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Abstract. This note consists of two parts. In the first part
we consider the behavior of R-boundedness, R-sectoriality, and
property(α) under the interpolation of Banach spaces. In a gen-
eral setting we prove that for interpolation functors of type h the
R-boundedness, the R-sectoriality, and the property(α) preserve
under interpolation. In particular, this is true for the standard
real and complex interpolation methods. (Partly, these results
were indicated in [12], however, with just a very brief outline of
their proofs.) The second part represents an application of the
first part. We prove R-sectoriality, or equivalently, maximal Lp-
regularity for a general class of parabolic systems on interpolation
spaces including scales of Besov- and Bessel-potential spaces over
R

n.

1. Introduction

The concept of R-bounded operator families nowadays plays an im-
portant role in the treatment of linear and nonlinear problems. By the
celebrated result of L. Weis [21], it is known that R-boundedness of
the resolvent family λ(λ+A)−1 for λ in a complex sector with opening
angle greater that π/2 implies maximal regularity for a linear operator
A. The maximal regularity, in turn, is fundamental in the treatment
of linear and nonlinear PDEs for various reasons: the construction of
local-in-time strong solutions, of global weak solutions, of real analytic
solutions, uniqueness proofs, and so on.

Also, in combination with a holomorphic functional calculus, a so-
called H∞-calculus, the concept of R-boundedness turned out to be
very valuable. It allows for the introduction of a joint H∞-calculus
of two closed linear operators A,B, cf. [14]. In particular, it gives an
answer to the question under what circumstances f(A,B) gives rise
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to a bounded operator for bounded real analytic functions f(λ, z). In
the simplest case we might have f(λ, z) = (λ + z)−1, A = d/dt, and
B = −∆, for instance. The full strength of such a joint H∞-calculus
reveals in the treatment of free boundary value problems, see e.g. [7],
[17]. This type problems often can be reduced to the boundary, on
which, however, one is faced to a mixed order system. The associated
matrix symbols (Lopatinskii matrix) not seldom have a complicated
structure, but still are real analytic functions and therefore fit into the
framework of the joint H∞-calculus developed in [14] or [11].

In this context also a geometric property of a Banach space (besides
the property ’of class HT ’) comes into play: the so-called ’property(α)’.
In many situations it represents the crucial ingredient for the step from
uniform boundedness to R-boundedness. For instance, if property(α)
for a Banach space X is assumed, the standard multiplier results, if
applicable, yield R-boundedness of an operator family (Mλ)λ in a pa-
rameter λ, instead of uniform boundedness only. For Mλ = λ(λ+A)−1

this leads directly to the R-sectoriality of A or, equivalently, to the
maximal Lp-regularity. We refer to [15, Theorem 5.2 b)] for a multi-
plier result of this type. If an operator has a bounded H∞-calculus
on X, it automatically admits the stronger property of an R-bounded
H∞-calculus, provided X has property(α). This is another significant
consequence of property(α). This fact particularly matters for the ini-
tialization and the application of a joint H∞-calculus, cf. [14].

For all these reasons, it is important to know about the behavior of
the notions of R-boundedness and property(α) with respect to other
functional analytic operations, such as the interpolation of Banach
spaces, for instance. In the first part of this paper we clarify this
behavior. In fact, we will show that both properties preserve under in-
terpolation. These results are indicated in [12]. However, their proofs
are just outlined and for readers not so experienced in this topic it might
be hard to follow the very brief argumentation given in [12]. It also
seems that a rigorous proof so far is not contained anywhere else in the
available literature, although the results are not seldom used in other
works. With the aim to apply them in order to prove R-sectoriality
for a class of parameter-elliptic systems on Besov and Bessel-potential
spaces, here we give a rigorous proof of the results on the interpolation
of R-boundedness and property(α) indicated in [12]. Indeed, we prove
the preservation of these two properties in a very general setting for
exact interpolation functors of type θ. This covers the cases of real and
complex interpolation and also generalizes the results indicated in [12].
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The proof of the permanence results under discussion is based on
the characterization of R-boundedness in terms of boundedness in
Rademacher spaces. The Rademacher spaces are complementary in
Lp([0, 1], X) if X is K-convex. By these facts the interpolation of
R-boundedness is reduced to the interpolation of X-valued Lp-spaces
and to general facts concerning the interpolation of complementary
subspaces. The preservation of property(α) under interpolation then
can be reduced to the obtained results on the interpolation of R-
boundedness. Indeed, property(α) can be regarded as a special form
of R-boundedness on Rademacher spaces. Therefore the results on
R-boundedness apply.

This is also the reason, why we give the proof of the preservation
of property(α) under interpolation here, although this result is not
directly applied in this note. In a forthcoming work it will be applied
in order to prove an R-bounded H∞-calculus for a certain class of
elliptic operators on scales of Besov and Bessel-potential spaces.

In the second part of this note we will apply the results obtained in
the first part in order to prove R-sectoriality for a class of parameter-
elliptic systems realized on interpolation spaces. For classical works
on parameter-elliptic systems we refer to [2] and [19]. Particularly,
we will apply the obtained permanence results to real and complex
interpolation functors. This yields the R-sectoriality on scales of Besov
and Bessel-potential spaces. For this purpose, we first establish the
corresponding result for the model problem (i.e., constant coefficients)
in Sobolev spaces W k,p(Rn,Cn) (see Proposition 5.12). This will be
based on a multiplier theorem. Employing a localization procedure
and perturbation arguments, the result generalizes to a class of variable
coefficients (see Theorem 5.28). This result can be found in [15] for the
special case k = 0. Interpolation and the outcome of the first part of
this note then imply the R-sectoriality on scales of interpolation spaces
(see Theorem 5.29).

We remark that the results in the second part seem to be available
also by combining deep results from known literature. For instance,
employing results on R-sectoriality on Lp for higher order operators
with top order coefficients in BUC achieved in [6] and classical results
on elliptic regularity, via interpolation one might be able to derive R-
sectoriality of elliptic higher order operators in W k,p without localizing.
Moreover, classical results of [5] or results obtained in [11] show that a
sectorial operator always admits maximal regularity or a bounded H∞-
calculus in real interpolation spaces (however, at first with no explicit
information on its domain). Since we want to keep our approach as
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selfcontained as possible, however, we give a direct and elementary
proof of R-sectoriality for a class of parabolic problems, which even
works for general Lp-compatible interpolation scales.

The paper is organized as follows. The first part includes Section 2
to 4. In Section 2 we clarify the notation. Section 3 includes the intro-
duction of R-bounded families, the characterization via Rademacher
spaces, and the result on the permanence of R-boundedness under in-
terpolation (Theorem 3.19). The introduction, the characterization in
terms of R-boundedness, and the corresponding results on the inter-
polation of property(α) are the content of Section 4. In the second
part, i.e. in Section 5, we prove the mentioned R-sectoriality for a class
of parameter-elliptic systems realized on scales of interpolation spaces.
The main results here are Theorem 5.29 and Corollary 5.31.

2. Notation

Definition 2.1. In the sequel we use the following notation:

• The set {X0, X1} is said to be an interpolation couple, if X0

and X1 are Banach spaces, which are embedded in a Hausdorff
topological vector space X . On X0 + X1 we define the norm
‖x‖X0+X1 := infxk∈Xk:x0+x1=x(‖x0‖X0+‖x1‖X1) for x ∈ X0+X1.

