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Abstract. We consider a hyperbolicly perturbed Navier-Stokes initial value
problem in R

n, n = 2, 3, arising from using a Cattaneo type relation instead
of a Fourier type one in the constitutive equations. The resulting system is an
essentially hyperbolic one with quasilinear nonlinearities. The global existence

of smooth solutions for small data is proved, and relations to the classical
Navier-Stokes systems are discussed.

1. Introduction. The classical Navier-Stokes equations in the whole space R
n,

n = 2, 3,

ut − µ∆u+ (u · ∇)u+∇p = 0 in (0,∞)× R
n, (1)

div u = 0 in (0,∞)× R
n, (2)

u(0, ·) = u0 in R
n, (3)

with µ > 0 being the viscosity, for the velocity vector u = u(t, x) : (0,∞)×R
n → R

n

of a fluid, and p = p(t, x) : (0,∞) × R
n → R the related pressure, arise from the

transport law
ut + (u · ∇)u+∇p = divS (4)

and the constitutive law for the tensor S,

S =
µ

2
(∇u+ (∇u)′), (5)

together with the incompressibility (zero divergence) condition (2) and initial con-
ditions (3). We replace the Fourier type relation (5) by the Cattaneo type relation

τSt + S =
µ

2
(∇u+ (∇u)′) (6)
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cf. the Oldroyd model in (11) below. The Fourier type constitutive assumption (5)
— in addition to the pressure contribution — leads to the well-known parabolic
type classical Navier-Stokes system (1)–(3); there, in particular, we have the effect
of an infinite propagation speed of signals, as it is well-known as modeling prob-
lem/paradox for heat equations, or, more generally, for flux type equations (diffusion
problems, . . . ) where the flux relation is given by the Fourier type. There are ap-
plications, however, where it is more reasonable to work with hyperbolic models, cf
[26] and the references therein. It has also been observed experimentally that there
exist hyperbolic heat waves. First, one is naturally led to models with a delayed
flux relation

S(t+ τ, ·) =
µ

2
(∇u+ (∇u)′)(t, ·), (7)

with a small (small relatively to other physical constants in the system) relaxation
parameter τ > 0. The Cattaneo type constitutive law (6) can be interpreted as a
formal Taylor expansion of order one in t.

Remark 1. Formal higher-order Taylor expansions may lead to ill-posed problems,
cf. the examples by Dreher, Quintanilla and Racke [8].

Differentiating the transport equation (4) with respect to t, and using the new
relation (6), we obtain the new hyperbolicly perturbed Navier-Stokes system

τutt − µ∆u+ ut +∇p+ τ∇pt = −(u · ∇)u− (τut · ∇)u− (τu · ∇)ut (8)

in (0,∞)× R
n,

div u = 0 in (0,∞)× R
n, (9)

u(0, ·) = u0, ut(0, ·) = u1 in R
n, (10)

It will turn out that, in this system, at least the vorticity∇×u has finite propagation
speed.

This hyperbolic fluid model was already derived in [5] and [6], where the authors
discussed consequences and differences in comparison with the classical model.

The classical Navier-Stokes system (1)–(3) has been and is widely discussed. The
global in time well-posedness is of great interest not only in fluid dynamics and has
led over the years to many mathematical contributions, also to still open problems,
one of the most prominent ones being the question of global existence of smooth
solutions to any (possibly large, smooth) data. Under minimal assumptions on the
data u0, the existence of a weak solution is guaranteed by the results of Leray [16]
and Hopf [13]. The uniqueness of (u, p) up to an additive constant for the pressure
p is known in two space dimensions, hence also the global existence of large strong
solutions, but the uniqueness in three space dimensions remains open in general.
The global existence of small strong solutions has been proved, see e.g. the books of
Ladyzhenskaya [15], Constantin [7], Temam [30], von Wahl [32], and the references
therein. For an elementary approach to the classical Navier-Stokes equations we
also refer to the monograph [11].

For large data, strong global solutions are know to exist only under very re-
strictive additional assumptions on the data: see Ladyzhenskaya [15] for rotational
symmetry, Ukhovskii and Iudovich [31] for axial symmetry, Mahalov, Titi and Lei-
bovich [18] for helical symmetry, or for approximately symmetric data, see Ponce,
Racke, Sideris and Titi [23], for large initial data with uniformly large vorticity see
Babin, Mahalov and Nicolaenko [3] as well as Mahalov and Nicolaenko [17], for
highly oscillating nondecaying large initial data cf. Giga, Inui, Mahalov and Saal
[12]. For further discussions on global solvability we also refer to Cannone [4].
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Here, we consider the hyperbolic version (8)–(10). There is not only the hyper-
bolic character of a wave equation for u, that complicates things by less regular-
ization properties, but we notice the nonlinearities which are — in contrast to the
classical case — of highest order, see the term (τu · ∇)ut. In view of known results
on global existence for small data or blow-up even for small data, respectively, for
wave equations or heat type equations, these quadratic nonlinearities touch the crit-
ical borderline. We recall that for nonlinear heat equations — the linearized version
of which will show the same decay rates for solutions as solutions to damped wave
equations, see below — it is known from Fujita [10], see also Ponce [21], that for
quadratic perturbations the nonlinear heat equation in three dimensions has global
small solutions. However, this is in general not the case in dimension two. Never-
theless, we will be able to prove the global existence for small data also in two space
dimensions since the appearing nonlinearities also have derivatives, and derivatives
of solutions to damped wave equations have a better decay rate compared to the
solution itself — this is the same property as known for heat equations.

Remark 2. The equation (8) can be regarded as a damped wave equation only for
small values of u, since the term (τut ·∇)u might disturb the positive damping term
ut for large u. — This is another hint to think about a possible blow-up situation
for large data.

