori bounds for wk(T ) and A
1/2
SCEwk(T ) for all T > 0. To this end, recall

that wk is the solution of the equation

(5.6) w′k(t) +ASCEwk = Fkwk, t ∈ (0, T ).

Multiplying (5.6) with wk and integrating by parts yields

1

2

d

dt
‖wk‖22 + 〈ASCEwk, wk〉 = 〈Fkwk, wk〉.

Since 〈(uE · ∇)wk , wk〉 = Ω〈(e3 × wk), wk〉 = 〈Fkwk, wk〉 = 0 it follows that

1

2

d

dt
‖wk‖22 + 〈ASwk, wk〉+ 〈wk3∂3uE , wk〉 = 0.

Theorem 4.1 implies

(5.7)
1

2

d

dt
‖wk‖22 + C‖∇wk‖22 ≤ 0

for some C > 0. Integrating with respect to t yields

(5.8) ‖wk(T )‖22 +

∫ T

0

‖∇wk(s)‖22ds ≤ C‖w0‖2.

Next, forming the dual pairing of (5.6) with ASCEwk we obtain

〈w′k, ASwk〉+ 〈w′k, (uE · ∇)wk〉+ 〈w′k, wk3∂3uE〉
+〈w′k ,Ω(e3 × wk)〉+ 〈ASCEwk, ASCEwk〉 = 〈Fkwk, ASCEwk〉.

Substituting w′k = −ASCEwk + Fkwk leads to

〈w′k, ASwk〉+ ‖ASCEwk‖22 = 〈ASCE , (uE · ∇)wk + wk3∂3uE + Ω(e3 × wk)〉
−〈Fkwk, (uE · ∇)wk + wk3∂3uE + Ω(e3 × wk)〉+ 〈Fkwk, ASCEwk〉.

Hence,

〈w′k , ASwk〉 ≤ C(‖wk‖22 + ‖∇wk‖22) + C(k)‖wk‖22‖∇wk‖22 ≤ C(‖w0‖22 + ‖∇wk‖22) + C(k)‖w0‖22‖∇wk‖22,
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where the second inequality is due to the fact that ‖wk‖22 ≤ ‖wk0‖22 ≤ ‖w0‖22 which follows from (5.7)
and the contractivity of Jk. Finally, since 〈w′k, ASwk〉 = 1

2
d
dt‖∇wk‖22, integrating with respect to t

yields together with (5.8)

‖∇wk(T )‖22 ≤ C(T‖w0‖22 + ‖w0‖22) + C(k)‖w0‖42 + ‖∇w0k‖22.
As D(A

1/2
SCE) = H1

0 (R3
+) ∩ L2

σ(R3
+) the estimate

‖A1/2
SCEu‖2 ≤ ‖u‖2 + ‖∇u‖2

holds. Combining this with the estimate given in (5.8) we obtain an a-priori bound for ‖wk‖T for every
T > 0.

Step 3: Weak convergence
In this final step we show that the approximate global solutions wk constructed above converge in the
weak sense to some function w satisfying the equation

(5.9) w(t) = e−tASCEw0 −
∫ t

0

e−(t−s)ASCEP (w · ∇)w(s)ds.

We fix some time interval [0, T ]. Since
∫ T

0

‖A1/2
SCEwk(s)‖22ds ≤

∫ T

0

‖wk(s)‖22 + ‖∇wk(s)‖22ds ≤ T‖w(0)‖22 +

∫ T

0

‖∇wk(s)‖22ds

the above inequality (5.8) implies

wk ∈ L2(0, T ;D(A
1/2
SCE)) ∩ L∞(0, T ;Lpσ(R3

+)) =: Y =: Y1 ∩ Y2, k ∈ N
and that (wk) is even a bounded sequence in Y . Since Y1 is reflexive, there exists a subsequence of
(wk) converging weakly in Y1. Further, by Alaoglu’s theorem, (wk) possesses a weak-star convergent
subsequence in Y2 and thus there exists a function w ∈ Y with (wk) converging weakly to w in Y1 and
(wk) converging in the weak-star topology to w in Y2.

Next, we write wk(t) = w
(1)
k (t) + w

(2)
k (t) where

w
(1)
k (t) := e−tASCEw0k,

w
(2)
k (t) :=

∫ t

0

e−(t−s)ASCEFkwk(s) ds.

Performing the same calculations which led to (5.8), we now obtain

‖w(1)
k (t)− w(1)

l (t)‖22 +

∫ t

0

‖A1/2
SCE(w

(1)
k (s)− w(1)

l (t))‖22ds ≤ C‖w0k − w0l‖22, k, l ∈ N.

Since w0k → w0 in Lpσ(R3
+) as k →∞ we see that (w

(1)
k ) and (w

(2)
k ) are bounded sequences in Y .

Next, we set r = n+2
n+1 for n = 3. By Lemma 3.2, Hölder’s and Sobolev’s inequalities

‖Fkwk‖r ≤ C‖Jkwk‖ 2(n+2)
n
‖∇wk‖2 ≤ ‖wk‖

2
n+2

2 ‖∇Jkwk‖
n
n+2

2 ‖∇wk‖2.