• Let {X0, X1}, {Y0, Y1} be interpolation couples, then we define

L({X0, X1},{Y0, Y1}) := {T : X0 +X1 → Y0 + Y1|

T linear and T|Xk
∈ L(Xk, Yk), k = 0, 1}

and L({X0, X1}) := L({X0, X1}, {X0, X1}).
• For normed spaces X and Y we denote the existence of an in-

jective continuous linear mapping from Y to X by Y →֒ X. By
L(Y,X) we denote the space of all linear and bounded operators
from Y into X.

• By Y →֒d X we denote the existence of an injective continuous
linear mapping from Y to X with dense image in X.

• Let X and Y be normed spaces. The equality X = Y is used
with the meaning that there exists an isomorphism between X
and Y . In particular we have equivalence of the norms in this
case.

• By virtue of the appearance of various spaces we often want
to make clear in which space an integral or a series converges.
Hence we write “

∫
. . . dx[X]” and “ [X]

∑
. . .” to indicate the con-

vergence in X.
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For the definition of an interpolation functor F we follow [20, 1.2.2].
Particularly we make use of interpolation functors of type h, which
means that we have an estimate as

‖T|F({X0,X1})‖L(F({X0,X1}),F({Y0,Y1}))

≤ Ch · h(‖T|X0‖L(X0,Y0), ‖T|X1‖L(X1,Y1))

with a constant Ch > 0. An interpolation functor is called exact of type
θ, if it is of type h(t0, t1) := t1−θ

0 tθ1 with Ch = 1. Important examples
of exact interpolation functors of type θ are given by the real and
complex interpolation methods, which are defined as in [1, 7.9/7.51].
The proof of the exactness for these two methods can be found e.g. in
[20, 1.3.3 (a)/1.9.3 (a)]. As usually, we denote the real interpolation
space by (X0, X1)θ,p and the complex interpolation space by [X0, X1]θ.
We want to mention that in this note we only use the K-method for
real interpolation.

Let (Ω,B, µ) be a measure space with a σ-finite measure µ on B.
For a Banach space X we denote the Banach space valued Lp-space
Lp(Ω,B, µ,X) by Lp(X). For an domain Ω ⊂ R

n we denote the
Sobolev space of order m ∈ N0 by Wm,p(Ω, X) or Wm,p(X). Here
and in the following we always consider the case p ∈ (1,∞) except
in Section 3.1. An interpolation functor F is called Lp-compatible, if
we have F({Lp(X0), L

p(X1)}) = Lp(F({X0, X1})) for all interpolation
couples {X0, X1}. In [20] it is proved that real and complex interpola-
tion methods are Lp-compatible interpolation functors such that

C(1)
p ‖ · ‖(Lp(X0),Lp(X1))θ,p ≤ ‖ · ‖Lp((X0,X1)θ,p)

≤ C(2)
p ‖ · ‖(Lp(X0),Lp(X1))θ,p ,(1)

‖ · ‖[Lp(X0),Lp(X1)]θ = ‖ · ‖Lp([X0,X1]θ)

where the constants C
(1)
p > 0 and C

(2)
p > 0 are independent of the

spaces X0 and X1.
To avoid confusion with different definitions of the resolvent set, we

give it here. Under the resolvent set ρ(A) of a linear and densely defined
operator A : D(A) ⊂ X → X we understand the set of all λ ∈ C such
that (λ− A) : D(A) → X is bijective and (λ− A)−1 ∈ L(X).

3. R-boundedness and Rademacher spaces

3.1. Basic properties and definitions. The following definitions
and basic consequences can be found in detail in [15, Section 2] or
[9, Section 11].
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Definition 3.1. Let X,Y be Banach spaces, T ⊂ L(X, Y ), and p ∈
[1,∞). Then T is said to be R-bounded, if there exists a constant C > 0
such that for all m ∈ N, (Tk)k=1,...,m ⊂ T , and all (xk)k=1,...,m ⊂ X we
have ∥∥∥∥∥

m∑

k=1

rkTkxk

∥∥∥∥∥
Lp([0,1],Y )

≤ C

∥∥∥∥∥

m∑

k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)

.(2)

Then Rp(T ) := min{C > 0 : (2) is satisfied } is called R-bound of T .
For k ∈ N the functions rk : [0, 1] → {−1, 1}, t 7→ sign(sin(2kπt)) are
called Rademacher functions.

Next we introduce the Rademacher spaces. With their help the intri-
cate definition of R-boundedness can be characterized in a convenient
way.

Definition 3.2. For a Banach space X, p ∈ [1,∞), and m ∈ N the
spaces

Radp(X) :=

{
(xk)k∈N ⊂ X :

∞∑

k=1

rkxk convergent in Lp([0, 1], X)

}

Radm
p (X) := {(xk)k=1,...,m ⊂ X},

equipped with the norms

‖(xk)k‖Radp(X) := ‖
∞∑

k=1

rkxk‖Lp([0,1],X),

‖(xk)k=1,...,m‖Rad
m
p (X) := ‖

m∑

k=1

rkxk‖Lp([0,1],X)

respectively, are called Rademacher spaces.

Remark 3.3. (i) The spaces Radp(X) and Radm
p (X) are Banach

spaces and
⋃∞

m=1 Radm
p (X) is dense in Radp(X).

(ii) Let X be a Banach space, p ∈ [1,∞), and m ∈ N. Then we
have the following norm preserving embeddings

Radp(X) →֒ Lp([0, 1], X), (xk)k 7→
∑∞

k=1 rkxk,
Radm

p (X) →֒ Lp([0, 1], X), (xk)k=1,...,m 7→
∑m

k=1 rkxk.

Theorem 3.4. Let X be a Banach space and p ∈ [1,∞). Then there

exists a constant C
(K)
p > 0, such that for all (xk)k∈N ⊂ X we have

1

C
(K)
p

∥∥∥∥∥

∞∑

k=1

rkxk

∥∥∥∥∥
L1([0,1],X)

≤

∥∥∥∥∥

∞∑

k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)
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≤ C(K)
p

∥∥∥∥∥

∞∑

k=1

rkxk

∥∥∥∥∥
L1([0,1],X)

.

Theorem 3.5. Let X be a Banach space and p ∈ [1,∞). Then we
have ∥∥∥∥∥

n∑

j=1

rjajxj

∥∥∥∥∥
Lp([0,1],X)

≤ 2

∥∥∥∥∥

n∑

j=1

rjbjxj

∥∥∥∥∥
Lp([0,1],X)

for all n ∈ N, all (aj)j=1,...,n, (bj)j=1,...,n ⊂ C with |aj| ≤ |bj|, and all
(xj)j=1,...,n ⊂ X.

Remark 3.6. The proof of the following results can be found in [6].

(i) If T ⊂ L(X, Y ) is R-bounded for one p ∈ [1,∞), then we have
an estimate as (2) for all p ∈ [1,∞). The R-bounds can be

estimated as [C
(K)
p ]−2R1(T ) ≤ Rp(T ) ≤ [C

(K)
p ]2R1(T ).

(ii) If T ,S ⊂ L(X, Y ) are R-bounded, then T + S := {T + S : T ∈
T , S ∈ S} is also R-bounded with Rp(T +S) ≤ Rp(R)+Rp(S).

(iii) For two given R-bounded families T1 ⊂ L(Z, Y ) and T2 ⊂
L(X,Z) we obtain the R-boundedness of T1T2 := {T1T2 : Tk ∈
Tk, k = 1, 2} ⊂ L(X, Y ) with Rp(T1T2) ≤ Rp(T1) · Rp(T2).

