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Abstract. We replace a Fourier type law by a Cattaneo type law in the

derivation of the fundamental equations of fluid mechanics. This leads to
hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem
the standard approach by means of quasilinear symmetric hyperbolic systems
seems to fail by the fact that finite propagation speed might not be expected.

Therefore a somewhat different approach via viscosity solutions is developed
in order to prove higher regularity energy estimates for the linearized system.
Surprisingly, this method yields stronger results than previous methods, by
the fact that we can relax the regularity assumptions on the coefficients to a

minimum. This leads to a short and elegant proof of a local-in-time existence
result for the corresponding first order quasilinear system, hence also for the
original hyperbolicly perturbed Navier-Stokes equations.

1. Introduction. Let n ≥ 2 and T, τ > 0. The intention of this note is to examine
the hyperbolicly perturbed Navier-Stokes equations




τutt − µ∆u+ τ(u · ∇)∂tu+ ((τ∂tu+ u) · ∇)u+ ut = −∇π in (0, T )× R
n,

div u = 0 in (0, T )× R
n,

u|t=0 = u0 in R
n,

ut|t=0 = u1 in R
n,

(1)

where u : (0, T )× R
n → R

n denotes the velocity of a fluid and p : (0, T )× R
n → R

the related pressure. System (1) is obtained by replacing a Fourier type law by the
law of Cattaneo. More precisely, we replace the constitutive law for the deformation
tensor given by

S =
µ

2
(∇u+ (∇u)′) (2)
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with viscosity coefficient µ > 0 by the relation

S + τSt =
µ

2
(∇u+ (∇u)′), (3)

which represents the first order Taylor approximation of the delayed deformation
condition

S(t+ τ) =
µ

2
(∇u(t) + (∇u(t))′), t > 0,

for small τ > 0. Relation (2) is a Fourier type law. It leads to the well-known
paradox of infinite propagation speed for classical parabolic equations. There are
applications, however, for that it is more reasonable to work with hyperbolic models,
cf. [14] and the references therein. This is also underlined by experiments that
document the existence of hyperbolic heat waves.

Recall that the classical Navier-Stokes equations, determined by Fourier’s law,
are represented by the system





ut + (u · ∇)u+∇p = div 2S in (0, T )× R
n,

div u = 0 in (0, T )× R
n,

u|t=0 = u0 in R
n,

(4)

where the deformation tensor is given by (2). In this situation the second line in
(4) implies that

div 2S(u) = µ∆u.

On the other hand, by employing Cattaneo’s law (3) we have that

div 2(S + τSt) = µdiv (∇u+ (∇u)′) = µ∆u. (5)

System (1) is now obtained as follows. Applying τ∂t to the first line in (4) and
adding the resulting equation to the original line gives us in view of (5) that

0 = τutt + τ∂t(u · ∇)u+ τ∇pt + (u · ∇)u+ ut +∇p− div 2(S + τSt)

= τutt + τ∂t(u · ∇)u+ (u · ∇)u+ ut − µ∆u+ τ∇pt +∇p.

Consequently, by introducing the new pressure π = p+ τpt, under the assumption
of Cattaneo’s law the classical Navier-Stokes equations turn into the hyperbolicly
perturbed system (1).

The hyperbolic fluid model (1) was already derived in [3] and [4]. In these
papers on an elementary level the authors discussed consequences and differences
of (1) compared with the classical model.

In [11] Paicu and Raugel consider the classical Navier-Stokes equations including
merely the hyperbolic perturbation τutt for small τ > 0. The global well-posedness
for mild solutions in two dimensions for sufficiently small τ , and the global existence
for small data and sufficiently small τ in three dimensions in analogy to the classical
case are proved. In [11] also a number of justifications for their model are presented,
see the references therein. By just adding the term τutt to (4) the resulting system
remains semilinear and therefore methods for the construction of a mild solution
can still be applied. This, however, is no longer possible for system (1), since due
to the third term in the first line of (1) this system is a quasilinear one. So, from
this point of view system (1) rather differs from the the system considered in [11].

We remark that our new Navier-Stokes system is related to the Oldroyd model
which considers instead of (3) the more general model

τSt + S = µ(E + νEt), (6)
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where E := 1
2 (∇u+∇uT ), cf. de Araújo, de Menzenes and Marinho [2] and Joseph

[6]; in comparison to our model we have ν = 0 (and µ = 1). If ν 6= 0 then, from the
point of derivatives getting involved, S is on a similar level as E , as in the classical
case (4).

In a first step towards the local-in-time existence result in order, as usually we
transform (1) into a first order quasilinear system of the form

{
Vt +A(V )V + B(V )V = 0 in (0, T )× R

n,
V |t=0 = V0 in R

n,
(7)

with V := (u, ∂1u, . . . , ∂nu, ∂tu)
T . A standard approach, used for standard quasilin-

ear symmetric hyperbolic systems, is to derive a priori estimates in Sobolev spaces
of higher order for a linearized version by means of finite propagation speed and then
to apply a fixed point iteration to the nonlinear problem. This method, however,
seems to fail for the first order system resulting from (1). The crucial point here is
the finite propagation speed. It seems not to be available (and this can be regarded
as a conjecture of the authors) for equations (1) neither for the corresponding first
order quasilinear system or for the associated linearization. The reason for this
conjecture lies in the presence of the pressure gradient in equations (1). Of course,
as in a standard way for Navier-Stokes equations, ∇p could be removed by apply-
ing the Leray-Helmholtz projector onto solenoidal fields to the first line of (1) and
then dealing with the resulting system. But either way leads to nonlocal terms in
the equations which indicates that finite propagation speed might not be expected.
(The authors, however, so far have not been able to prove this rigorously.) In case
of dimension n = 2 or n = 3 we can obtain finite propagation speed for curlu, for
instance. This observation is justified by applying curl to (1), since then gradi-
ent terms also vanish and (1) turns into an equation for the vorticity curlu (see
Section 2). From this point of view, problem (1) and the resulting system (7) are
somewhat different from standard quasilinear symmetric hyperbolic systems.

By the just mentioned fact, in this note we developed a different approach to first
order hyperbolic systems, which also covers equations of type (1). On a standard
way by employing Kato’s theory we first prove the existence of strong solutions for
a linearized version of (7) (see Lemma 4.2). However, the essential step is to derive
higher order a priori estimates for the linearized solution, which are required for
the application of a fixed point iteration to (7). Here we choose an approach via
viscosity solutions, i.e., we add a small viscous term to (7) such that the resulting
system becomes parabolic. This method provides a smooth way to justify the formal
calculations that lead to higher energy estimates for the solution of the linearized
equations. A nice outcome of this method is that we can provide such estimates
under minimal regularity assumptions on the coefficients of the linearized operators
(see Theorem 4.5). In fact, the regularity assumptions to be made on the coefficients
are weaker than the regularity of the obtained solution. Minimal in this context
means that we only have to assume the regularity that is required to give sense to
the natural energy estimates. Furthermore, these helpful energy estimates for the
solution are also provided by the method.