Therefore, we will combine and apply techniques known for nonlinear heat equa-
tions, where additional trouble will arise through the Helmholtz projections, see
below.

Quadratic nonlinearities are worse in two than in three space dimensions, and
a blow-up of solutions cannot yet be excluded. In fact, we have the conjecture
that strong solutions to the hyperbolic Navier-Stokes system (8)–(10) in two space
dimensions blow up in finite time if the data are sufficiently large.
This conjecture might turn out to be wrong if someone is able to prove the global
large well-posedness of large strong solutions — as it is the case for the (simpler)
classical Navier-Stokes system. But if the conjecture were true, it would have two
important consequences:

(i) The comparison to the classical Navier-Stokes system in two dimensions would
demonstrate that the modeling of fluid dynamics by the classical system is sensitive
versus small changes — predicting global solutions in one model and a blow-up
in the other one —, and hence the big question of global large solutions in three
dimensions might also be a more mathematical one in the sense that the model
might be not appropriate.

(ii) It would be the first nonlinear example where a change from the Fourier
type law to a Cattaneo type law gives opposite information (global existence versus
blow-up). This was known up to now for linearized equations from the recent study
of Timoshenko type systems by Fernández Sare and Racke [9], and for thermoelastic
plates by Quintanilla and Racke [24].

On the other hand, the conjecture might be wrong. Then the conclusion is
that both models — with Fourier or Cattaneo law, respectively — behave similar
(leaving the big question in three dimensions open in both cases). This would fit
to observations in different systems in thermoelasticity, where the change from one
to the other model does not change the qualitative and even quantitative behavior
essentially, see the survey in [26] and the references therein. Nevertheless, the
results in [9] show that, a priori, it is not evident that both systems yield the same
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description, despite the fact that the systems are formally close to each other (τ
being small). Our contribution shows on the level of small perturbations of equilibria
(small data) that the two systems — classical versus hyperbolic — are comparable.

We remark that our new Navier-Stokes system is related to the Oldroyd model
which considers instead of (6) the more general model

τSt + S = µ(E + νEt). (11)

where E := 1
2 (∇u+(∇u)′), cf. de Araújo, de Menzenes and Marinho [2] and Joseph

[14]; in comparison to our model we have ν = 0. If ν 6= 0 then, from the point of
derivatives getting involved, S is on a similar level as E , as in the classical case.

In [20], Paicu and Raugel considered a hyperbolic perturbation of the classical
Navier-Stokes equations consisting in adding the term τutt to the equation (1). The
global well-posedness for mild solutions in two dimensions for sufficiently small τ ,
and the global existence for small data and sufficiently small τ in three dimensions in
analogy to the classical case are proved. Of course, keeping the nonlinearity (u ·∇)u
is essential there and cannot be compared to our situation with the quasilinear
additional nonlinearities in(8). In [20], a number of justifications for their model is
presented, see the references therein.

In order to prove a global existence theorem for small data, we apply the Leray
projector P onto solenoidal fields, in order to eliminate the pressure terms. Once
knowing u, one can determine the pressure p by solving the linear problem

−∆p−∆pt = div {(u · ∇)u+ (τut · ∇)u+ (τu · ∇)ut} . (12)

P projects L2-vector fields onto the divergence free fields,

P : (L2(Rn))n −→ L2
σ(R

n) :=
{
w ∈ (L2

σ(R
n))n : divw = 0

}
.

This leads to the well-known orthogonal decomposition

(L2(Rn))n = L2
σ(R

n)⊕⊥ G2(R
n),

where G2(R
n) := {∇v : v ∈ L2

loc(R
n), ∇v ∈ (L2(Rn))n}.

Applying the projector P to (8) we arrive at the following system involving u
only,

τutt − µ∆u+ ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (13)

in (0,∞)× R
n,

div u = 0 in (0,∞)× R
n, (14)

u(0, ·) = u0, ut(0, ·) = u1 in R
n. (15)

In the following we shall prove the global existence to the problem (13)–(15); the
pressure is then determined by (12) (up to constants, as usual).

The Helmholtz projection can be regarded as a continuous operator on any
Wm,p ∩ L2-space, provided 1 < p < ∞. Since we need to estimate the nonlin-
earities in particular in Section 4, we have to avoid L∞- resp. L1-norms. On the
other hand, for the nonlinear problem in question we are — with quadratic non-
linearities involving u and one derivative of u in two space dimensions — at the
borderline of possible global existence theorems for small data (cf. the comments
above); for these cases, e.g. for nonlinear heat equations, one usually exploits the
decay of solutions in L∞. This has to be avoided here and leads to some additional
technical difficulties.
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Remark 3. Since we exploit the fact that, in R
n, the Helmholtz projection com-

mutes with the Laplace operator, an extension of our results to bounded domains
is not immediate. Based on reflection arguments, an approach subject to tangential
slip boundary conditions in the half-space R

3
+ is given in [28].

The paper is organized as follows: In Section 2, we will recall the local existence
theorem from our paper [27] of (Hm =)Wm,2)-valued solutions. The subsequent
remarks on finite propagation speed and on possible blow-up phenomena in Section
3 precede the first a priori estimate in Section 4, where a priori energy estimates for
the local solution will be proved in Hm-norms. In Section 5, the decay known for
linearized damped wave equations will be exploited to prove additional weighted a
priori estimates in Lq-norms (q 6= ∞). These, together with the energy estimates
from Section 5 will lead in Section 6 to the global existence theorem for small
data given in Theorem 6.1. In an Appendix, Moser-type inequalities for composite
functions are collected.