(iv) If T ⊂ L(X, Y ) is R-bounded, then T is also uniformly bounded.
The converse, in general, is only true if X and Y are both
Hilbert spaces.

Remark 3.7. For a given C > 0 we have the equivalence of the fol-
lowing three statements:

(i) For all m ∈ N and (Tk)k=1,...,m ⊂ T we have that

‖Tm‖L(Rad
m
p (X),Rad

m
p (Y )) ≤ C,

where Tm is defined by

Tm : Radm
p (X) → Radm

p (Y ),
m∑

k=1

rkxk 7→
m∑

k=1

rkTkxk.

(ii) For all (Tk)k∈N ⊂ T the operator

T : Radp(X) −→ Radp(Y ),
∞∑

k=1

rkxk 7→
∞∑

k=1

rkTkxk

is well-defined and ‖T‖L(Radp(X),Radp(Y )) ≤ C.
(iii) T ⊂ L(X, Y ) is R-bounded with Rp(T ) ≤ C.

Proof. This is obtained as an easy consequence of Remark 3.3. �
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Thanks to Remark 3.7 the behavior of R-boundedness under inter-
polation is completely reduced to the investigation of the interpolation
of the Rademacher spaces. Having this in mind, we next analyze the
corresponding properties of these spaces. To this end, the existence of
projections onto Radm

p (X) and Radp(X) will turn out to be helpful.
For the space Radm

p (X) we easily obtain the following result:

Theorem 3.8. Let X be a Banach space. Then the operator

RX
m : Lp([0, 1], X) −→ Lp([0, 1], X), f 7→

m∑

k=1

rk

∫ 1

0

rk(u)f(u)du

is continuous and even a projection onto Radm
p (X).

The existence of a projection onto Radp(X) is a more involved issue.
The study of this problem requires some knowledge on the geometry
of Banach spaces.

Definition 3.9. A Banach space X is called K-convex if

RX : Lp([0, 1], X) → Lp([0, 1], X), f 7→
∞∑

k=1

rk

(∫ 1

0

rk(u)f(u)du

)

defines a bounded operator. In this case the operator RX is a projection
onto Radp(X).

Remark 3.10. (i) One can show that K-convexity is equivalent to
’B-convexity’ and ’non-trivial type’, see for example in [9].

(ii) It can be shown directly that K-convexity preserves under inter-
polation by Lp-compatible interpolation functors. See for exam-
ple in [13, Proposition 5.1] for the real and complex interpola-
tion.

(iii) Under use of Fubini’s Theorem it is easy to show that Lp(Ω, X)
is K-convex if X is K-convex. In particular this yields the K-
convexity of Radp(X) and Radm

p (X) since they are closed sub-
spaces of Lp([0, 1], X).

Another important property of a Banach space X is the continuity
of the Hilbert transform H = F−1[iξ/|ξ|]F on Lp(R, X). If this is
satisfied, X is said to be of class HT (or equivalently UMD), cf. [3,
Theorem 4.4.1]. Here we just cite the following result which is obtained
as a corollary of [18, Remark 3.1.] and [9, Section 13].

Theorem 3.11. Let X be a Banach space of class HT . Then X is
K-convex.
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3.2. Interpolation of Radp(X) and Radm
p (X). To obtain a suitable

characterization of the interpolation spaces (Radp(X),Radp(Y ))θ,p and
[Radp(X),Radp(Y )]θ we will apply the abstract isomorphism result de-
rived in [20, 1.2.4]. The idea to use this isomorphism result is taken
from [12, Prop. 3.7].

Definition 3.12. Let X and Y be Banach spaces. The operator R ∈
L(X, Y ) is said to be a retraction if there exists an S ∈ L(Y,X) with
RS = idY . In this case S is said to be the coretraction belonging to R.

Remark 3.13. Let X be a Banach space and U ⊂ X be a closed
subspace with the standard subspace topology. If there exists a projection
P ∈ L(X) with range(P ) = U then it is easy to see, that P is a
retraction with coretraction S : U → X, x 7→ x.

Theorem 3.14 (see [20], Theorem 1.2.4). Let {A0, A1}, {B0, B1} be
two interpolation couples and let

R ∈ L({A0, A1}, {B0, B1}), S ∈ L({B0, B1}, {A0, A1})

such that R|Ak
∈ L(Ak, Bk) and S|Bk

∈ L(Bk, Ak) are retraction and
coretraction (k = 0, 1). Then for an arbitrary interpolation functor
F we have that (SR)|F({A0,A1}) ∈ L(F({A0, A1})) is a projection onto
W := range((SR)|F({A0,A1})) ⊂ F({A0, A1}), where the topology on W
is given by the subspace topology relative to F({A0, A1}). In particular,
the mapping S|F({B0,B1}) yields an isomorphism between F({B0, B1})
and W .

Proposition 3.15. Assume {X0, X1} to be an interpolation couple of
K-convex Banach spaces. For p ∈ (1,∞) and an Lp-compatible inter-
polation functor F of type h with Ch ≥ 1 we have

F({Radp(X0),Radp(X1)}) = Radp(F({X0, X1}),

where the equivalence of the norms is given by

1

ChC2

‖f‖Radp(F({X0,X1})) ≤ ‖f‖F({Radp(X0),Radp(X1)})

≤
Ch

C1

· h
(
‖RX0‖, ‖RX1‖

)
‖f‖Radp(F({X0,X1})),

the constants C1, C2 > 0 come from the assumed equivalence

C1‖ · ‖F({Lp([0,1],X0),Lp([0,1],X1)}) ≤ ‖ · ‖Lp([0,1],F({X0,X1}))

≤ C2‖ · ‖F({Lp([0,1],X0),Lp([0,1],X1)}).
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Proof. The aim is, of course, to apply Theorem 3.14. Therefore we
define the spaces Ak := Lp([0, 1], Xk) and Bk := Radp(Xk). Let Rk :=
RXk ∈ L(Lp([0, 1], Xk),Radp(Xk)) be the projection given through K-
convexity and let Sk ∈ L(Radp(Xk), L

p([0, 1], Xk)) be the embedding
that exists according to Remark 3.13 and Remark 3.3 (ii). On E :=
Lp([0, 1], X0 +X1) we define the operators

R : (A0 + A1) → (B0 + B1), f 7→ [E]

∞∑

k=1

rk

∫ 1

0

rk(u)f(u)du[X0+X1]

S : (B0 + B1) → (A0 + A1), g 7→ g.

It can be easily seen that R and S are well-defined and that we have
R|Lp([0,1],Xk) = Rk and S|Radp(Xk) = Sk. It is also clear that S is norm
preserving. Thus we can apply Theorem 3.14. At first this implies that

W := range
(
(SR)|F({A0,A1})

)
= range

(
R|F({Lp([0,1],X0),Lp([0,1],X1)})

)

is well-defined. Due to Remark 3.10 (ii) we see that F({X0, X1})
is also K-convex. Therefore we obtain the existence of the projec-
tion RF({X0,X1}) onto Radp(F({X0, X1})). Employing the embedding
Lp([0, 1],F({X0, X1})) →֒ E and the Lp-compatibility of F we obtain

W = range
(
R|Lp([0,1],F({X0,X1}))

)

= range
(
RF({X0,X1})

)
= Radp(F({X0, X1})).

So far these equalities are only equalities of sets by the fact that on W
we have the relative topology with respect to the interpolation space
F({Lp([0, 1], X0), L

p([0, 1], X1)}). However, the Lp-compatibility of F
yields the topological equality of W and Radp(F({X0, X1})). So we
have F({Radp(X0),Radp(X1)}) = W thanks to Theorem 3.14.