This seems to be different and new in comparison to similar results for standard
symmetric hyperbolic systems that are based on finite propagation speed of the dis-
placement. In pertinent textbooks such as [10, Theorem 2.1] or [13, Theorem 5.1],
for instance, always the assumed regularity for the coefficients is higher than the
regularity obtained for the solutions, and it seems to be difficult or even impossible
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to improve this to our results by the methods used therein. In [5] an abstract ap-
proach to quasilinear evolution equations is developed generalizing results obtained
in [7]. But also there the assumed regularity on the coefficients is higher than the
obtained for the solution. Only for the approach developed in [8] this is not the
case. There the coefficients are assumed to be elements of uniformly local Sobolev
spaces. This assumption is enough by the fact that the standard Sobolev embed-
ding and the required algebra properties are still valid. Thus the assumptions in [8]
for the coefficients of the linearized system are comparable to ours. On the other
hand, it is not so obvious whether the approach to quasilinear hyperbolic systems
given in [8] applies to system (1) due to the presence of the presssure term ∇π or
the Helmholtz projection respectively.

Based on the linear theory developed here the application of Majda’s fixed point
iteration, cf [10], in order to construct local-in-time strong solutions to (7) becomes
rather short and elegant (see Theorem 5.1). This is due to the fact that by the
quality of the linear results provided here no smoothing of the data, in particular
of the coefficients, for the fixed point iteration is required anymore. By our energy
estimates for the linearized solutions, here we also get immediately upper bounds for
the approximate solutions of the fixed point iteration. This again is in contrast to
[10] (or [13]). There upper bounds have to be derived by estimating the approximate
solutions in an elaborate way employing the structure of the underlying quasilinear
symmetric hyperbolic system. Also continuity (in time) of the solutions (as given in
(41)) immediately follows from the linear results. This is also quite different from
the approach performed in [10] or [13], where exhausting procedures via the strong
convergence in weaker norms and the weak continuity in higher norms have to be
applied in order to prove continuity. This seems to be a futher nice advantage of
our approach in comparison to previous methods.

We want to emphasize that the approach developed in this note is by no means
restricted to first order quasilinear systems arising from equations of type (1). In
fact, it is quite generally applicable, in particular to standard quasilinear symmet-
ric hyperbolic systems. Thus by our approach on a different (perhabs even more
elegant) way we can handle, for example, quasilinear wave equations or systems
arising in thermoelasticity such as treated in [10] or [14]. Moreover, the final re-
sults for the quasilinear systems are of the same quality as the results obtained by
previous methods. On the other hand, obviously the approach presented here is
more general, since we can deal as well with problems of type (1), which might not
produce finite propagation speed. Furthermore, also Oldroyd models such as (6)
can be covered by our approach which is different from the methods used e.g. in [6].

We proceed with the precise statement of our main results. By virtue of the
second line in (1) we define the ground space as

L2
σ(R

n) := {f ∈ L2(Rn) : div f = 0}.

Here, as usual in the Navier-Stokes context, σ refers to the solenoidality (i.e. div u =
0) of the vector fields. Also note that the symbol C∞

b (Ω) stands for smooth functions
whose derivatives of each order k ∈ N0 are also bounded on the set Ω.

Theorem 1.1. Let n ≥ 2 and m > n/2. For each

(u0, u1) ∈
(
Hm+2(Rn) ∩ L2

σ(R
n)
)
×
(
Hm+1(Rn) ∩ L2

σ(R
n)
)

there exists a time T∗ > 0 and a unique solution (u, π) of equations (1) satisfying
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u ∈ C2([0, T∗], H
m(Rn)) ∩ C1([0, T∗], H

m+1(Rn))

∩ C([0, T∗], H
m+2(Rn) ∩ L2

σ(R
n)),

∇π ∈ C([0, T∗], H
m(Rn)).

The existence time T∗ can be estimated from below as

T∗ >
1

1 + C(‖u0‖Hm+2 + ‖u1‖Hm+1)

with a constant C > 0 depending only on m and the dimension n.

As an immediate consequence we also have

Corollary 1. In the situation of Theorem 1.1 additionally assume that

u0, u1 ∈
∞⋂

k=0

Hk(Rn).

Then the solution u, p is classical, i.e. we have

u,∇π ∈ C∞
b ([0, T∗]× R

n).

Remark 1. We remark that it seems to be anything but obvious how to extend
the above results to domains with a boundary under the assumption of no-slip
conditions. For instance, to the authors it is not clear, wether the methods used
in the proof of higher regularity in Theorem 4.5 can be generalized to a half-space.
Moreover, the fact that the Helmholtz projector P onto solenoidal fields commutes
with derivatives of arbitrary order in R

n is extensively used throughout the paper.
This fact is no longer true if a boundary is present, which at least gives rise to
further technicalities. Based on reflection arguments, an approach to (1) subject to
tangential slip boundary conditions in the half-space R

n
+ is given in [15].

The paper is organized as follows. We start in Section 2 with a remark on finite
propagation speed. In Section 3 we perform the transformation of (1) into a first
order quasilinear system. Section 4 represents the heart of this work and provides
the linear theory. First we prove the existence of strong solutions to a linearized
version of (7). As mentioned before, the essential point then is to derive higher
regularity of this solution. This result is obtained by employing the method of
viscosity solutions. In Section 5 we prove the local-in-time existence for the first
order quasilinear system, which finally results in our main results Theorem 1.1 and
Corollary 1 by the equivalence of systems (1) and (7).

2. Remark on finite propagation speed. For the local solution obtained in
the previous section, we can prove the finite propagation speed for the vorticity
v := curlu = ∇× u. Namely, v satisfies the differential equation

τvtt−µ∆v+vt+(τu ·∇)vt+
{
(u ·∇)v+(τut ·∇)v+(2−n) (1 + τ∂t)J(∇u)v)

}
= 0,

(8)
where J(∇u) denotes the Jacobi matrix of the first derivatives of u. The part in
brackets {. . . } involves at most first-order derivatives of v. Therefore, the general
energy estimates for hyperbolic equations of second order — after transformation
to a first-order symmetric-hyperbolic system — apply as described in [13], and give
the finite propagation speed. As mentioned before, note that this can still not be
expected for u due to the presence of the pressure terms.
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3. Transformation into a symmetric system. We start by introducing some
notation. Note that we use standard notation throughout this note, for the appear-
ing function spaces see e.g. [1]. Let X be a Banach space and Ω ⊂ R

n be a set.
Then Lp(Ω, X) denotes the standard Lebesgue space of p-integrable X-valued func-
tions for 1 ≤ p < ∞. For p = ∞, L∞(Ω, X) denotes the space of all (essentially)
bounded functions equipped with the standard norm ess supx∈Ω‖ · ‖X . Accordingly,
for k ∈ N0 = N∪{0} and 1 ≤ p ≤ ∞ the symbol W k,p(Ω, X) denotes Sobolev space
of k-th order with norm

‖u‖k,p := ‖u‖Wk,p := ‖u‖Wk,p(Ω,X) :=


∑

|α|≤k

‖∂αu‖pLp(Ω,X)




1/p

.