We use the standard Sobolev spaces Wm,p = Wm,p(Rn), 1 ≤ p ≤ ∞, and
Lp = W 0,p, with norms ‖ · ‖m,p and ‖ · ‖p, respectively, cp. [1]. Occasionally, we
shall omit the number of the copies of the space needed for vector fields. 〈·, ·〉 will
denote the inner product in L2.

2. Local existence. In [27] we obtained the following local existence theorem:

Theorem 2.1. Let n ≥ 2 and m > n/2. For each

(u0, u1) ∈
(
Wm+2,2(Rn) ∩ L2

σ(R
n)
)
×
(
Wm+1,2(Rn) ∩ L2

σ(R
n)
)

there exists a time T > 0 and a unique solution (u, p) to the equations (8)–(10)
satisfying

u ∈ C2([0, T ],Wm,2(Rn)) ∩ C1([0, T ],Wm+1,2(Rn))

∩ C0([0, T ],Wm+2,2(Rn) ∩ L2
σ(R

n)),

∇(p+ τpt) ∈ C0([0, T ],Wm,2(Rn)).

The existence time T can be estimated from below as

T >
1

1 + C(‖u0‖m+2,2 + ‖u1‖m+1,2)

with a constant C > 0 depending only on m and the dimension n.

3. Remarks on finite propagation speed and on blow-up phenomena. For
the local solution provided in the previous section, we can prove, as already men-
tioned in [27], the finite propagation speed for the vorticity v := ∇× u. Namely, v
satisfies the differential equation

τvtt−∆v+vt+(τu ·∇)vt+
{
(u ·∇)v+(τut ·∇)v+(2−n) (1 + τ∂t)J(∇u)v)

}
= 0,

(16)
where J(∇u) denotes the Jacobi matrix of the first derivatives of u. The part in
brackets {. . . } involves at most first-order derivatives of v. Therefore, the general
energy estimates for hyperbolic equations of second order — after transformation
to a first-order symmetric-hyperbolic system — apply as described in [25], and give
the finite propagation speed. We remark that this can still not be expected for u
due to the pressure terms.



6 REINHARD RACKE AND JÜRGEN SAAL

Below, we shall prove the global existence for small data (for u). It will remain
open if there is a blow-up to be expected for large data. An ansatz could be to look
at the hyperbolic system (16) for the vorticity v (also involving u in the coefficients,
of course), and to try to apply methods known for large data blow-up situations as
in the work of Sideris [29].

The consequences for the classical Navier-Stokes equations as well as for the
relation between Fourier type and Cattaneo type models have been mentioned in
the introduction.

4. High energy estimates. In order to be able to continue a local solution to a
global one — for small data —, we shall prove in this section and in the next one
suitable a priori estimates. We start with an estimate for the higher-order energy
term Em(t) defined below.

Let u ∈ C0([0, T ],Wm+2,2) ∩ C1([0, T ],Wm+1,2) ∩ C2([0, T ],Wm,2) be the local
solution to

τutt − µ∆u+ ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (17)

in (0, T )× R
n,

≡ N1 +N2 +N3

div u = 0 in (0, T )× R
n, (18)

u(0, ·) = u0, ut(0, ·) = u1 in R
n, (19)

m > n/2, n = 2, 3, for data (u0, u1) ∈ Wm+2,2×Wm+1,2 according to Theorem 2.1.
Let, for 0 ≤ t ≤ T ,

Em(t) :=
1

2

∑

|α|≤m+1

(‖∇αut‖
2
2 + ‖∇α∇u‖22 + ε2‖∇

αu‖22)(t), (20)

where 0 < ε2 will be fixed in the proof of the following Theorem, for which we
assume m ∈ N, m > n/2. Then we have for any t, with constants c1, c2 being
independent of t,

c1Em(t) ≤ ‖(u(t), ut(t))‖Wm+2,2×Wm+1,2 ≤ c2Em(t). (21)

Theorem 4.1. : There is C > 0, being independent of T and of the data (u0, u1)
such that for 0 ≤ t ≤ T ,

Em(t) ≤ CEm(0)e
C

t∫

0

(‖u‖2
∞+‖ut‖1,∞+‖∇u‖∞)(r)dr

(22)

Remark 4. The quadratic character of the term ‖u‖2∞ is essential for the subse-
quent sections.

Proof. We use multiplicative techniques exploiting the derivative character of some
nonlinear terms.
Let |α| ≤ m + 1. Applying ∇α to the differential equation (17), then multiplying
by ∇αut in L2(Rn) yields

τ

2

d

dt
‖∇αut‖

2
2 +

µ

2

d

dt
‖∇α∇u‖22 + ‖∇αut‖

2
2 =

3∑

j=1

〈∇αNj ,∇
αut〉, (23)

where 〈·, ·〉 denotes the inner product in L2(Rn).
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Remark 5. In (23) we have assumed w.l.o.g. - and will do so in the sequel -
that functions are real valued. Otherwise taking real parts would lead to the same
conclusions.

Estimation of 〈∇αN1,∇
αut〉 :

Using ∇αP = P∇α and well-known Moser-type unequalities that are listed in the
Appendix, we obtain

|〈∇αN1,∇
αut〉| ≤ C (‖u‖∞‖‖∇α∇u‖2 + ‖∇u‖∞‖‖∇αu‖2) ‖∇

αut‖2 (24)

≤ C
(
‖u‖2∞ + ‖∇u‖∞

)
Em +

1

4
‖∇αut‖2.