It remains to determine the constants which are involved in the
equivalence of the norms. The Lp-compatibility of F and the definition
of ‖ · ‖Radp(F({X0,X1})) yield

‖f‖Radp(F({X0,X1})) = ‖f‖Lp([0,1],F({X0,X1}))

≤ C2‖f‖F({Lp([0,1],X0),Lp([0,1],X1)})

≤ C2Ch‖f‖F({Radp(X0),Radp(X1)}) (f ∈ W ).

In the last estimate we used the fact that the Sk’s are norm preserving.
In view of R|F({A0,A1})f = f for all f ∈ W and again by the Lp-
compatibility we obtain

‖f‖F({Radp(X0),Radp(X1)})

≤ Ch · h (‖R0‖, ‖R1‖) · ‖f‖F({Lp([0,1],X0),Lp([0,1],X1)})
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≤
Ch

C1

h (‖R0‖, ‖R1‖) · ‖f‖Lp([0,1],F({X0,X1})) (f ∈ W ).

This implies the claimed equivalence of the norms and therefore the
assertion is proved. �

Completely analogous we can obtain the following interpolation re-
sult for the space Radm

p (X).

Proposition 3.16. Assume {X0, X1} to be an interpolation couple,
p ∈ (1,∞), and m ∈ N. If F is an Lp-compatible interpolation functor
of type h with Ch ≥ 1, then we have

F({Radm
p (X0),Radm

p (X1)}) = Radm
p (F({X0, X1}),

where the equivalence of the norms is given by

1

ChC2

‖f‖Rad
m
p (F({X0,X1})) ≤ ‖f‖F({Rad

m
p (X0),Rad

m
p (X1)})

≤
Ch

C1

h
(
‖RX0

m ‖, ‖RX1
m ‖
)
‖f‖Rad

m
p (F({X0,X1})).

The constants C1, C2 > 0 are the same as in Proposition 3.15.

Corollary 3.17. The results of Proposition 3.15 and Proposition 3.16
in particular hold for the real and the complex interpolation functors.
Let {X0, X1} be an interpolation couple of K-convex Banach spaces.
Then we have

(Radp(X0),Radp(X1))θ,p = Radp((X0, X1)θ,p),

[Radp(X0),Radp(X1)]θ = Radp([X0, X1]θ)

for p ∈ (1,∞) and 0 < θ < 1.

3.3. R-boundedness and interpolation.

Definition 3.18. Let {X0, X1} and {Y0, Y1} be interpolation couples
and T ⊂ L({X0, X1}, {Y0, Y1}). Then we define

T|Xk
:=
{
T|Xk

: T ∈ T
}
⊂ L(Xk, Yk)

for k = 0, 1.

Notation: In the following we set Lp(X) := Lp([0, 1], X).

Theorem 3.19. Let {X0, X1} and {Y0, Y1} be interpolation couples
of K-convex Banach spaces. Assume that T ⊂ L({X0, X1}, {Y0, Y1})
and that F is an Lp-compatible interpolation functor of type h with
Ch ≥ 1 for p ∈ (1,∞). If T|Xk

⊂ L(Xk, Yk) is R-bounded with R-bound
Rp(T|Xk

) for k = 0, 1 then

T|F({X0,X1}) ⊂ L(F({X0, X1}),F({Y0, Y1}))
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is also R-bounded with

Rp

(
T|F({X0,X1})

)
≤ C0 · h

(
‖RX0‖, ‖RX1‖

)
· h
(
Rp(T|X0),Rp(T|X1)

)
,

where C0 :=
C2C3

h

C1
and where C1, C2 > 0 come from Proposition 3.15.

Proof. We use the characterization of R-boundedness given in Remark
3.7 (ii). Let (Tj)j∈N ⊂ T be an arbitrary series of operators. We have
to show that

T : Radp(F({X0, X1})) −→ Radp(F({Y0, Y1})),

[Lp(F({X0,X1}))]

∞∑

j=1

rjxj 7→ [Lp(F({Y0,Y1}))]

∞∑

j=1

rjTjxj

is a well-defined operator satisfying

‖T‖L(Radp(F({X0,X1})),Radp(F{(Y0,Y1)}))

≤ C0 · h
(
‖RX0‖, ‖RX1‖

)
· h
(
Rp(T|X0),Rp(T|X1)

)

with C0 as given in the statement of the theorem. We define the oper-
ator

S : Radp(X0) + Radp(X1) → Radp(Y0) + Radp(Y1)

f = f0 + f1 7→ T0f0 + T1f1,

with

Tk : Radp(Xk) −→ Radp(Yk), [Lp(Xk)]

∞∑

j=1

rjxj 7→[Lp(Yk)]

∞∑

j=1

rjTjxj.

So we get

S̃ := S|F({Radp(X0),Radp(X1)})

∈ L(F({Radp(X0),Radp(X1)}),F({Radp(Y0),Radp(Y1)}))

with

‖S̃‖L(F({Radp(X0),Radp(X1)}),F({Radp(Y0),Radp(Y1)}))

≤ Ch · h (‖T0‖, ‖T1‖)

≤ Ch · h
(
Rp(T|X0),Rp(T|X1)

)
.

In the last estimate we already used that ‖Tk‖L(Radp(Xk),Radp(Yk)) ≤
Rp(T|Xk

) for k = 0, 1. Hence we have

‖S̃‖L(Radp(F({X0,X1})),Radp(F({Y0,Y1})))

≤

[
C2C

3
h

C1

h
(
‖RX0‖, ‖RX1‖

)]
· h
(
Rp(T|X0),Rp(T|X1)

)
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by Proposition 3.15. Pick

f :=[Lp(F(X0,X1))]

∞∑

j=1

rjxj ∈ Radp(F({X0, X1})).

Then we have f =[Lp(X0+X1)]

∑∞
j=1 rjxj ∈ Radp(X0 +X1). In view of

Radp(F({X0, X1})) = F({Radp(X0),Radp(X1)})

⊂ Radp(X0) + Radp(X1)

we also have

f = f0 + f1 = [Lp(X0)]

∞∑

j=1

rj(xj)0 +[Lp(X1)]

∞∑

j=1

rj(xj)1

= [Lp(X0+X1)]

∞∑

j=1

rj[(xj)0 + (xj)1] ∈ Radp(X0 +X1)

with xj = (xj)0 + (xj)1 and (xj)k ∈ Xk (k = 0, 1). Furthermore, we
obtain

S̃f = T0f0 + T1f1 = [Lp(Y0)]

∞∑

j=1

rjTj(xj)0 +[Lp(Y1)]

∞∑

j=1

rjTj(xj)1

= [Lp(F({Y0,Y1}))]

∞∑

j=1

rjTj[(xj)0 + (xj)1︸ ︷︷ ︸
=xj

]

= Tf.