In the case k = 0 we also write ‖ · ‖p for the norm. Moreover, we set Hk(Ω, X) :=
W k,2(Ω, X). In this paper from the just introduced spaces only L2(Ω, X),Hk(Ω, X),
L∞(Ω, X) and W k,∞(Ω, X) will appear. Also note that if X = C

m or X = R
m we

write just L2(Ω), Hk(Ω), etc. We will also make use of the homogeneous Sobolev
space

Ĥ1(Rn) := {u ∈ L1
loc : ∇u ∈ L2(Rn)}/C,

which is equipped with the norm ‖∇ · ‖2.
We also use standard notation for spaces of continuous functions. For k ∈ N0 ∪

{∞}, Ck(Ω, X) denotes the space of k-times continuously differentiable functions
and we write C(Ω, X) if k = 0. If the functions in Ck(Ω, X) are additionally
bounded, we use the symbol Ck

b (Ω, X) and its subspace of compactly supported
functions is denoted by Ck

0 (Ω, X). The (X,X ′) dual pairing we denote by 〈·, ·〉X,X′ .
To obtain consistency with the scalar product if X is a Hilbert space, observe that
the second argument in 〈·, ·〉X,X′ is defined with complex conjugation, i.e., we have

〈x, x′〉X,X′ = x′(x) (x ∈ X, x′ ∈ X ′),

if x′(x) denotes the standard dual pairing. If H is a Hilbert space we write 〈·, ·〉H .
From time to time we also omit the subscript and just write 〈·, ·〉, if no confusion
seems likely. The space of linear bounded operators from X to a Banach space Y
is denoted by L (X,Y ).

Suppose (u, p) with u : Rn+1
+ → R

n and p : Rn+1
+ → R is the solution of sytem (1).

In this section we transform equations (1) into a first order quasilinear hyperbolic
system for the vector

V = (u, ∂1u, . . . , ∂nu, ∂tu)
T ∈ (Rn)n+2 = R

n(n+2).

As for the classical Navier-Stokes equations the pressure term ∇p will be eliminated
by employing the Leray-Helmholtz projector onto solenoidal fields

P : L2(Rn) → L2
σ(R

n) =
{
v ∈ L2(Rn) : div v = 0

}
.

Observe that C∞
0,σ(R

n) := {u ∈ C∞
0 (Rn) : div u = 0} is dense in L2

σ(R
n). Also note

that P is determined by

Pu := u−∇π,

where π ∈ Ĥ1(Rn) is the unique solution of the weak Neumann poblem

〈∇π,∇ϕ〉L2 = 〈u,∇ϕ〉L2 (ϕ ∈ Ĥ1(Rn)).

This leads to the well-known orthogonal decomposition

L2(Rn) = L2
σ(R

n) ⊕⊥ G2(R
n),
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where G2(R
n) := {∇π : π ∈ Ĥ1(Rn)}. Applying P to the first line of (1), this

system is formally reduced to



τutt − µ∆u+ τP (u · ∇)∂tu+ P ((τ∂tu+ u) · ∇)u+ ut = 0 in (0, T )× R

n,
u|t=0 = u0 in R

n,
ut|t=0 = u1 in R

n,
(9)

considered in the space L2
σ(R

n). For the development of the linear theory it will be
convenient to get rid of the τ in front of utt and µ in front of ∆u. For this purpose
we introduce the dilated function

v(t, x) := u(
√
τt,

√
µx).

Then u solves (9) if and only if v solves




vtt −∆v +
√
τ/µP (v · ∇)∂tv

+ P ((
√
τ∂tv + v) · ∇)v/

√
µ+ vt/

√
τ = 0 in (0, T ′)× R

n,
v|t=0 = v0 in R

n,
vt|t=0 = v1 in R

n,

(10)

with T ′ = T/
√
τ , v0 = u0, and v1 =

√
τu1. System (10) will be the one which is

considered in the sequel and which we transform into a first order system.
For j = 1, . . . , n we define the symmetric matrices

Aj(V ) :=




0 · · · · · · · · · 0 0
...

. . .
...

...
0

...
. . .

... −In

0
...

. . .
...

...
0 · · · · · · · · · 0 0
0 · · · 0 −In 0 · · · 0 Mj(V )




∈ (Rn×n)(n+2)×(n+2), (11)

with In the identity in R
n and where −In represents the (j + 1, n + 2)-th and the

(n+ 2, j + 1)-th entry of Aj(V ). The operator Mj is defined as

Mj(V ) :=
√

τ/µ (V 1)j · In =
√
τ/µ vj · In

and corresponds to the quasilinear term in (10). We also define the (n× n) · ((n+
2)× (n+ 2)) matrix operators

B̃(V ) :=




0 · · · · · · 0 −In
...

. . .
... 0

...
. . .

...
...

0 · · · · · · 0 0
0 B1(V ) · · · Bn(V ) In/

√
τ




(12)

with Bj(V ) := 1√
µ (
√
τ(V n+2)j + (V 1)j) · In = 1√

µ (
√
τ∂tv

j + vj) · In and

P :=




In 0 · · · 0

0
. . .

. . .
...

...
. . . In 0

0 · · · 0 P




.
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Finally, we set

A(V ) := P
n∑

j=1

Aj(V )∂j and B(V ) := PB̃(V ).

Then, it is easily checked that (10) is equivalent to the first order quasilinear hy-
perbolic system

{
Vt +A(V )V + B(V )V = 0 in (0, T )× R

n,
V |t=0 = V0 in R

n,
(13)

with V := (v, ∂1v, . . . , ∂nv, ∂tv)
T and V0 := (v0, ∂1v0, . . . , ∂nv0, v1)

T . Observe that
the difference to standard quasilinear symmetric hyperbolic systems lies in the pres-
ence of the projector P. In the next two sections we will develop the required linear
and quasilinear existence theory for systems of the form (13).

4. Linear theory. Let T ∈ (0,∞]. Here we consider a linearized version of system
(13). To be precise, we assume that Aj and B are matrices of the form given in
(11) and (12), where Mj(V ) and Bj(V ) are replaced by ajIn and bjIn, respectively,
with given functions aj , bj : [0, T )×R

n → R. Formally we define for each t ∈ [0, T )
the operator A in the space

H := L2
σ(R

n)n+1

by

A(t) :=

n∑

j=1

PAj(t, ·)∂j ,

D(A) := D(A(t)) :=

{
V ∈ H : V n+2 ∈ H1(Rn), P

n∑

j=1

∂jV
j+1 ∈ L2(Rn)

}
.

Observe that it is well-known that in R
n the Helmholtz projection is bounded on the

entire scale of Sobolev spaces, that is, we have P ∈ L (Hm(Rn)) for every m ∈ Z.
This, for instance, follows easily by its symbol representation

P = F−1

[
In − ξξT

|ξ|2
]
F

and Plancherel’s theorem, where F denotes the Fourier transformation. In this spirit
the last expression in the definition of D(A) makes sense, due to

∑n
j=1 ∂jV

j+1 ∈
H−1(Rn). In this section we aim for the well-posedness and higher regularity of the
linear nonautonomous first order hyperbolic system

{
Vt(t) +A(t)V (t) + B(t)V (t) = 0, t ∈ (0, T ),

V |t=0 = V0.
(14)

For this purpose we start with the following result for the ’principal’ linear part A.

Lemma 4.1. Let T ∈ (0,∞) and let A be as defined above. Assume that

(aj)
n
j=1 ⊆ C ([0, T ], L∞(Rn)) , div (a1, . . . , an) = 0.

Then for every t ∈ [0, T ] the operator A(t) is skew-selfadjoint, i.e., we have A(t)′ =
−A(t).
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Proof. By the definition of Aj we have that

Aj∂jV = (0, . . . , 0,−∂jV
n+2, 0, . . . ,−∂jV

j+1 + aj∂jV
n+2)T .

This yields

P
n∑

j=1

Aj∂jV =

(
0,−∂1V

n+2, . . . ,−∂nV
n+2,−P

n∑

j=1

∂jV
j+1 + P

n∑

j=1

aj∂jV
n+2

)T

.