From now on the letter C will denote positive constants not depending on T or on
the data.
Estimation of 〈∇αN2,∇

αut〉 :
As before, we get

|〈∇αN2,∇
αut〉| ≤ C(‖ut‖∞ + ‖∇u‖∞)Em. (25)

Estimation of 〈∇αN3,∇
αut〉 :

〈∇αN3,∇
αut〉 = −τ〈(u · ∇∇α)ut,∇

αut〉 (26)

−τ〈∇α
(
(u · ∇)ut

)
− (u · ∇α∇)u,∇αut〉 ≡ R1 +R2.

Using divu = 0, we obtain for a typical term

R1 = −τ〈uj∂j∂
m
k ∂tur, ∂

m
k ∂tur〉 (27)

= τ〈uj∂
m
k ∂tur, ∂j∂

m
k ∂tur〉

= −R1,

hence

R1 = 0.

|R2| ≤ τC(‖∇u‖∞ + ‖∇ut‖∞)Em. (28)

Now we apply again ∇α to (17), but muliply with ε2∇
αu in L2(Rn), where ε2 > 0

will be chosen small enough below. Then we obtain

ε2τ〈∇
αutt,∇

αu〉+ ε2µ‖∇
α∇u‖22 + ε2〈∇

αut,∇
αu〉 = ε2

3∑

j=1

〈∇αNj ,∇
αu〉,

or,

ε2τ
d

dt
〈∇αut,∇

αu〉 − ε2τ‖∇
αut‖

2
2 + ε2µ‖∇

α∇u‖22 (29)

+ ε2
d

dt

1

2
‖∇αu‖22 = ε2

3∑

j=1

〈∇αNj ,∇
αu〉

Consider the Lyapunov functional

Ẽm := Em + ε2τ
∑

|α|≤m

〈∇αut,∇
αu〉. (30)

If

0 < ε2τ <
1

2
then

∃C1, C2 > 0 ∀t : C1Em(t) ≤ Ẽm(t) ≤ C2Em(t). (31)
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The term −ε2τ‖∇
αut‖

2
2 in (29) will be dominated by the term ‖∇αut‖

2
2 in (23) if

ε2τ is small enough (ε2τ < 1
2 e.g.). This fixes ε2.

Estimation of 〈∇αN1,∇
αu〉:

|〈∇αN1,∇
αu〉| ≤ C (‖u‖∞‖‖∇α∇u‖2 + ‖∇u‖∞‖‖∇αu‖2) ‖∇

αu‖2 (32)

≤ C
(
‖u‖2∞ + ‖∇u‖∞

)
Em. (33)

Estimation of 〈∇αN2,∇u〉:

|〈∇αN2,∇
αu〉| ≤ C (‖ut‖∞ + ‖∇u‖∞)Em. (34)

Estimation of 〈∇αN3,∇u〉:
For α = 0 we have

|〈N3, u〉| ≤ C‖∇ut‖∞Em. (35)

For |α| > 0 we get

|〈∇αN3,∇
αu〉| = τ |〈∇α−1

(
(u · ∇)ut

)
,∇α∇u〉| (36)

≤ C
(
‖u‖∞‖∇αut‖2‖∇

α∇u‖2 + ‖∇α−1u‖2‖∇ut‖∞‖∇α∇u‖2
)

≤ C
(
‖u‖2∞ + ‖∇ut‖∞

)
Em +

1

4
‖∇αut‖

2
2.

The last term in (36) can be dominated by ‖∇αut‖2 in (23) — as well as 1
4‖∇

αut‖
2
2

in (24).
Summing up for 0 ≤ |α| ≤ m all estimates for the (left and) right-hand sides of (23)
and of (29), we obtain, after integration in time from 0 to t,

Ẽm(t) ≤ CEm(0) + C

t∫

0

(‖u‖2∞ + ‖∇u‖∞ + ‖ut‖1,∞)(r)Em(r)dr

which, by the equivalence of Ẽm and Em given in (31) and Gronwalls inequality,
yields the assertion (26).

5. Weighted a priori estimates. Let u ∈ C0([0, T ],Wm+2,2)∩C1([0, T ],Wm+1,2)
∩C2([0, T ],Wm,2) be again the local solution to

τutt − µ∆u+ ut = −P ((u · ∇)u)− P ((τut · ∇)u)− P ((τu · ∇)ut) (37)

in (0, T )× R
n,

≡ N1 +N2 +N3

div u = 0 in (0, T )× R
n, (38)

u(0, ·) = u0, ut(0, ·) = u1 in R
n, (39)

m > n/2, n = 2, 3, according to Theorem 2.1.
In order to prove a weighted a priori estimate to exploit the expected decay in

time, we shall use the following decay estimates for solutions to the corresponding
linearized equations.

Lemma 5.1. Let v be the solution to

τvtt − µ∆v + vt = 0 in (0,∞)× R
n, (40)

v(0, ·) = v0, vt(0, ·) = v1 in R
n. (41)

Then we have for α ∈ N
n
0 , j ∈ N0 and 1 ≤ p ≤ 2 ≤ q ≤ ∞ with 1/q + 1/p = 1

‖∇α∂j
t v(t, ·)‖2 ≤ C|α|,j(1 + t)−(

|α|
2 +j)‖(v0, v1)‖X2

, (42)



HYPERBOLIC NAVIER-STOKES 9

where

X2 :=

{
L2 × L2 if |α|+ j = 0,
W |α|+j,2 ×W |α|+j−1,2 if |α|+ j ≥ 1,

‖∇α∂j
t v(t, ·)‖q ≤ Cq,|α|,j(1 + t)−

{
n
2 (1− 2

q )+
|α|
2 +j

}
‖(v0, v1)‖Yq

, (43)

where
Yq := Wmq,p ×Wmq−1,p

with

mq :=
[
(1−

2

q
)([

n

2
] + 4)

]
+ |α|+ j ≡ m0 + |α|+ j, (44)

‖∇α∂j
t v(t, ·)‖2 ≤ C|α|,j(1 + t)−(n

4 +
|α|
2 +j)‖(v0, v1)‖Z2

, (45)

where

Z2 :=

{
(L2 × L2) ∩ (L1 × L1) if |α|+ j = 0,
(W |α|+j,2 ×W |α|+j−1,2 ∩ (L1 × L1) if |α|+ j = 1.