This yields T = S̃ which completes the proof. �

Corollary 3.20. Let {X0, X1} and {Y0, Y1} be interpolation couples of
K-convex Banach spaces. For given T ⊂ L({X0, X1}, {Y0, Y1}), p ∈
(1,∞), and 0 < θ < 1 we have:
If T|Xk

⊂ L(Xk, Yk) is R-bounded with R-bound Rp(T|Xk
), k = 0, 1,

then

T|(X0,X1)θ,p ⊂ L((X0, X1)θ,p, (Y0, Y1)θ,p),

T|[X0,X1]θ ⊂ L([X0, X1]θ, [Y0, Y1]θ)

are also R-bounded with

Rp

(
T|(X0,X1)θ,p

)
≤ C · [Rp(T|X0)]

1−θ[Rp(T|X1)]
θ,

Rp(T|[X0,X1]θ) ≤ C ′ · [Rp(T|X0)]
1−θ[Rp(T|X1)]

θ,

and with C :=
C

(2)
p

C
(1)
p

‖RX0‖1−θ‖RX1‖θ and C ′ := ‖RX0‖1−θ‖RX1‖θ. The

constants C
(k)
p are the same as in (2).
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3.4. Maximal Lp-regularity, R-sectoriality, and interpolation.

Definition 3.21. A linear densely defined operator A :D(A) ⊂ X → X
is called sectorial, if there exists a θ ∈ (0, π] such that Σθ ⊂ ρ(A) and

sup
λ∈Σθ

‖λ(λ− A)−1‖L(X) < ∞.

Here we define Σθ := {z ∈ C \ {0} : |arg(z)| < θ} as an open sector.
The number

ϕ(A) := sup

{
θ ∈ (0, π] : Σθ ⊂ ρ(A) ∧ sup

λ∈Σθ

‖λ(λ− A)−1‖L(X) < ∞

}

is called spectral angle of A.

Definition 3.22. A linear densely defined operator A :D(A) ⊂ X → X
is called R-sectorial, if there exists a θ ∈ (0, π] such that Σθ ⊂ ρ(A)
and such that

{λ(λ− A)−1 : λ ∈ Σθ} ⊂ L(X)

is R-bounded. The number ϕR(A) is defined as the supremum of all
angles θ ∈ (0, π] such that we have Σθ ⊂ ρ(A) and the R-boundedness
of {λ(λ− A)−1 : λ ∈ Σθ}.

Observe that in view of Remark 3.6 R-sectorality implies sectoriality
and we always have ϕR(A) ≥ ϕ(A). We can now apply the results
obtained in the previous sections to conclude that R-sectoriality is
preserved under interpolation.

Theorem 3.23. Let p ∈ (1,∞) and F be an arbitrary Lp-compatible
interpolation functor of type h. Let X0, X1 be K-convex Banach spaces
such that X0 ∩X1 →֒d F({X0, X1}). Furthermore, let

A0 : D(A1) ⊂ X0 → X0,

A1 : D(A2) ⊂ X1 → X1,

be linear operators with the compatibility conditions A0u = A1u for all
u ∈ D(A0) ∩D(A1) →֒d X0 ∩X1 and

(3) (λ− A0)
−1u = (λ− A1)

−1u, λ ∈ ρ(A0) ∩ ρ(A1), u ∈ X0 ∩X1.

If A0 and A1 are R-sectorial, then the operator

B : D(B) ⊂ F({X0, X1}) → F({X0, X1}),

D(B) := F({D(A0), D(A1)})

with Bu := A0u0 + A1u1 for u = u0 + u1 ∈ D(B) →֒ D(A0) + D(A1)
is also R-sectorial. Note, that D(Ak) is equipped with the graph norm
‖ · ‖Ak

. Moreover, we have ϕR(B) ≥ min
k=0,1

ϕR(Ak).
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Proof. The operator B is densely defined in view of

D(A0) ∩D(A1) →֒d X0 ∩X1 →֒d F({X0, X1})

and since

D(A0) ∩D(A1) →֒ F({D(A0), D(A1)}) →֒ F({X0, X1}).

First we consider the relation of the resolvents of A0, A1, and B. Let
λ ∈ ρ(A0) ∩ ρ(A1) then we can define

Rλ : X0 +X1 → D(A0) +D(A1),

x0 + x1 7→ (λ− A0)
−1x0 + (λ− A1)

−1x1

due to (3) and get

[Rλ]Xk
= (λ− Ak)

−1,

[Rλ]|F({X0,X1}) ∈ L(F({X0, X1}),F({D(A0), D(A1)})).

With this we can prove λ ∈ ρ(B) and (λ−B)−1 = [Rλ]|F({X0,X1}). For
0 < θ < min

k=1,2
ϕR(Ak) we have Σθ ⊂ ρ(A1) ∩ ρ(A2) and therefore also

Σθ ⊂ ρ(B).
By assumption the families

T0 := {[Rλ]X0 : λ ∈ Σθ} ⊂ L(X0),

T1 := {[Rλ]X1 : λ ∈ Σθ} ⊂ L(X1)

are R-bounded. Thus Theorem 3.19 yields the R-boundedness of

{λ(λ−B)−1 : λ ∈ Σθ} =
{
[Rλ]|F({X0,X1}) : λ ∈ Σθ

}
⊂ L(F({X, Y })).

This proves the R-sectoriality of B with ϕR(B) ≥ min
k=1,2

ϕR(Ak). �

Remark 3.24. Let {X0, X1} be a couple of Banach space of class
HT (cf. Theorem 3.11). Then the characterization of maximal Lp-
regularity by R-sectoriality with R-angle bigger than π

2
allows for corre-

sponding results on maximal Lp-regularity. The characterization men-
tioned above can e.g. be found in [15].

Remark 3.25. The results of Theorem 3.23 hold for interpolation
functors of the real and the complex method, by the fact that they are Lp-
compatible and since we always have X0∩X1 →֒d F({X0, X1}). A proof
of the density of the last embedding can be found in [20, 1.6.2,1.9.3], for
example.
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4. Property (α)

Our first aim in this section is to interpret property(α) as a special
form of R-boundedness. With the help of this interpretation we will
show that also property(α) carries over to interpolation spaces provided
that the interpolated Banach spaces are K-convex.

4.1. Fundamental facts about property(α). First we recall the def-
inition of property(α) from [15, Section 4.9]. This property is important
in the context of an operator valued Fourier-multiplier theorem proved
by L. Weis, cf. [15, Section 5.2 or Theorem 4.13]. Another application
can be found in [15, Theorem 12.8] and [14, Theorem 5.3], where the
authors proved, that the bounded H∞-calculus is equivalent to the a
priori stronger property of an R-bounded H∞-calculus, if the underly-
ing Banach space has property(α). The H∞-calculus is a powerful tool
in the treatment of parabolic and elliptic partial differential equations.
For more information on this topic we refer to [6] and [10], for instance.

Definition 4.1. A Banach space X has property (α) if there exists a
constant C > 0 such that for all n ∈ N, (αij)i,j=1,...,n ⊂ C, |αij| ≤ 1,
and all (xij)i,j=1,...,n ⊂ X we have that

∫ 1

0

∫ 1

0

∥∥∥∥∥

n∑

i,j=1

ri(u)rj(v)αijxij

∥∥∥∥∥
X

dudv

≤ C

∫ 1

0

∫ 1

0

∥∥∥∥∥

n∑

i,j=1

ri(u)rj(v)xij

∥∥∥∥∥
X

dudv.(4)

In this case we set Cα := min{C > 0 : estimate (4) holds}.

By virtue of the following Lemma 4.3 (ii) with p = 2 and the orthog-
onality of the Rademacher functions we see that Hilbert spaces have
property(α). Let X be a Banach space with property(α) then every
closed subspace Y ⊂ X has property(α). The cartesian product of Ba-
nach spaces with property(α) has also property(α). These results can
be use to show that the Sobolev space Wm,p(Ω, X) has property(α) for
1 ≤ p < ∞ and m ∈ N0 if X possess property(α). This follows easily
from the theorem of Tonelli for m = 0 and the fact that Wm,p(Ω, X)
(m > 0) is isometric isomorphic to a closed subspace of (Lp(Ω, X))N .