(15)
This shows that A(t) : D(A) → H is well-defined for each t ∈ [0, T ]. Now, let
(Vk)k ∈ D(A) such that Vk → V and A(t)Vk → W in H. Then the first n + 1
components in (15) imply that V n+2 ∈ H1(Rn) and that V n+2

k → V n+2 in H1(Rn).

By the last component in (15) this, in turn, yields that P
∑n

j=1 ∂jV
j+1
k converges

in L2(Rn). By the fact that Vk → V in H, we also obtain

P

n∑

j=1

∂jV
j+1
k → P

n∑

j=1

∂jV
j+1 in H−1(Rn).

Since the convergence in L2 is stronger as the convergence in H−1 we conclude that
P
∑n

j=1 ∂jV
j+1 ∈ L2(Rn). Consequently, V ∈ D(A) and A(t)V = W which shows

that A(t) is closed for each t ∈ [0, T ].
Next, for V ∈ D(A) and U ∈ H we have

〈A(t)V, U〉 =−
n∑

j=1

(∂jV
n+2, U j+1)− (P

n∑

j=1

∂jV
j+1, Un+2)

+
n∑

j=1

(aj∂jV
n+2, Un+2)

(16)

By the symmetry of P on L2 and since we use the same symbol for the Helmholtz
projection on Hm for different m, we also have P ′ = P if P is the projection on
Hm. For U ∈ D(A) we therefore can continue the above calculation as

〈A(t)V, U〉 =
n∑

j=1

〈PV n+2, ∂jU
j+1〉H1,H−1 − 〈

n∑

j=1

∂jV
j+1, PUn+2〉H−1,H1

+
n∑

j=1

(aj∂jV
n+2, Un+2)

= (V n+2, P
n∑

j=1

∂jU
j+1) +

n∑

j=1

(V j+1, ∂jU
n+2)−

n∑

j=1

(V n+2, aj∂jU
n+2)

= 〈V, −A(t)U〉,

where we used the fact that div (a1, . . . , an)T = 0 in the second equality. This shows
that A(t) is skew-symmetric and that D(A(t)) ⊂ D(A(t)′).

For the converse inclusion we pick

U ∈ D(A(t)′) = {U ∈ H; ∃W ∈ H ∀V ∈ D(A) : 〈V,W 〉 = 〈A(t)V,U〉}.
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First we choose V ∈ D(A) such that V k = 0 except for k = ℓ + 1 with fixed
ℓ ∈ {1, . . . , n} and such that V ℓ+1 ∈ C∞

0 (Rn). In view of (15) we then obtain

(V ℓ+1, W ℓ+1) = 〈V, W 〉 = 〈A(t)V, U〉

= −(
n∑

j=1

P∂jV
j+1, Un+2) = 〈V ℓ+1, ∂ℓU

n+2〉H1,H−1 .

This shows that ∂ℓU
n+2 has a representant in L2(Rn) for every ℓ ∈ {1, . . . , n}. Thus

Un+2 ∈ H1(Rn). Next we choose V ∈ D(A) satisfying V k = 0 except for k = n+2

and V n+2 ∈ C∞
0,σ(R

n)
d→֒L2

σ(R
n). By the fact that Un+2 ∈ H1(Rn) we can calculate

(V n+2, Wn+2) = 〈V, W 〉 = 〈A(t)V, U〉

= −
n∑

j=1

(∂jV
n+2, U j+1) +

n∑

j=1

(Paj∂jV
n+2, Un+2)

= 〈V n+2, P
n∑

j=1

∂jU
j+1〉H1,H−1 − (V n+2,

n∑

j=1

Paj∂jU
n+2).

Thanks to Wn+2,
∑n

j=1 Paj∂jU
n+2 ∈ L2(Rn), this shows that also P

∑n
j=1 ∂jU

j+1

belongs to L2(Rn). Consequently, U ∈ D(A) and we conclude that D(A(t)′) ⊂
D(A(t)). The assertion is therefore proved.

The full linear operator can now be handled by a perturbation argument.

Lemma 4.2. Let T ∈ (0,∞), A be defined as above, and let M = PM with an
(n+ 2)n× (n+ 2)n matrix M ∈ Cb([0, T ]× R

n). Assume that

(aj)
n
j=1 ⊂ LIP ([0, T ], L∞(Rn)) , div (a1, . . . , an) = 0.

Then A+M is the propagator of an evolution family

(U(t, s))0≤s≤t≤T ⊂ L (H).

Proof. By Lemma 4.1 for every t ∈ [0, T ], A(t) is skew-selfadjoint on H. Stones’s
theorem implies that A(t) is the generator of a unitary C0-group of contractions
on H. Clearly, we also have D(A(t)) = D(A) for every t ∈ [0, T ]. The Lipschitz
continuity assumption on (aj)

n
j=1 in t then implies that

(t 7→ A(t)) ∈ LIP ([0, T ],L (D(A), H)).

Thus, (A(t))t∈[0,T ] is a CD-system. By [9, Section 1.2] (see also [12]) therefore A is
the propagator of an evolution family on H. By the fact that M ∈ C([0, T ],L (H)),
a standard abstract perturbation argument (cf. [9, Remark 1.1(c)] or [12]) implies
that A + M is still the propagator of an evolution family on H as claimed in the
lemma.

Let now B be defined as in the beginning of this section with coefficients bj ∈
Cb([0, T ] × R

n). Then for M = B Lemma 4.2 implies the well-posedness of the
problem {

∂tV +AV + BV = 0 in (0, T ),
V |t=0 = V0

(17)

on H. In other words, for each V0 ∈ D(A) we obtain a unique solution

V ∈ C1([0, T ],H) ∩ C([0, T ],D(A)).
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This follows from standard theory, cf. [9] or [12]. However, in order to prove a local-
in-time existence result for the full quasilinear system, higher regularity in Sobolev
spaces for the linear problem is required. For this purpose we employ the method
of viscosity solutions.

Lemma 4.3. Let q ∈ N0, V0 ∈ Hq+2(Rn)∩H, and let a, b ∈ C∞
b ([0, T ]×R

n). Then
for each ε > 0 there exists a unique solution Vε of

{
∂tVε − ε∆Vε + (A+ B)Vε = 0 in (0, T ),

Vε|t=0 = V0
(18)

satisfying
V ∈ C1([0, T ], Hq(Rn) ∩H) ∩ C([0, T ], Hq+2(Rn)). (19)

Proof. It is well-known that ε∆ is the generator of an analytic C0-semigroup on
Hq(Rn) ∩ H. Note that by our regularity assumptions on a, b the nonautonomous
operator (A+B) represents a lower order perturbation of ε∆ regarded as a propaga-
tor on Hq(Rn)∩H. By standard abstract perturbation results (cf. [12]) we therefore
obtain that −ε∆+A+B is the propagator of an evolution family (Uε(t, s))0≤s≤t≤T

on Hq(Rn) ∩H such that V (t) := Uε(t, 0)V0 satisfies (18) and (19).

In the proof of the next Theorem we will also frequently make use of the following
estimates, which are often quoted as “Moser-type inequalities”. For a proof we refer
to [13, Lemma 4.9].