Proof. The assertions follow from Lemma 1 in [19], taking m = 2 resp. m = 1 there,
and interpolation.

Denoting by w(t)g the solution v to

Lv ≡ τvtt − µ∆v + vt = 0 in (0,∞)× R
n, (46)

v(0, ·) = 0, vt(0, ·) = g in R
n, (47)

we have the following representation of the local solution u to (37)–(39).

Lemma 5.2. :

u(t) = w(t)(u1 +
1

τ
u0) + ∂tw(t)u0 +

1

τ

t∫

0

w(t− r)
3∑

j=1

Nj(r)

︸ ︷︷ ︸
=:f(r)

dr. (48)

Proof. Writing u(t) ≡ v1(t) + v2(t) + v3(t) according to (48), we get

Lv1 = 0, Lv2 = 0, (49)

moreover,

∂tv3(t) =
1

τ
w(0)f(t)

︸ ︷︷ ︸
=0

+
1

τ

t∫

0

∂tw(t− r)f(r)dr, (50)

τ∂2
t v3(t) = ∂tw(t− r)f(r)|r=t +

1

τ

t∫

0

τ∂2
tw(t− r)f(r)dr

= f(t) +

t∫

0

µ∆w(t− r)f(r)dr −

t∫

0

∂tw(t− r)f(r)dr

= f(t) + µ∆v3(t)− ∂tv3(t),

hence
Lv3 = f

which gives, using (49)
Lu = f.
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Moreover, using (50),
u(0, ·) = u0,

ut(0, ·) = u1 +
1

τ
u0 + ∂2

tw(t)u0|t=0 +

t∫

0

∂tw(t− r)
1

τ
f(r)dr|t=0

= u1 +
1

τ
u0 +

1

τ

(
µ∆w(t)u0 − ∂tw(t)u0

)
|t=0

= u1 +
1

τ
u0 +

1

τ
(−u0)

= u1.

The main weighted a priori estimate for the local solution will be a bound on the
following quantity. Let 0 ≤ T1 ≤ T , and define

M(T ) ≡ Mm,m1,q(T ) :=

sup
0≤t≤T

{
(1 + t)1−

2
q ‖u(t)‖m1,q+ (1 + t)

3
2−

2
q (‖ut(t)‖m1,q + ‖∇u(t)‖m1,q)

+(1 + t)
1
2 ‖u(t)‖m,2 + (1 + t)(‖ut(t)‖m,2 + ‖∇u(t)‖m,2)} , (51)

where ∞ > q > 4 will be arbitrary, but fixed, and m,m1 ∈ N have to satisfy
m1 ≥ 3,m ≥ m1 + 9, and are also fixed.

With quadratic nonlinearities in two space dimensions we are at the borderline
concerning the possibility to prove suitable a priori estimates to finally get a global
small solution. Usually, for nonlinear heat equations, for example, one uses L∞-
estimates and L1-spaces. This seems to be not possible here because of the fact that
the Helmholtz projector P is not continuous in these spaces, cf. the introduction.
This explains why we try to use Lq-norms, 4 < q < ∞ in addition to the also not
avoidable L2-spaces. We follow the approach by Ponce in [21] with the modification
of avoiding L∞- estimates. Since the approach works the better, the better the decay
rates of solutions to the linearized equations are, the situation in two dimensions is
more difficult (actually borderline case) than in three dimensions. For the simplicity
of the presentation we have therefore chosen time weights that are suitable for the
two-dimensional case, but, the more, work in three dimensions. The decay rates
finally obtained for the global solution could be improved for the three dimensional
case.

Let 1 < p ≤ 2 satisfy 1/q + 1/p = 1.

Theorem 5.3. : There is δ > 0 such that if the initial data (u0, u1) satisfy

‖u0‖m+2,2 + ‖u1‖m+1,2 + ‖u0‖1 + ‖u1‖1 + ‖u0‖m1+6,p + ‖u1‖m1+5,p < δ, (52)

then there is M0 > 0, independent of T , such that

M(T ) ≤ M0. (53)

Proof. We use the representation (48) and write u as

u(t) = v1(t) + v2(t) + v3(t)

with

v1(t) = w(t)(u1 +
1

τ
u0), v2(t) = ∂tw(t)u0, v3(t) =

1

τ

t∫

0

w(t− r)f(r)dr
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where

f(r) =

3∑

j=1

Nj(r)

with Nj given in (37). Since div u = 0, we may also write

Nj = ∇ · PÑj (54)

where
Ñ1 := u⊗ u, Ñ2 := τut ⊗ u, Ñ3 := τu⊗ ut, (55)

e.g.,

N1 = −P ((u · ∇)u) =
3∑

k=1

∂kP (uku).

Writing the nonlinearities Nj as derivatives as in (54) is crucial for the convergence

of some integrals below (in the estimate of (1 + t)1−2/q‖u(t)‖m1,q), while for others
the previous representation with the derivative ∇ in front of u resp. ut is more
appropriate (as in the estimate of (1 + t)3/2−2/q(‖ut(t)‖m1,q + ‖∇u(t)‖m1,q), for
example).

We start with the
I. Estimate for ‖u(t)‖m1,q.