Definition 4.2. We set

Tm
α : Radm

p (X) → Radm
p (X)

(xi)i=1,...,m 7→ (αixi)i=1,...,m
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for m ∈ N and α ∈ C
m. Additionally, we define the family

T m := {Tm
α : α ∈ C

m, |αi| ≤ 1, i = 1, . . . ,m}.

Lemma 4.3. Let X be a Banach space. We have the following equiv-
alences:

(i) X has property (α).
(ii) (p-independence) For all p ∈ [1,∞) there exists a constant C̃ >

0 such that for all n ∈ N,(αij)i,j=1,...,n ⊂ C, |αij| ≤ 1 and all
(xij)i,j=1,...,n ⊂ X we have



∫ 1

0

∫ 1

0

∥∥∥∥∥

n∑

i,j=1

ri(u)rj(v)αijxij

∥∥∥∥∥

p

X

dudv




1/p

≤ C̃



∫ 1

0

∫ 1

0

∥∥∥∥∥

n∑

i,j=1

ri(u)rj(v)xij

∥∥∥∥∥

p

X

dudv




1/p

.(5)

(iii) For all p ∈ [1,∞) there exists a C > 0 such that we have
Rp(T

m) ≤ C in L(Radm
p (X)) for all m ∈ N.

Proof. The equivalence of (i) and (ii) is an immediate consequence of
the inequality of Kahane (Theorem 3.4). In fact, it yields

[
C(K)

p

]−2
‖(ξk)k‖Rad

m
1 (Rad

m
1 (X)) ≤ ‖(ξk)k‖Rad

m
p (Rad

m
p (X))

≤
[
C(K)

p

]2
‖(ξk)k‖Rad

m
1 (Rad

m
1 (X))

for (ξk)k ∈ Radm
1 (Radm

1 (X)).
“(ii)⇒(iii)”: Here we can use the characterization of R-boundedness

by Remark 3.7 (i). For this purpose, we set Ym := Radm
p (X) (m ∈ N),

choose arbitrary
(
Tm
α(j)

)
j∈N

⊂ T m, and define the operator

Tn : Radn
p (Ym) → Radn

p (Ym), (xj)j=1,...,n 7→
(
Tm
α(j)xj

)
j=1,...,n

with α(j) = (αij)i=1,...,m ∈ C
m, xj = (xij)i=1,...,m ∈ Ym. Under use of (ii)

we get

‖Tn(xj)j‖Rad
n
p (Ym) ≤ C̃‖(xj)j‖Rad

n
p (Ym)

for all n,m ∈ N and (xj)j ∈ Radn
p (Ym). So, we have ‖Tn‖L(Rad

n
p (Ym)) ≤

C̃ for all n,m ∈ N. Now Remark 3.7 implies (iii).
“(iii)⇒(ii)”: Can be done in an analogous way. �
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4.2. Property (α) and interpolation.

Lemma 4.4. Let X be a K-convex Banach space and let Y ⊂ X be a
Banach space such that ‖.‖Y = ‖.‖X on Y . Then we have

(i) ‖RX
m‖L(Lp([0,1],X)) ≤ 2‖RX‖L(Lp([0,1],X)), m ∈ N,

(ii) ‖RY ‖L(Lp([0,1],Y )) ≤ ‖RX‖L(Lp([0,1],X))

for all p ∈ (1,∞).

Proof. This follows easily by the contraction principle of Kahane (The-
orem 3.5). �

Theorem 4.5. Let {X, Y } be an interpolation couple of K-convex Ba-
nach spaces, p ∈ (1,∞), and let F be an Lp-compatible interpola-
tion functor of type h. If X and Y have property (α) with constants
CX

α > 0 and CY
α > 0, then also the interpolation space F({X, Y }) has

property(α) with

CF({X,Y })
α ≤ M0 · h

(
M1C

X
α ,M1C

Y
α

)

for some constants M0,M1 > 0.

Proof. The family T m := {Tm
α : α ∈ C

m, |αi| ≤ 1, i = 1, . . . ,m} can
easily be interpreted as an subset of L({Radm

p (X),Radm
p (Y )}). Then

we define T m
Z := T m

|Rad
m
p (Z) for Z ∈ {X, Y,F({X, Y })}. Thanks to

Lemma 4.3 we already know, that the families T m
X ⊂ L(Radm

p (X)) and
T m
Y ⊂ L(Radm

p (Y )) are R-bounded uniformly in m ∈ N with

Rp(T
m
X ) ≤

[
C(K)

p

]4
CX

α and Rp(T
m
Y ) ≤

[
C(K)

p

]4
CY

α .

Therefore we obtain the R-boundedness of

[T m]|F({Rad
m
p (X),Rad

m
p (Y )}) ⊂ L(F({Radm

p (X),Radm
p (Y )}))

by Theorem 3.19 and Remark 3.10 (iii). Additionally, this leads to an
estimate of the R-bound

Rp

(
[T m]|F({Rad

m
p (X),Rad

m
p (Y )})

)
≤ C(m) · h (Rp(T

m
X ),Rp(T

m
Y ))

with C(m) :=
C2C3

h

C1
·h
(
‖RRad

m
p (X)‖, ‖RRad

m
p (Y )‖

)
. Proposition 3.16 yields

[T m]|F({Rad
m
p (X),Rad

m
p (Y )}) = [T m]|Rad

m
p (F({X,Y }))

⊂ L(Radm
p (F({X, Y }))).

Thus we can consider the R-bound of T m in L(Radm
p (F({X, Y }))) and

obtain

Rp

(
[T m]|Rad

m
p (F({X,Y }))

)
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≤

[
C2C

2
h

C1

h
(
‖RX

m‖, ‖R
Y
m‖
)]

· Rp

(
[T m]|F({Rad

m
p (X),Rad

m
p (Y )})

)

≤

[
C2C

2
h

C1

h
(
2‖RX‖, 2‖RY ‖

)]

︸ ︷︷ ︸
=:C′

·Rp

(
[T m]|F({Rad

m
p (X),Rad

m
p (Y )})

)

by Lemma 4.4 (i). Due to Radm
p (X) ⊂ Radp(X), Radm

p (Y ) ⊂ Radp(Y ),
Remark 3.3 and Lemma 4.4 (ii) we have

‖RRad
m
p (Z)‖L(Lp([0,1],Rad

m
p (Z))) ≤ ‖RRadp(Z)‖L(Lp([0,1],Radp(Z)))

< ∞ (m ∈ N)

for Z ∈ {X, Y }. Hence there exists an upper bound for (C(m))m∈N:

C(m) =
C2C

3
h

C1

h
(
‖RRad

m
p (X)‖, ‖RRad

m
p (Y )‖

)

≤
C2C

3
h

C1

h
(
‖RRadp(X)‖, ‖RRadp(Y )‖

)
=: C ′′ (m ∈ N).

Summarizing results in

Rp([T
m]|Rad

m
p (F({X,Y }))) ≤ M0 · h

(
M1C

X
α ,M1C

Y
α

)

with M0 := C ′C ′′
[
C

(K)
p

]4
and M1 :=

[
C

(K)
p

]4
. Due to Lemma 4.3 the

assertion follows by the proved R-boundedness in Radm
p (F({X, Y })).