Since ‖∇Jkvk‖2 ≤ ‖A1/2
SCEvk‖2 + ‖vk‖2 by (5.4), we see that

‖Fkwk‖r ≤ C‖w0‖
2

n+2

2 (‖A1/2
SCEwk‖2 + ‖w0‖2)

2
r .

Further, since (wk) is bounded in Y2, it follows from (5.8) that
∫ T

0

‖Fkwk‖rrdt ≤ C‖w0‖
2r
n+2

2

∫ T

0

(‖A1/2
SCEwk‖2 + ‖w0‖2)2dt ≤ C(T + 1)‖w0‖

2r
n+2 +2

2 .

Hence, (Fkwk) is a bounded sequence in Lr(0, T ;Lrσ(R3
+)). By construction, w

(2)
k is a solution of the

Cauchy problem
w′k(t) +ASCEwk(t) = Fkwk(t), t ≥ 0,

w(0) = 0.
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Thus our result on maximal Lr-regularity for ASCE , i.e. Proposition 3.1, implies that (w
(2)
k ) is a bounded

sequence in Lr(0, T ;D(ASCE,r)) ∩ W 1,r(0, T ;Lrσ(R3
+)). The operators Jk are uniformly bounded

on Lrσ(R3
+) in k ≥ k0; see (5.2). Thus (Jkw

(2)
k )k≥k0 is a bounded sequence in Lr(0, T ;D(ASCE,r)

∩W 1,r(0, T ;Lrσ(R3
+)) as well.

Since (wk) is a bounded sequence in Y by (5.8) and since (wk) and (Jkwk) are bounded in the space

of maximal regularity, if follows from theorem III.2.1 in [18] and lemma 1.4.6 in [14] that (w
(2)
k ) and

(Jkw
(2)
k )k≥k0 are relatively compact in L2(K × (0, T )) for any fixed compact set K ⊂ R3

+. It follows

that (w
(2)
k ) and (Jkw

(2)
k ) converge in L2(R3

+ × (0, T )). Therefore, wk(s) → w(s) and Jkwk(s) → w(s)
for a.a. s ∈ (0, T ) for some function w ∈ Y .

Finally, we need to verify that function w constructed above is in fact a weak solution of our problem
(1.4). To this end, note that by the weak convergence of (wk) in Y1 we have

lim
k→∞

∫ T

0

−〈wk , φ〉h′ dt =

∫ T

0

−〈w, φ〉h′ dt,

lim
k→∞

∫ T

0

〈∇wk ,∇φ〉h dt =

∫ T

0

〈∇w,∇φ〉h dt,

lim
k→∞

∫ T

0

〈(uE · ∇)wk , φ〉h dt =

∫ T

0

〈(uE · ∇)w, φ〉h dt,

lim
k→∞

∫ T

0

〈wk3 · ∂3uE , φ〉h dt =

∫ T

0

〈w3 · ∂3uE , φ〉h dt,

lim
k→∞

∫ T

0

ω〈e3 × wk, φ〉h dt =

∫ T

0

ω〈e3 × w, φ〉h dt,

lim
k→∞

〈w0k , φ〉h(0) = 〈w0, φ〉h(0)

since all these terms are linear. It remains to show that

lim
k→∞

∫ T

0

〈Jkwk · ∇wk , φ〉h dt =

∫ T

0

〈w · ∇w, φ〉h dt.

Let χN : R3
+ → {0, 1} be given by

χN (x) =

{
1, x ∈ R3

+ ∩ B(0, N),
0, otherwise

where B(x, n) denotes the ball with center x and radius n and consider

∫ T

0

〈Jkwk · ∇wk, φ〉h dt =

∫ T

0

〈Jkwk · ∇wk , χNφ〉h dt+

∫ T

0

〈Jkwk · ∇wk, (1− χN)φ〉h dt.

Assume first that w ∈ D(A
1/2
SCE) ∩ L∞. Then

lim
N→∞

∫ T

0

〈Jkwk · ∇wk, χNφ〉h dt =

∫ T

0

〈w · ∇w, χNφ〉h dt

since χNv is bounded and has bounded support. If v 6∈ L∞, take Jnw ∈ D(A
1/2
SCE) ∩ L∞ and pass then

to the limit N →∞.
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Since n = 3 we obtain by Hölder’s and by Sobolev’s inequality with r = ( 1
2 + 1

n )−1 = 6
5 as well as by

the Gagliardo-Nirenberg theorem that

|
∫ T

0

〈Jkwk · ∇wk , (1− χN )φ〉h dt| ≤ C

∫ T

0

‖Jkwk · ∇wk‖r‖(1− χn)φ‖2∗ dt

≤ C

∫ T

0

‖Jkwk‖n‖∇wk‖2‖(1− χn)φ‖2∗ dt

≤ C

∫ T

0

‖wk‖
1
2
2 ‖∇Jkwk‖

1
2
2 ‖∇wk‖2‖(1− χN)φ‖2∗ dt.