Lemma 4.4. Let m ∈ N. There is a constant C = C(m,n) > 0 such that for all
f, g ∈ Wm,2(Rn) ∩ L∞(Rn) and α ∈ Nn

0 , |α| ≤ m, the following inequalities hold:

‖∂α(fg)‖2 ≤ C(‖f‖∞‖∇mg‖2 + ‖g‖∞‖∇mf‖2), (20)

‖∂α(fg)− f · ∂αg‖2 ≤ C(‖∇f‖∞‖∇m−1g‖2 + ‖g‖∞‖∇mf‖2), (21)

where ∇mu denotes the entirety of all m-th order derivatives of a function u.

The next result provides higher regularity of the solutions of (17) under, and
this is essential, in a certain sense minimal regularity assumptions on the data and
the coefficients. In particular, in Sobolev spaces of higher order these regularity
assumptions are weaker as the obtained regularity for the solutions. This will be
very helpful for the construction of time-local strong solutions for the full nonlinear
problem in Section 5.

Theorem 4.5. Let T ∈ (0,∞), m ∈ N, m > n/2, V0 ∈ H ∩ Hm+1(Rn), b ∈
Cb([0, T ] × R

n), and let the coefficients a = (a1, . . . , an) satisfy the assumptions of
Lemma 4.2. Assume additionally that

a, b ∈ L1
(
(0, T ), Hm+1(Rn)

)
∩ C([0, T ], Hm(Rn)). (22)

Then the unique solution V = U(t, 0)V0 of problem (14) satisfies

V ∈ C1([0, T ], Hm(Rn) ∩H) ∩ C([0, T ], Hm+1(Rn)). (23)

Furthermore, the evolution family U satisfies the estimates

‖U(t, s)V0‖Hm+1 ≤ C1‖V0‖Hm+1 exp

(
C2

∫ t

s

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)
dr

)
, (24)

‖∂tU(t, 0)V0‖Hm ≤ C1‖V0‖Hm+1

(∣∣(a(t), b(t))
∣∣
m+1

+ 1
)

· exp
(
C2

∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)
dr

)
(25)
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for all 0 ≤ s ≤ t ≤ T with constants C1, C2 > 0 depending only on m and the
dimension n, and where we put

∣∣(a(r), b(r))
∣∣
m+1

= ‖a(r)‖Hm+1 + ‖b(r)‖Hm+1 .

Proof. The proof is splitted into five steps.

Step 1: construction of suitable approximate solutions Vk,ε.

We denote by Jx
k f and J t

kf the convolution of a function f with the Friedrichs
mollifier in the variable x and t, respectively. We set

V0,k := Jx
kV0 ∈ Hq+2(Rn), q ∈ N,

aj,k := J t
kE0J

x
k aj |[0,T ] ∈ C∞

b ([0, T ]× R
n),

bj,k := J t
kE0J

x
k bj |[0,T ] ∈ C∞

b ([0, T ]× R
n)

for j = 1, . . . , n and k ∈ N, where E0 denotes the trivial extension by 0 from [0, T ]
to R. Then we readily obtain

V0,k → V0 in Hm+1(Rn) ∩H, (26)

ak = (a1,k, . . . , an,k) → a in L1((0, T ), Hm+1) ∩ C([0, T ], Hm), (27)

div ak = 0 (k ∈ N),

bk = (b1,k, . . . , bn,k) → b in L1((0, T ), Hm+1) ∩ C([0, T ], Hm). (28)

We fix q > m + 1 and denote by Ak and Bk the operators being defined as A
and B with coefficients ak and bk, respectively. Due to Lemma 4.3 for every k ∈ N

and ε > 0 there is a viscosity solution, denoted by Vk,ε, of the system

{
∂tVk,ε − ε∆Vk,ε + (Ak + Bk)Vk,ε = 0 in (0, T ),

Vk,ε(0) = V0,k
(29)

satisfying

Vk,ε ∈ C1([0, T ], Hq(Rn) ∩H) ∩ C([0, T ], Hq+2(Rn)). (30)

Step 2: uniform boundedness of Vk,ε.

Let α ∈ N
n
0 such that |α| ≤ m + 1. Since m + 1 < q, we may apply ∂α to (29) to

the result
{

∂t∂
αVk,ε − ε∆∂αVk,ε +Ak∂

αVk,ε = F (Vk,ε) in (0, T ),
Vk,ε(0) = Vk,0

(31)

with

F (Vk,ε) =− en+2

[
P

n∑

j=1

(
∂αaj,k∂jV

n+2
k,ε − aj,k∂

α∂jV
n+2
k,ε + ∂αbj,kV

j+1
k,ε

)

+ ∂αV n+2
k,ε /

√
τ

]
+ e1∂

αV n+2
k,ε ,

where ei = (0, . . . , 0, In, 0, . . . , 0) for i ∈ {1, . . . , n+ 2} denotes the i-th unit matrix
in (Rn)n+2. Inequality (21) applied on the terms involving the aj,k’s and (20) on



HYPERBOLIC NAVIER-STOKES EQUATIONS 13

the terms involving the bj,k’s yields

‖F (Vk,ε)(t)‖L2

≤ C(n,m)

( n∑

j=1

[
‖aj,k(t)‖W 1,∞‖Vk,ε(t)‖Hm+1 + ‖aj,k(t)‖Hm+1‖Vk,ε(t)‖W 1,∞

]

+
n∑

j=1

[
‖bj,k(t)‖L∞‖Vk,ε(t)‖Hm+1 + ‖bj,k(t)‖Hm+1‖Vk,ε(t)‖L∞ + ‖Vk,ε(t)‖Hm+1

])
.

In view of the Sobolev embedding and by our assumption m > n/2 we can continue
this calculation to the result

‖F (Vk,ε)(t)‖L2 ≤ C(n,m)

(
‖ak(t)‖Hm+1 + ‖bk(t)‖Hm+1 + 1

)
‖Vk,ε(t)‖Hm+1

≤ C(n,m)

(∣∣(ak(t), bk(t))
∣∣
m+1

+ 1

)
‖Vk,ε(t)‖Hm+1 (t ∈ [0, T ]).

(32)

Forming the dual pairing of (31) with ∂αVk,ε implies

1

2

d

dt
‖∂αVk,ε(t)‖2L2 + ε‖∂α∇Vk,ε(t)‖2L2 = 〈F (Vk,ε)(t), Vk,ε(t)〉

≤ C(n,m)

(∣∣(ak(t), bk(t))
∣∣
m+1

+ 1

)
‖Vk,ε(t)‖2Hm+1 .

Summing up over |α| ≤ m+ 1 and integrating over t then yields

|||Vk,ε(t)|||2

≤ ‖V0,k‖2Hm+1 + C(n,m)

∫ t

0

(∣∣(ak(r), bk(r))
∣∣
m+1

+ 1

)
|||Vk,ε(r)|||2dr,

where

|||Vk,ε(t)|||2 := ‖Vk,ε(t)‖2Hm+1 + ε

∫ t

0

‖∇Vk,ε(r)‖2Hm+1dr, t ∈ [0, T ].

Thus, applying Gronwall’s lemma and taking into account (26)-(28), we end up
with

‖Vk,ε(t)‖2Hm+1 + ε

∫ t

0

‖∇Vk,ε(r)‖2Hm+1dr

≤ C1(n,m)‖V0,k‖2Hm+1 exp

(
C2(n,m)

∫ t

0

(∣∣(ak(r), bk(r))
∣∣
m+1

+ 1
)
dr

)

≤ C1(n,m)‖V0‖2Hm+1 exp

(
C2(n,m)

∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)
dr

)

≤ C1(n,m, V0, a, b, T ) (t ∈ [0, T ], k ∈ N, ε > 0).