�

Corollary 4.6. Let {X, Y } be an interpolation couple of K-convex Ba-
nach spaces. If X and Y have property (α) with CX

α > 0 and CY
α > 0,

then the real and complex interpolation spaces (X, Y )θ,p and [X, Y ]θ
also have property(α) for p ∈ (1,∞), θ ∈ (0, 1). In this case we have

C
(X,Y )θ,p
α ≤ M ′

[
CX

α

]1−θ [
CY

α

]θ
,

C [X,Y ]θ
α ≤ M ′′

[
CX

α

]1−θ [
CY

α

]θ

for some constants M ′,M ′′ > 0.

5. Application to parabolic systems

In this chapter we consider realizations of parabolic differential equa-
tion systems in higher order spaces over Rn. For example we define the
Laplace operator on Sobolev spaces as

Ak,p : D(Ak,p) ⊂ W k,p(Rn) → W k,p(Rn), f 7→ ∆f,

with D(Ak,p) := W k+2,p(Rn) (k ∈ N0). Similarly, we can define re-
alizations on interpolation spaces such as Besov and Bessel-potential



20 MARIO KAIP AND JÜRGEN SAAL

spaces. In the following we show that the realizations of parabolic sys-
tems on Sobolev spaces are R-sectorial. The case k = 0 is proved in
[15]. Here we generalize this result to the case k ∈ N. Basically we
follow the proof given in [15] for the case k = 0. However, due to the
lack of differentiability of some cut-off functions used in [15], here we
are forced to adapt the localization procedure at some places suitably.
Applying the interpolation results of the previous chapters, we then
will obtain R-sectoriality for realizations on certain scales of interpo-
lation spaces. To handle the parabolic problems under consideration
we make use of Fourier multiplier methods. For this purpose and for
the definition of Bessel-potential-spaces, here we recall the notion of a
Fourier multiplier.

Definition 5.1. Let X, Y be Banach spaces, 1 < p < ∞, and
m ∈ L∞(Rn, L(X, Y )). Then we define

Tm : S (Rn, X) → L∞(Rn, Y )

f 7→ F
−1mFf.

The symbol m is said to be an Lp-Fourier-multiplier, if there exists a
Cp > 0 such that

(i) Tmf ∈ Lp(Rn, Y ) for all f ∈ S (Rn, X),
(ii) ‖Tmf‖Lp(Rn,Y ) ≤ Cp‖f‖Lp(Rn,X) for all f ∈ S (Rn, X).

In this case there exists a unique continuous extension of Tm from
Lp(Rn, X) to Lp(Rn, Y ) which, for simplicity, is also denoted by Tm.

Remark 5.2. Let X be a Banach space of class HT and k ∈ N. We
define 〈ξ〉 := (1 + |ξ|2)1/2 and

Λ−k : L
p(Rn, X) → W k,p(Rn, X); f 7→ T〈ξ〉−k

idX
f

Λk : W
k,p(Rn, X) → Lp(Rn, X); f 7→ F

−1
[
〈ξ〉k idX

]
Ff.

By standard arguments we get

[Λ−k]|W j,p(Rn,X) ∈ L(W j,p(Rn, X),W j+k,p(Rn, X))

for j ∈ N0 and (Λ−k)
−1 = Λk.

5.1. Besov- and Bessel-potential-spaces. Next we recall some ba-
sic facts on Besov- and Bessel-potential spaces, which can be found e.g.
in [1, 7.30-7.34] and [20, 2.3-2.4]. The Banach space-valued case can
be found in [4].

Definition and Remark 5.3. Let X be a Banach space and 1 <
p, q < ∞. Then
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(i) Bs
p,q(R

n, X) := (Lp(Rn, X),W k,p(Rn, X)) s
k
,q with s ∈ (0,∞) ∩

[k − 1, k) and equipped with the interpolation norm is called
Besov space,

(ii) Hs,p(Rn, X) := {u ∈ S ′(Rn, X) : F−1 〈ξ〉s Fu ∈ Lp(Rn, X)}
with s ∈ R≥0 is called Bessel-potential space, where the norm is
given by ‖u‖Hs,p(Rn,X) := ‖F−1 〈ξ〉s Fu‖Lp(Rn,X).

Note that we also have the following representations.

(iii) Let m, s, j ∈ N0 with 0 ≤ m < s < j and λ ∈ (0, 1) such that
s = (1− λ)m+ λj. Then we have

Bs
p,q(R

n, X) = (Wm,p(Rn, X),W j,p(Rn, X))λ,q.

(iv) Let X be of class HT and m, j ∈ N0 with 0 ≤ m < s < j and
s = (1− θ)m+ θj for a θ ∈ (0, 1). Then we have:

Hs,p(Rn, X) = [Wm,p(Rn, X),W j,p(Rn, X)]θ

W k,p(Rn, X) = Hk,p(Rn, X), (k ∈ N0).

Remark 5.4. Let s ∈ R>0, 1 < p, q < ∞, and X be a Banach space
of class HT .

(i) The spaces Bs
p,q(R

n, X) and Hs,p(Rn, X) are of class HT , too.
(ii) If X has property(α), then Bs

p,q(R
n, X) and Hs,p(Rn, X) have

property(α), too.

The last statement can be seen easily by a retraction argument.

5.2. Parabolic systems of differential equations. In the following
we always assume that 1 < p < ∞. Furthermore, we set

A(x,D) :=
∑

|α|≤m

aα(x)D
α,

for aα : Rn → C
N×N , m,N ∈ N, and for Dα := (−i)|α|∂α. We define

the “W k,p-realization” of the formal differential operator A(x,D) by

Ak,p : D(Ak,p) ⊂ W k,p(Rn,CN ) → W k,p(Rn,CN)

with D(Ak,p) := W k+m,p(Rn,CN ) and Ak,pf := A(x,D)f for all f ∈
W k+m,p(Rn,CN). For an interpolation functor F the “(F , k, p)-realiza-
tion” of A(x,D) is defined by

AF ,k,p : D(AF ,k,p) ⊂ F(Lp,W k,p) → F(Lp,W k,p)(6)

with

F(Lp,W k,p) := F({Lp(Rn,CN),W k,p(Rn,CN)}),

D(AF ,k,p) := F({Wm,p(Rn,CN),W k+m,p(Rn,CN)})
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and AF ,k,pg := A(x,D)g for all g ∈ D(AF ,k,p). In particular, we define
the “Lp-realization” of A(x,D) by Ap := A0,p.

In order to obtain well-defined operators we need to assume some
regularity for the coefficients. For the well-definedness of the W k,p-
realization it is sufficient to assume that

aα ∈ W k,p∞(Rn,CN×N ), p∞ :=

{
p, kp > n,

∞, otherwise
(7)

for all α ∈ N
n
0 with |α| ≤ m. Here we define W k,∞(Rn,CN×N) :=

{f ∈ L∞(Rn,CN×N) : Dβf ∈ L∞(Rn,CN×N ), |β| ≤ k}. As in [1,
Theorem 4.39] the Sobolev space W k,p has the algebra property in case
of kp > n. Let K∗ > 0 such that

‖uv‖W k,p(Rn,CN ) ≤ K∗‖u‖W k,p∞ (Rn,CN )‖v‖W k,p(Rn,CN )

for all u ∈ W k,p∞(Rn,CN) and v ∈ W k,p(Rn,CN ).