Since φ ∈ D(A
1/2
SCE) and D(A

1/2
SCE) ↪→ L2∗(R3

+), we obtain

lim
N→∞

|
∫ T

0

〈Jkwk · ∇wk , (1− χN )φ〉h dt| = 0.

Since our choice of T was arbitrary, there exists for every T > 0 a weak solution w ∈ L2(0, T ;D(A
1/2
SCE))∩

L∞(0, T ;L2
σ(R3

+)) of (2.1).
�

6. Proof of the stability estimates

In this section we prove assertions a) and b) of Theorem 2.2. Note first that the solution of problem
(2.1) is given by

w(t) = e−tASCEw0 −
∫ t

0

e−(t−s)ASCEP (w · ∇)w(s)ds.

In order to estimate the nonlinear term, recall that

‖∇e−tASCEu‖2 ≤ Ct−
1
2 ‖u‖2, u ∈ Lpσ(R3

+).

The same estimate is of course also valid for the adjoint operator ASCE
∗. This implies

‖e−tASCEP (w · ∇)w‖2 = sup
‖φ‖2=1

|〈e−tASCEP (w · ∇)w, φ〉| = sup
‖φ‖2=1

|〈w ⊗ w,∇e−tASCE∗φ〉|

≤ sup
‖φ‖2=1

‖w ⊗ w‖2‖∇e−tASCE
∗
φ‖2

≤ Ct−
1
2 ‖w‖24.

Since w ∈ D(A
1/2
SCE) = D(A

1/2
S ), it follows that

‖w‖24 ≤ C‖A3/8
S w‖22 ≤ C‖w‖

1
2
2 ‖∇w‖

3
2
2

and thus we may estimate the nonlinear term as

(6.1) ‖e−tASCEP (w · ∇)w‖2 ≤ Ct−
1
2 ‖w‖

1
2
2 ‖∇w‖

3
2
2 .

Hence,

(6.2) ‖w(t)‖2 ≤ ‖e−tASCEw0‖2 + C

∫ t

0

(t− s)− 1
2 ‖w‖

1
2
2 ‖∇w‖

3
2
2 ds.

By (5.7), d
dt‖w(t)‖2 ≤ 0 for all t > 0. Therefore

d

dt
‖w(t)‖22 +

m

t
‖w‖2 ≤

m

t
‖w‖2

for every integer m > 0. Multiplying this inequality by tm and applying estimate (6.1), yields

d

dt
(tm‖w‖2) ≤ mtm−1‖e−tASCEw0‖2 + Cmtm−1(

∫ t

0

(t− s)− 1
2 ‖w‖22 ds)

1
4 (

∫ t

0

(t− s)− 1
2 ‖∇w‖22 ds)

3
4 .



NONLINEAR STABILITY OF EKMAN BOUNDARY LAYERS 11

Denoting the second term on the right hand side above by F (t), we obtain after integrating in t and
dividing by tm

‖w(t)‖2 ≤ t−m
∫ t

0

mτm−1‖e−tASCEw0‖2 dτ + t−m
∫ t

0

F (τ) dτ.

Furthermore, we set

F1(t) :=

∫ t

0

(t− s)− 1
2 ‖w‖22 ds and F2(t) :=

∫ t

0

(t− s)− 1
2 ‖∇w‖22 ds

and estimate

t−m
∫ t

0

F (τ) dτ ≤ Ct−m
∫ t

0

mτm−1(F1(τ))
1
4 (F2(τ))

3
4 dτ

≤ Cmt−1(

∫ t

0

F1(τ) dτ)
1
4 (

∫ t

0

F2(τ) dτ)
3
4

≤ Cm(t−1

∫ t

0

F1(τ) dτ)
1
4 (t−1

∫ t

0

F2(τ) dτ)
3
4 .

Recall that d
dt‖w(t)‖22 + C‖∇w‖22 ≤ 0 for all t > 0. In particular, ‖w‖2 ∈ L∞(R+) and

t−1

∫ t

0

F1(τ) dτ ≤ Ct 1
2

and also ‖∇w‖2 ∈ L1(R+) with

t−1

∫ t

0

F2(τ) dτ ≤ Ct− 1
2 .

Summing up, we proved that

(6.3) ‖w(t)‖2 ≤ t−m
∫ t

0

mτm−1‖e−tASCEw0‖2 dτ + Ct−
1
4 .

In order to prove assertion i), we only have to observe that limt→∞ ‖e−tASCEw0‖2 = 0. The assertion
then follows from the estimate (6.3).

Finally, assume in addition that ‖e−tASCEw0‖2 = O(t−α) for some α > 0. The estimate (6.3) implies

that t−m
∫ t

0 mτ
m−1‖e−tASCEw0‖2 dτ = O(t−α), too, which proves assertion ii) of our theorem.
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