Using Lemma 5.1 frequently in the sequel, we obtain – using from now on the latter
C to denote positive constants that do not depend on T or on the data –,

‖v1(t)‖m1,q ≤ C(1+ t)−(1− 2
q )(‖u0‖m0−1+m1,p+ ‖u1‖m0−1+m1,p) ≤ Cδ(1+ t)−(1− 2

q ),
(56)

‖v2(t)‖m1,q ≤ C(1 + t)−(1− 2
q )‖u0‖m0+m1,p ≤ Cδ(1 + t)−(1− 2

q ), (57)

‖v3(t)‖m1,q ≤ C

t∫

0

(1 + t− r)−((1− 2
q )+

1
2 )

3∑

j=1

‖PÑj(r)‖m0+m1,p dr,

≤ C

t∫

0

(1 + t− r)−((1− 2
q )+

1
2 )

3∑

j=1

‖Ñj(r)‖m0+m1,p dr, (58)

where we used the continuity of the Helmholtz projection P in Wm,̺ if 1 < ̺ < ∞.

Remark 6. Since P is not continuous in Wm,1 we have to modify the arguments
from [21, 22] where standard L∞ − L1-estimates could be used, while we have to
circumvent this using Lq−estimates with data in Wm,p spaces for q < ∞ and p > 1.

The nonlinearities can be estimated as follows (cf. standard inequalities in [22],
[25]),

‖Ñ1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖u(r)‖m0+m1,p1
(59)

where
1

p
=

1

2
+

1

p1
, i.e. p1 =

2p

2− p
> 2,

‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p ≤ C‖ut(r)‖m0+m1,2‖u(r)‖m0+m1,p1
(60)

Using
Wm,̺ →֒ Lµ for ̺ ≤ µ and m̺ > n (61)

we conclude

‖Ñ1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖u(r)‖m0+2+m1,2, (62)
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‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p ≤ C‖ut(r)‖m0+m1,2‖u(r)‖m0+2+m1,2, (63)

hence

(1 + r)‖Ñ1(r)‖m0+m1,p ≤ C
(
(1 + r)

1
2 ‖u(r)‖m0+2+m1,2

)2
≤ C(M(T ))2, (64)

(1 + r)(‖Ñ2(r)‖m0+m1,p + ‖Ñ3(r)‖m0+m1,p)

≤ C
((

(1 + r)
1
2 ‖ut(t)‖m0+m1,2

)(
(1 + r)

1
2 ‖u(r)‖m0+2+m1,2

))

≤ C(M(T ))2. (65)

Combining (58), (64), (65) we get

(1 + t)1−
2
q ‖v3(t)‖m1,q

≤ C(M(T ))2
t∫

0

(1 + t− r)

(
(1− 2

q )+
1
2

)
(1 + r)−1(1 + t)1−

2
q dr

≤ C(M(T ))2 (66)

where we used the following well-known Lemma (cf. [25]).

Lemma 5.4. : Let α, β, γ ≥ 0. Then

sup
t≥0

t∫

0

(1 + t− r)−α(1 + r)−β(1 + t)γdr < ∞

if and only if the following conditions (i)–(iii) are satisfied:

(i) α+ β − γ ≥ 1,
(ii) α ≥ γ and β ≥ γ,
(iii) (if β = 1 then α > γ) and (if α = 1 then β > γ).

To obtain (66) we take α = 1− 2/q + 1
2 , β = 1, γ = 1− 2/q and conclude that

the conditions (i)–(iii) of Lemma 5.4 are satisfied.
Combining (56), (57), and (66) we get the first one of the desired estimates, i.e. for
‖u(t)‖m1,q,

sup
0≤t≤T

(1 + t)1−2/q‖u(t)‖m1,q ≤ Cδ + C(M(T ))2. (67)

II. Estimate for ‖ut(t)‖m1,q + ‖∇u(t)‖m1,q.

We have the representations (cp. (48), (50))

ut(t) = ∂tw(t)(u1 +
1

τ
u0) + ∂2

tw(t)u0 +
1

τ

t∫

0

∂tw(t− r)f(r)dr

= ∂tw(t)(u1 +
1

τ
u0) + w(t)(

µ

τ
∆u0)−

1

τ
∂tw(t)u0 +

1

τ

t∫

0

∂tw(t− r)f(r)dr

= w(t)(
µ

τ
∆u0) + ∂tw(t)u1 +

1

τ

t∫

0

∂tw(t− r)f(r)dr, (68)

and

∇u(t) = ∇w(t)(u1 +
1

τ
u0) +∇∂tw(t)u1 +

t∫

0

∇w(t− r)f(r)dr. (69)
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In analogy to the estimates for ‖u(t)‖m1,q above, we may conclude the following
series of estimates, with the essential difference that now f(r) keeps the derivative
∇ in front of u resp. ut. This will allow to justify the convergence of integrals as in
(66) (that otherwise would be divergent).
Writing ∇u = v1 + v2 + v3 according to (69) we have

‖v1(t)‖m1,q ≤ Cδ(1 + t)−((1− 2
q )+

1
2 ), (70)

‖v2(t)‖m1,q ≤ Cδ(1 + t)−((1− 2
q )+

1
2 ), (71)

Writing Nj = PN̂j , j = 1, 2, 3, we obtain

‖v3(t)‖m1,q ≤ C

t∫

0

(1 + t− r)−((1− 2
q )+

1
2 )

3∑

j=1

‖N̂j(r)‖m0+m1,p dr, (72)

with p1 = 2p/(2− p) as before, we get

‖N̂1(r)‖m0+m1,p ≤ C‖u(r)‖m0+m1,2‖∇u(r)‖m0+m1,p1

≤ C‖u(r)‖m0+m1,2‖∇u(r)‖m0+m1+2,2, (73)