(33)

This shows that Vk,ε is uniformly bounded in L∞([0, T ], Hm+1(Rn)) and that ε∇Vk,ε

is uniformly bounded in L2([0, T ], Hm+1(Rn)). Again by an application of (20) we
therefore obtain that (Ak + Bk)Vk,ε is uniformly bounded in L∞([0, T ], Hm(Rn)).
From that, the uniform boundedness of ε∆Vk,ε in L2([0, T ], Hm(Rn)), and equations
(29) we infer that also ∂tVk,ε is uniformly bounded in L2([0, T ], Hm(Rn)). Thus,
we have proved that Vk,ε is uniformly bounded in the class

H1([0, T ], Hm(Rn)) ∩ L∞([0, T ], Hm+1(Rn)). (34)
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Step 3: weak∗ convergence of Vk,ε to the solution V of (14).

The outcome of step 2 implies the existence of a subsequence of Vk,ε, for simplicity
also denoted by Vk,ε, converging weakly∗ in the class (34) for k → ∞ and ε →
0. Denote by U its limit. Then U also belongs to (34). Thanks to the Sobolev
embedding we also have

U ∈ H1([0, T ], Hm(Rn))→֒C([0, T ], Hm(Rn)). (35)

Next, we show that U solves (17). In fact, multiplying

ϕ ∈ C1
0 ([0, T ), C

∞
c (Rn)), divϕn+2 = 0

to (29) and integrating by parts gives us

0 =

∫ T

0

〈(∂t − ε∆+Ak(t) + Bk(t))Vk,ε(t), ϕ(t)〉dt

=−
∫ T

0

〈Vk,ε(t), (∂t +Ak(t)− Bk(t)
′)ϕ(t)〉dt

− ε

∫ T

0

〈Vk,ε(t), ∆ϕ〉dt− 〈V0,k, ϕ(0)〉.

Due to (27), (28), and m > n/2 we have

‖(Ak − B′
k −A+ B′)ϕ‖L1(H) ≤ C (‖ak − a‖L∞ + ‖bk − b‖L∞) ‖ϕ‖L1(H1)

→ 0 (k → ∞).

This shows that

(∂t +Ak − B′
k)ϕ → (∂t +A− B′)ϕ strongly in L1([0, T ],H) (k → ∞).

Since Vk,ε → U weakly∗ in L∞([0, T ],H) we obtain
∫ T

0

〈Vk,ε(t), (∂t +Ak − B′
k)ϕ(t)〉dt →

∫ T

0

〈U(t), (∂t +A− B′)ϕ(t)〉dt

as k → ∞ and ε → 0. The boundedness of Vk,ε in L∞([0, T ],H) also yields

ε

∫ T

0

〈Vk,ε, ∆ϕ〉dt → 0 (k → ∞, ε → 0).

Thus, letting k → ∞ and ε → 0 implies
∫ T

0

〈U(t), (∂t +A− B′)ϕ(t)〉dt = −〈V0, ϕ(0)〉.

Thanks to the fact that U belongs to (34) and in view of (35), we can reverse the
integration by parts to the result
∫ T

0

〈(∂t+A+B)U(t), ϕ(t)〉dt = 〈U(0)−V0, ϕ(0)〉. (ϕ ∈ C1
0 ([0, T ), C

∞
0 (Rn)∩H)).

Choosing ϕ ∈ C1
0 ((0, T ), C

∞
0 (Rn) ∩H) shows that

(∂t +A+ B)U = 0 a.e.

This, in turn, implies that U(0) = V0, hence that U solves (14). By virtue of (35)
and by the assumptions on a, b, the fact that U solves (14) also yields

U ∈ C1([0, T ], Hm−1(Rn) ∩H). (36)

Since we assumed that n ≥ 2, hence that m > n/2 ≥ 2, we obtain that U is a
strong solution of (14). Consequently, U is unique and therefore coincides with
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V = U(·, ·)V0, where U is the evolution family given by Lemma 4.2.

Step 4: proof of estimates (24) and (25).

Note that by (33) and the fact that U = V , we obtain

‖V (t)‖Hm+1 ≤ lim inf
k→∞, ε→0

‖Vk,ε(t)‖Hm+1

≤ C1(n,m)‖V0‖Hm+1 exp

(
C2(n,m)

∫ t

0

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)
dr

)

for t ∈ [0, T ]. Hence estimate (24) is satisfied for V and s = 0. In order to get the
general case we fix s ∈ [0, T ] and set

Ũ(t, 0) := U(t+ s, s),

ã(t) := a(t+ s),

b̃(t) := b(t+ s)

for t ∈ [0, T − s]. If Ã and B̃ denote the operators corresponding to the coefficients

ã and b̃ respectively, we see that Ṽ := Ũ(t, 0)V0 solves
{

∂tṼ + (Ã+ B̃)Ṽ = 0 in (0, T − s),

Ṽ (0) = V0

for V0 ∈ Hm+1(Rn). By the just proved facts for the solution of this system we
deduce

‖U(t+ s, s)V0‖Hm+1 = ‖Ũ(t, 0)V0‖Hm+1

≤ C1(n,m)‖V0‖Hm+1 exp

(
C2(n,m)

∫ t

0

(∣∣(ã(r), b̃(r))
∣∣
m+1

+ 1
)
dr

)

≤ C1(n,m)‖V0‖Hm+1 exp

(
C2(n,m)

∫ t+s

s

(∣∣(a(r), b(r))
∣∣
m+1

+ 1
)
dr

)
,

hence (24). The estimate for the time derivative of U now easily follows by

‖∂tU(t, 0)V0‖Hm = ‖(A(t) + B(t))U(t, 0)V0‖Hm

≤ C(n,m)
(∣∣(a(t), b(t))

∣∣
m
+ 1
)
‖U(t, 0)V0‖Hm+1 (t ∈ [0, T ]),

where we applied once more Lemma 4.4.

Step 5: continuity of V in time.

From step 4 and our assumptions on a, b we immediately see that

V ∈ W 1,∞([0, T ], Hm(Rn)) ∩ L∞([0, T ], Hm+1(Rn)). (37)

It remains to show that in (37) W 1,∞ and L∞ can be replaced by C1 and C,
respectively. To this end, we will employ the variation of constant formula.

Thanks to (35) and (36) we have

V = U(t, 0)V0 ∈ C1([0, T ], Hm−1(Rn)) ∩ C([0, T ], Hm(Rn)) (38)

for arbitrary V0 ∈ Hm+1(Rn). In view of m ≥ 2, we may apply ∂α for |α| ≤ 1 to
(14). This leads to

{
∂t∂

αV + (A+ B)∂αV = F (V ) in (0, T ),
∂αV |t=0 = ∂αV0.

(39)
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with

F (V ) = −en+2P

n∑

j=1

[
(∂αaj)∂jV

n+2 + (∂αbj)V
j+1

]
.

Very similar to the calculations that lead to (32) we can derive

‖F (V )(t)‖Hm ≤ C(n,m)
∣∣(a(t), b(t))

∣∣
m+1

‖V (t)‖Hm+1 (t ∈ [0, T ]).

By virtue of our assumptions on a, b and since

V ∈ L∞([0, T ], Hm+1(Rn))

we observe that

F (V ) ∈ L1((0, T ), Hm(Rn)).

On the other hand, by applying the Hölder inequality we can also estimate as

‖F (V )(t)‖2 ≤ C

(
‖∇a(t)‖4 + ‖b(t)‖4

)
‖∇V (t)‖4 (t ∈ [0, T ]).

Since m − 1 ≥ m/2 > n/4 for m ≥ 2, the Sobolev embedding implies that
Hm−1(Rn) →֒ L4(Rn). Hence the above inequality gives us F (V ) ∈ L∞((0, T ),H).
By our asumptions on a and b and in view of (38), F (V ) is even continuous in time.
So, altogether we obtain

F (V ) ∈ L1((0, T ), Hm(Rn)) ∩ C([0, T ],H).

According to H1(Rn) ∩ H→֒D(A), [9, Remark 1.3] therefore implies that ∂αV is
the unique strong solution of (39) given by the variation of constant formula

∂αV (t) = U(t, 0)∂αV0 +

∫ t

0

U(t, s)F (V )(s)ds, t ∈ [0, T ]. (40)

Here U still denotes the evolution system generated by the propagator A+ B.
From our assumptions (22) on a, b and step 4 we know that U satisfies the

estimate

‖U(t, s)‖L (Hm+1∩H) ≤ C1(T ) (0 ≤ s ≤ t ≤ T ),

for some C1 > 0. Since U is an evolution system on H we also have

‖U(t, s)‖L (H) ≤ C2(T ) (0 ≤ s ≤ t ≤ T ),

for some C2 > 0. Interpolating these two inequalities yields

‖U(t, s)‖L ([H, Hm+1∩H]θ) ≤ C(T ) (0 ≤ s ≤ t ≤ T ),

with C = max(C1, C2) and where [·, ·]θ denotes the complex interpolation space for
θ ∈ (0, 1). By the fact that H is complementary in L2(Rn), [17, Theorem 1.17.1.1]
implies that

[H, Hm+1 ∩H]θ = [L2(Rn), Hm+1]θ ∩H = Hθ(m+1)(Rn) ∩H.

Consequently, for θ = m/(m+ 1) we deduce

‖U(t, s)‖L (Hm∩H) ≤ C(T ) (0 ≤ s ≤ t ≤ T ).

From this we immediately gain the estimate

‖U(t, s)F (V )(s)‖Hm ≤ C(T )‖F (V )(s)‖Hm (0 ≤ s ≤ t ≤ T ).
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Inserting this into (40) while taking the Hm-norm and keeping in mind continuity
relation (38) and that F (V ) ∈ L1((0, T ), Hm(Rn)) then gives us

‖∂α(V (t)− V0)‖Hm ≤ ‖(U(t, 0)− I)∂αV0‖Hm + C(a, b, T )

∫ t

0

‖F (V )(s)‖Hmds

→ 0 (t → 0, |α| ≤ 1).

This shows that t 7→ U(t, 0) is strongly continuous in t = 0 w.r.t. the Hm+1-norm.
The fact that U is an evolution family then implies the continuity on [0, T ]. So, we
have proved

V ∈ C([0, T ], Hm+1(Rn)).

The assertion that V ∈ C1([0, T ], Hm(Rn)) then follows again by ∂tV = −(A+B)V
and by our assumption a, b ∈ C([0, T ], Hm(Rn)) on the coefficients. The result is
therefore proved.

5. Quasilinear local existence. Based on a fixed point iteration here we con-
struct local-in-time solutions to the first order quasilinear system (13). The idea
of this fixed point iteration goes back to Majda [10]. However, by the strength of
our linear result Theorem 4.5 the proof of the quasilinear local-in-time existence
performed here becomes much more elegant compared to the methods used in [10]
or [13].

Theorem 5.1. Let m ∈ N0, m > n/2, and let V0 ∈ H ∩Hm+1(Rn). Then, there
exists a T > 0 and a unique solution

V ∈ C1([0, T ], Hm(Rn) ∩H) ∩ C([0, T ], Hm+1(Rn)) (41)

of system (13). The existence time T can be estimated from below as

T >
1

1 + C‖V0‖Hm+1

(42)

with a constant C > 0 depending only on m and the dimension n.

Proof. Step 1: existence.

Let V0 ∈ Hm+1(Rn) ∩H be an initial value. Set

V0(t, x) := V0(x) ((t, x) ∈ [0, T ]× R
n)

and for k ∈ N0 let Vk+1 be inductively defined as the solution of the initial value
problem {

∂tVk+1 + (A(Vk) + B(Vk))Vk+1 = 0 in (0, T ),
Vk+1(0) = V0.

(43)

By the fact that

C1([0, T ], Hm(Rn)) ∩ C([0, T ], Hm+1(Rn))

→֒ C([0, T ], Hm(Rn)) ∩ L1((0, T ), Hm+1(Rn)) ∩ LIP ([0, T ], L∞(Rn)),

we see that Theorem 4.5 (i.p. (22) and (23)) implies that every solution belongs to
the class of the coefficients for the next step. Hence, Vk+1 is well-defined for every
k ∈ N0. Next, we will prove the following uniform bounds.

Lemma 5.2. There exist R,L, T∗ > 0 such that for all k ∈ N0 we have

(i) ‖Vk‖L∞([0,T∗],Hm+1) ≤ R,
(ii) ‖∂tVk‖L∞([0,T∗],Hm) ≤ L.
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Proof. We use induction over k ∈ N0. For k = 0 we have

‖V0‖L∞([0,T ],Hm+1) = ‖V0‖Hm+1 ≤ R,

which is to understand as a first condition on the size of R. In view of ∂tV0 = 0 we
see that L is still arbitrary.

Now, assume that the assertion holds for k ∈ N0. Estimate (24) in combination
with (22) and the induction hypothesis imply

‖Vk+1‖L∞([0,T ],Hm+1) ≤ C1‖V0‖Hm+1 exp

(
C2

∫ T

0

(‖Vk(r)‖Hm+1 + 1) dr

)

≤ C1‖V0‖Hm+1 exp (C2(R+ 1)T ) (T > 0).

We choose

R = R(‖V0‖Hm+1) := C1‖V0‖Hm+1 exp(C2) =: C(n,m)‖V0‖Hm+1 .

Then for

T∗ ≤ 1

R+ 1
=

1

1 + C(n,m)‖V0‖Hm+1

we obtain

‖Vk+1‖L∞([0,T∗],Hm+1) ≤ R.

This leads to estimate (42) for the size of the existence time.
Similarly, for the time derivative of Vk+1 we employ estimate (25) in combination

with (22) to the result

‖∂tVk+1‖L∞([0,T ],Hm) ≤ C1‖V0‖Hm+1

(
‖Vk‖L∞([0,T ],Hm+1) + 1

)

· exp
(
C2

∫ T

0

(‖Vk(r)‖Hm+1 + 1) dr

)

≤ C1‖V0‖Hm+1(R+ 1) exp (C2(R+ 1)T ) (T > 0).

Thus, again for T∗ ≤ 1/(R+ 1) we deduce

‖∂tVk+1‖L∞([0,T∗],Hm) ≤ R(R+ 1) =: L.

This fixes L and the lemma is proved.