‖N̂2(r)‖ ≤ C‖ut(r)‖m0+m1,2‖∇u(r)‖m0+m1,p1

≤ C‖ut(r)‖m0+m1,2‖∇u(r)‖m0+m1,2, (74)

‖N̂3(r)‖ ≤ C‖u(r)‖m0+m1,2‖∇ut(r)‖m0+m1,p1

≤ C‖u(r)‖m0+m1,2‖ut(r)‖m0+m1+3,2. (75)

Hence, we get

(1 + r)
3
2 ‖N̂1(r)‖m0+m1,p

≤ C
(
(1 + r)

1
2 ‖u(r)‖m0+m1,2

)
·
(
(1 + r)‖∇u(r)‖m0+m1+2,2

)

≤ C(M(T ))2, (76)

similarly

(1 + r)
3
2 (‖N̂2(r)‖m0+m1,p + ‖N̂3(r)‖m0+m1,p) ≤ C(M(T ))2. (77)

Combining (72), (76), and (77) we obtain

(1 + t)(1−
2
q )+

1
2 ‖v3(t)‖m1,q

≤ C(M(T ))2
t∫

0

(1 + t− r)−((1− 2
q )+

1
2 )(1 + r)−

3
2 (1 + t)1−

2
q+

1
2 dr

≤ C(M(T ))2 (78)

by Lemma 5.4. The estimates (70), (71), (78) yield

sup
0≤t≤T

(1 + t)
3
2−

2
q ‖∇u(t)‖m1,q ≤ Cδ + C(M(T ))2. (79)

Analogously we get the estimate

sup
0≤t≤T

(1 + t)
3
2−

2
q ‖ut(t)‖m1,q ≤ Cδ + C(M(T ))2. (80)
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III. Estimate for ‖u(t)‖m,2.

Writing u = v1 + v2 + v3 according to (48) we have, in particular using (45) from
Lemma 5.1,

‖v1(t)‖m,2 ≤ C(1 + t)−
1
2 (‖u0‖m−1,2 + ‖u1‖m−1,2 + ‖u0‖1 + ‖u1‖1)

≤ Cδ(1 + t)−
1
2 , (81)

‖v2(t)‖m,2 ≤ C(1 + t)−
1
2 (‖u0‖m,2 + ‖u0‖1)

≤ Cδ(1 + t)−
1
2 , (82)

We observe that the L1-norms appear for the initial data, but will not appear for
the nonlinearities (where it would cause trouble due to the Helmholtz projection).

‖v3(t)‖m,2 ≤ C

t∫

0

(1 + t− r)−
1
2

3∑

j=1

‖Ñj(r)‖m+1,2 dr. (83)

The nonlinearities Ñj are now estimated as follows.

‖Ñj(r)‖m+1,2 ≤ C(‖u(r)‖∞ + ‖ut(r)‖∞)(‖u(r)‖m,2 + ‖∇m+1u(r)‖2)

≤ C(‖u(r)‖m1,q + ‖ut(r)‖m1,q)(‖u(r)‖m,2 + ‖∇m+1u(r)‖2 +

‖ut(r)‖m,2 + ‖∇m+1ut(r)‖2). (84)

We have from (48) for ‖∇m+1u(r)‖2 (the term ‖∇m+1ut(r)‖2 can be treated anal-
ogously):

‖∇m+1u(r)‖2 ≤ Cδ(1 + r)−
m+1

2 + C

r∫

0

(1 + r − λ)−(m+1
2 + 1

2 )
3∑

j=1

‖Ñj(λ)‖m+1,2 dλ.

(85)
Moreover, using the energy estimate from Theorem 4.1,

‖Ñj(λ)‖m+1,2

≤ C(‖u(λ)‖∞ + ‖ut(λ)‖∞)‖u(λ)‖m+1,2

≤ Cδ(‖u(λ)‖2,q + ‖ut(λ)‖2,q) · e
C

λ∫

0

(‖u(̺)‖2
2,q+‖ut(̺)‖3,q+‖∇u(̺)‖2,q)d̺.

(86)

The estimates (85), (86) imply

(1 + r)1−
2
q ‖∇m+1u(r)‖2

≤ Cδ(1 + r)−(m
2 −(1− 2

q )) + Cδ

r∫

0

(1 + r − λ)−(m
2 + 1

2 ) ·

·
{
(1 + λ)−(1− 2

q )(1 + r)1−
2
q
[
(1 + λ)1−

2
q ‖u(λ)‖m1,q

]

+(1 + λ)−( 3
2−

2
q )(1 + r)1−

2
q
[
(1 + λ)

3
2−

2
q ‖ut(λ)‖m1,q

]}
·

· e
C

λ∫

0

(1+̺)
−2(1− 2

q
)
[
(1+̺)2(1−2/q)‖u(̺)‖2

m1,q

]
+(1+̺)−(3/2−2/q)·

·
[
(1+̺)(3/2−2/q)

(
‖ut(̺)‖m1,q+‖∇u(̺)‖m1,q

)]
d̺dλ

≤ Cδ
(
1 +M(T )eC((M(T ))2+M(T ))

)
(87)
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since

sup
r≥0

r∫

0

(1 + r − λ)−(m+1
2 + 1

2 )(1 + λ)−(1− 2
q )(1 + r)1−

2
q dλ+

sup
r≥0

r∫

0

(1 + r − λ)−(m
2 + 1

2 )(1 + λ)−( 3
2−

2
q )(1 + r)

3
2−

2
q dr+

sup
λ≥0

λ∫

0

(1 + ̺)−2(1− 2
q ) + (1 + ̺)−( 3

2−
2
q )d̺ < ∞

by Lemma 5.4, using q > 4. Combining (84) and (87) we obtain

(1 + r)1−
2
q+

1
2 ‖Ñj(r)‖m+1,2

≤ C(1 + r)1−
2
q
(
‖u(r)‖m1,q + ‖ut(r)‖m1,q

)
·

·
(
(1 + r)

1
2 ‖u(r)‖m,2 + (1 + r)

1
2 ‖∇m+1u(r)‖2

)
(88)

≤ C(M(T ))2 + CδM(T )
(
1 +M(T )eC((M(T ))2+M(T ))

)
.