The just obtained uniform boundedness of (Vk)k∈N was the essential step in
proving suitable convergence of (Vk)k∈N such that we may pass to the limit in (43).
In fact, first Lemma 5.2 implies convergence in C([0, T ],H). This can be seen by
considering

Wk := Vk+p − Vk (k ∈ N)

for fixed p ∈ N. Since (A+ B)(V ) is linear in V , we observe that Wk satisfies

∂tWk+1 +A(Vk+p)Wk+1 = −(A+ B)(Wk)Vk+1 − B(Vk+p)Wk+1.

Multiplying by Wk+1, integrating over Rn, and utilizing the structure of A, B and
the Sobolev embedding we obtain

d

dt
‖Wk+1(t)‖22

≤ C

(
‖Wk(t)‖2‖Wk+1(t)‖2‖Vk+1(t)‖Hm+1 + ‖Vk+p(t)‖Hm‖Wk+1(t)‖22

)
.
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Integrating with respect to time implies

‖Wk+1(t)‖22 ≤ C‖Wk+1‖L∞((0,T ),L2)‖Wk‖L1((0,T ),L2) + C

∫ t

0

‖Wk+1(s)‖22ds

(t ∈ [0, T∗], k ∈ N),

where we have used the boundedness of the sequence (Vk)k∈N in L∞([0, T∗], Hm+1)
proved in Lemma 5.2. Applying once more Gronwall’s lemma gives us

‖Wk+1‖2L∞((0,T∗),L2) ≤ C1‖Wk+1‖L∞((0,T∗),L2)‖Wk‖L1((0,T∗),L2)e
C2T∗

from which we conclude

‖Wk+1‖L∞((0,T∗),L2) ≤ CT∗e
C2T∗‖Wk‖L∞((0,T∗),L2) (k ∈ N).

Hence, if not already small enough, we choose T∗eC2T∗ < C/2 to achieve Wk → 0
and therefore that Vk → V strongly in C([0, T∗],H) for some V ∈ C([0, T∗],H) as
k → ∞. Thanks to the interpolation inequality

‖f‖L∞(Hs) ≤ C‖f‖1−a
L∞(L2)‖f‖

a
L∞(Hm+1) (f ∈ L∞((0, T ), Hm+1))

with a = s/(m+1) we obtain Vk → V strongly in C([0, T∗], Hs) for all 0 ≤ s < m+1.
By virtue of C([0, T∗], Hs)→֒Cb([0, T∗]×R

n) for s ≥ m this fact immediately implies
that

(A+ B)(Vk)Vk+1 → (A+ B)(V )V (k → ∞)

strongly in C([0, T∗],H). Due to equations (43) we then also have

∂tVk → ∂tV (k → ∞)

strongly in C([0, T∗],H). Thus we can pass to the limit in (43) which yields that V
is a solution of (13).

To see that V satisfies (41) we argue as follows. By the boundedness of (Vk)k∈N

there is a weak* limit V ∗ in W 1,∞([0, T∗], Hm) ∩ L∞([0, T∗], Hm+1). The function
V ∗ is also a weak* limit in L∞([0, T∗],H). But there we know Vk → V . Thus
V ∗ = V , which particularly implies

V ∈ W 1,∞([0, T∗], H
m) ∩ L∞([0, T∗], H

m+1).

Next, observe that we have

W 1,∞([0, T∗], H
m(Rn))→֒LIP ([0, T∗], H

m(Rn)).

In view of Sobolev’s embedding this implies

V ∈ L∞([0, T∗], H
m+1(Rn)) ∩ C([0, T∗], H

m(Rn)) ∩ LIP ([0, T∗], L
∞(Rn)).

By this fact we may regard (13) as the linear system
{

∂tU + (A+ B)U = 0 in (0, T∗),
U(0) = V0

(44)

with fixed coefficients

a :=
√

τ/µV 1, b :=
1√
µ
(
√
τV n+2 + V 1).

Theorem 4.5 implies the existence of a unique solution

U ∈ C1([0, T∗], H
m(Rn) ∩H) ∩ C([0, T∗], H

m+1(Rn)).

Obviously U is a strong solution of (44). On the other hand, by the discussion
above we know that

V ∈ C1([0, T∗],H) ∩ C([0, T∗],D(A)).
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Thus, V is a strong solution of (44) as well. By the uniqueness of strong solutions
of the linear system (44) we obtain V = U , hence (41).

Step 2: uniqueness.

Let
U, V ∈ C1([0, T ],H) ∩ C([0, T ], H1(Rn)) ∩ L∞([0, T ],W 1,∞(Rn))

be solutions of (13) to the initial value V0. Then W := U − V solves
{

∂tW +A(U)W = F in (0, T∗),
W (0) = 0,

(45)

with
F = (A(W ) + B(W ))V + B(U)W,

where we used the fact that V 7→ A(V ) and V 7→ B(V ) are linear. Our assumptions
on U, V yield

‖V ‖L∞([0,T ],W 1,∞(Rn)) + ‖U‖L∞([0,T ]×Rn) ≤ C.

Thus we can estimate F as

‖F (t)‖H ≤ C‖W (t)‖H (‖V (t)‖W 1,∞ + ‖U(t)‖L∞) ≤ C‖W (t)‖H (t ∈ [0, T ]).

Forming the dual pairing of (45) with W gives us

1

2

d

dt
‖W (t)‖2L2 = 〈F (t), W (t)〉 ≤ C‖W (t)‖2L2 (t ∈ [0, T ]).

Consequently, W = 0 by Gronwall’s lemma. This completes the proof of Theo-
rem 5.1.

We conclude with the proof of our main result Theorem 1.1.

Proof. Let (u0, u1) ∈
(
Hm+2(Rn) ∩ L2

σ(R
n)
)
×
(
Hm+1(Rn) ∩ L2

σ(R
n)
)
. Then we

have V0 := (v0, ∂1v0, . . . , ∂nv0, v1)
T ∈ Hm+1(Rn)∩H, where (v0, v1) := (u0,

√
τu1).

If V is the solution of system (13) in (0, T ) we set v := V 1. Then by construction
of A+B we readily see that v satisfies equations (10). Regularity relation (41) and
the fact that V = (v, ∂1v, . . . , ∂n, ∂tv) imply

v ∈ C2([0, T ], Hm(Rn)) ∩ C1([0, T ], Hm+1(Rn)) ∩ C([0, T ], Hm+2(Rn) ∩ L2
σ(R

n)).

Setting T∗ :=
√
τT then gives the claimed regularity for u(t, x) := v(t/

√
τ , x/

√
µ),

the solution of (9).
A further application of Lemma 4.4 and the regularity of u show that

τ(u · ∇)∂tu, ((τ∂tu+ u) · ∇)u ∈ C([0, T∗], H
m(Rn)).

(This can also be seen by the construction of V .) Thus, we may recover the pressure
term via

∇π := (I − P ) (−τ(u · ∇)∂tu− ((τ∂tu+ u) · ∇)u))

= (1 + τ∂t)(I − P )(u · ∇)u.
(46)

This yields that (u, π) is the unique solution of (1) with the claimed regularity.

Corollary 1 now is easily obtained as follows

Proof. Assuming u0, u1 ∈ ⋂∞
k=0 H

k(Rn) implies that u ∈ C2([0, T∗], Hm(Rn)) for
everym ∈ N. By applying ∂t iteratively to equations (9) and taking into account the
boundedness of P on every Hm(Rn), we even obtain that u ∈ C∞([0, T∗], Hm(Rn))
for every m ∈ N. From representation (46) we then deduce the same regularity for
∇π. The Sobolev embedding finally yields the assertion.
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