By (81), (82),(83), and (88) we conclude

(1 + t)
1
2 ‖u(t)‖m,2 ≤ Cδ + C

t∫

0

(1 + t− r)−
1
2 (1 + r)−(1− 2

q+
1
2 )(1 + t)1/2 ·

·(1 + r)1−2/q+1/2
3∑

j=1

‖Ñj(r)‖m+1,2dr (89)

≤ Cδ + C(M(T ))2 + CδM(T )
(
1 +M(T ))eC((M(T ))2+M(T ))

)
,

since

sup
t≥0

t∫

0

(1 + t− r)−
1
2 (1 + r)−(1− 2

q+
1
2 )(1 + t)

1
2 dr < ∞. (90)

IV. Estimates for ‖ut(t)‖m,2 + ‖∇u(t)‖m,2.

Using the representations (68) for ut and (69) for ∇u, respectively, we obtain the
analogous series of estimates as for ‖u(t)‖m,2 in part III above, in particular: (84)
turns into

‖Ñj(r)‖m+2,2 ≤ C(‖u(r)‖m1,q + ‖ut(r)‖m1,q)(‖u(r)‖m,2 + ‖∇m+2u(r)‖m,2

+‖ut(r)‖m,2 + ‖∇m+2ut(r)‖m,2), (91)

and (89) turns into

(1 + t)(‖ut(t)‖m,2 + ‖∇u(t)‖m,2)

≤ Cδ + C(M(T ))2

+CδM(T )
(
1 +M(T )eC(M(T ))2+(M(T ))

)
, (92)

since

sup
t≥0

t∫

0

(1 + t− r)−1(1 + r)−(1− 2
q+

1
2 )(1 + t)dr < ∞. (93)
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Summarizing (67), (79), (80), (89), and (92), we have

M(T ) ≤ Cδ + C(M(T ))2 + CδM(T )
(
1 +M(T )eC((M(T ))2+M(T ))

)
. (94)

In (94) we may replace T by any T1 with 0 ≤ T1 ≤ T , and we conclude by standard
arguments (cf. [25], [21]) that for sufficiently small δ > 0 we have

M(T ) ≤ M0 (95)

where M0 is the first zero of the function h with

h(x) := Cδ + Cx2 + Cδx(1 + xeC(x2+x))− x.

This proves Theorem 5.3.

6. Global existence. The a priori estimates in Theorem 4.1 (high energy esti-
mates) and in Theorem 5.3 (weighted a priori estimates) allow us in a standard way
(cf.[25]) to prove the global existence theorem

Theorem 6.1. : Let m1 ≥ 3,m ≥ m1 + 9,∞ > q > 4, 1/q + 1/p = 1.
There exists ε > 0 such that if

‖u0‖m+2,2 + ‖u0‖m+1,2 + ‖u0‖1 + ‖u1‖1 + ‖u0‖m1+6,p + ‖u0‖m1+5,p < ε,

then there exists a unique global solution (u, p) to the hyperbolic Navier-Stokes equa-
tions (8)–(10), satisfying

u ∈ C2([0,∞),Wm,2) ∩ C1([0,∞),Wm+1,2) ∩ C0([0,∞),Wm+2,2),

∇(p+ τpt) ∈ C0([0,∞),Wm,2(Rn)).

Remark 7. Since supt≥0 M(t) ≤ M0, we have the corresponding decay rates for
u(t), ut(t) and ∇u(t) in ‖ · ‖m1,q and in ‖ · ‖m,2, respectively.

Proof. Let u be the local solution to (37), (38), (39) according to Theorem 2.1. We
obtain using Theorem 4.1 and Theorem 5.3

‖Em(t)‖ ≤ CEm(0)eC(M2
0+M0) ≤ CEm(0)

where C is independent of T and of the data. Using (21), we get

‖(u(t), ut(t))‖Wm+2,2×Wm+1,2 ≤ Ĉ‖(u0, u1)‖Wm+2,2×Wm+1,2 ,

where

Ĉ :=
c2C

c1
.

Choosing

O < ε <
δ

Ĉ

we conclude

Em(T ) < δ

and are thus able to continue a local solution to a global one (as usual, cf. [25, p.
91]).
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7. Appendix. The following inequalities have been frequently used in the preced-
ing sections and are often quoted as “Moser-type inequalities”.

Lemma 7.1. Let m ∈ N. There there is a constant c = c(m,n) > 0 such that for
all f, g ∈ Wm,2(Rn) ∩ L∞(Rn) and α ∈ N

n
0 , |α| ≤ m, the following inequalities

hold:

‖∇α(fg)‖2 ≤ c(‖f‖∞‖∇mg‖2 + ‖g‖∞‖∇mf‖2), (96)

‖∇α(fg)− f · ∇αg‖2 ≤ c(‖∇f‖∞‖∇m−1g‖2 + ‖g‖∞‖∇mf‖2). (97)

For a proof see [25, Lemma 4.9].
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