Remark 5.5. Let s ∈ (0,∞) ∩ [k − 1, k), k ∈ N, and 1 < q < ∞. If
F is the real or the complex interpolation functor, AF ,k,p represents the
Besov or Bessel-potential realization of A(x,D):

(i) For “F = (., .) s
k
,q” we have

AB
s,p,q : D(AB

s,p,q) ⊂ Bs
p,q(R

n,CN ) → Bs
p,q(R

n,CN),

D(AB
s,p,q) = Bs+m

p,q (Rn,CN ), AB
s,p,q := AF ,k,p.

(ii) For “F = [., .] s
k
” we have

AH
s,p : D(AH

s,p) ⊂ Hs,p(Rn,CN ) → Hs,p(Rn,CN ),

D(AH
s,p) = Hs+m,p(Rn,CN), AH

s,p := AF ,k,p.

Remark 5.6. Our approach to obtain R-sectoriality for Besov- and
Bessel-potential space realizations is a sort of ’decent method’. The
regularity assumption W k,p∞ for the coefficients, of course, is not op-
timal for the interpolated operators. On the other hand, notice that by
a standard perturbation argument the regularity for the coefficients of
the interpolated operators can always be reduced to close to optimal. In
[8, Section 5], for instance, this argument is used for a reduction from
smooth to Hölder continuous coefficients. However, optimal conditions
on the coefficients is none of our purposes here. Therefore we will not
carry out this argument in what follows.

Definition 5.7. The symbol of A(x,D) is defined by

a(x, ξ) :=
∑

|α|≤m

aα(x)ξ
α (x, ξ ∈ R

n).
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The principal part of A(x,D) is defined as

A0(x,D) :=
∑

|α|=m

aα(x)D
α.

The principal symbol of A(x,D) is then given by the symbol of the
principal part, i.e. by a0(x, ξ) :=

∑
|α|=m aα(x)ξ

α for (x, ξ) ∈ R
n × R

n.

Definition 5.8. Let A(x,D) be the formal differential operator given
above.

(i) The operator A(x,D) is said to be parameter-elliptic in Σθ, if
there exists a constant CP > 0 such that we have

| det(a0(x, ξ)− λ)| ≥ CP (|ξ|
m + |λ|)N

for all x ∈ R
n and (ξ, λ) ∈ (Rn × Σθ) \ {0}.

(ii) The operator A(x,D) is called parabolic, if A(x,D) is parame-
ter-elliptic in Σπ/2.

Remark 5.9. If we consider a parabolic A(x,D) with bounded coeffi-
cients aα (|α| = m), then there exists a θ ∈

(
π
2
, π
)

such that A(x,D)

is even parameter-elliptic in Σθ.

5.2.1. The model-problem. In this section we consider the model prob-
lem, i.e., we assume the matrix-valued coefficients of A(x,D) to be
constant and that A(x,D) is just a principal part, that is A(x,D) =
A0(x,D). Hence the formal differential operator is of the form

(8) A(D) :=
∑

|α|=m

aαD
α, with aα ∈ C

N×N .

Lemma 5.10. Let v : Rn → C be a function such that 1
v
∈ C |α|(Rn)

and α ∈ {0, 1}n. We set

M(α) :=



(β1, . . . , β|α|) ∈ (Nn

0 )
|α| :

|α|∑

k=1

βk = α



 .

Then it is easily seen, that there are constants C(β1, . . . , β|α|) ∈ Z for
(β1, . . . , β|α|) ∈ M(α) satisfying |C(β1, . . . , β|α|)| ≤ |α|! and such that
we have

Dα 1

v
=

1

v|α|+1

∑

(β1,...,β|α|)∈M(α)

C(β1, . . . , β|α|)

|α|∏

k=1

(Dβkv).

Proof. This result follows by induction over |α|. �
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The next result is proved in [15, Theorem 6.2] for the case |β| = m.
We need the following extension in order to handle diagonal operators
in a suitable way.

Lemma 5.11. Let A(D) be given as in (8) and assume that it is
parameter-elliptic in Σθ for a θ ∈ (0, π) and a constant CP > 0. Fur-
thermore, let M > 0 such that

∑
|α|=m ‖aα‖CN×N ≤ M , and for |β| ≤ m

let

mβ : (Rn × Σθ) \ {0} → C
N×N , (ξ, λ) 7→ ξβλ

m−|β|
m (λ− a0(ξ))

−1.

Then we have

(i) that mβ(·, λ) is a Fourier multiplier for all λ ∈ Σθ \ {0},
(ii) that the families

Tβ := {Tmβ(·,λ) : λ ∈ Σθ \ {0}} ⊂ L(Lp(Rn,CN))

Tβ,0 := {Tmβ(·,λ) : λ ∈ Σθ} ⊂ L(Lp(Rn,CN ))

are R-bounded. Moreover, the Rp-bounds of Tβ and Tβ,0 can be
estimated from above by a constant only depending on p, n, m,
N , M , and CP .

(iii) For every k ∈ N we also have the R-boundedness of

T k
β :=

{
[Tmβ(·,λ)]|W k,p(Rn,CN ) : λ ∈ Σθ \ {0}

}
⊂ L(W k,p(Rn,CN )),

and again Rp(T
k
β ) is bounded from above by a constant only

depending on k, p, n, m, N , M , and CP .

Proof. Let β ∈ N
n
0 , |β| ≤ m, and define the function

m̃β : (Rn × Σθ/m) \ {0} → C
N×N , (ξ, q) 7→ ξβqm−|β|(qm − a0(ξ))

−1.

By the homogeneity of m̃β and the version of Michlins multiplier the-
orem given by [15, Theorem 5.2 b)], we obtain the R-boundedness of
{Tm̃β(·,q) : q ∈ Σθ/m} ⊂ L(Lp(Rn,CN)). Thus, it remains to prove an
estimate for the R-bound as asserted. To this end, we derive explicit
estimates for ξαDαmβ,λ(ξ), α ∈ {0, 1}n, and where mβ,λ := m̃β(·, λ

1/m).
Here we use the representation of the inverse matrix (λ − a0(ξ))

−1 by
the adjugate (λ−a0(ξ))

# := ((−1)i+j ·det(λ−a0(ξ))
+
j,i)i,j=1,...,N , where

(λ−a0(ξ))
+
j,i is the (N − 1)× (N − 1)-matrix that results from deleting

row j and column i in (λ− a0(ξ)). Then we obtain

ξαDαmβ,λ(ξ)

= λ
m−|β|

m

∑

γ≤α

(
ξα−γDα−γ ξβ

det(λ− a0(ξ))

)(
ξγDγ(λ− a0(ξ))

#
)

(9)
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by the Leibniz rule. The equivalence of norms in C
N×N yields

‖ξγDγ(λ− a0(ξ))
#‖CN×N ≤ C(N) ·

N∑

i,j=1

|ξγDγ det(λ− a0(ξ))
+
j,i|.

For every 1 ≤ i, j ≤ N the Leibniz formula for the determinant implies

|ξγDγ det(λ− a0(ξ))
+
j,i| ≤

∑

σ∈SN−1

∣∣∣∣∣ξ
γDγ

N−1∏

k=1

[(λ− a0(ξ))
+
j,i]k,σ(k)

∣∣∣∣∣ .

Since [(λ − a0(ξ))
+
j,i]k,σ(k) is just a component of the matrix λ − a0(ξ)

and by |ξβDβξα| ≤ |ξα| and |ξβDβλ| ≤ |λ|, we obtain

|ξβDβ[(λ− a0(ξ))
+
j,i]k,σ(k)| ≤ C(N,M)(|ξ|m + |λ|) (β ≤ γ).

Altogether we therefore have

‖ξγDγ(λ− a0(ξ))
#‖CN×N ≤ C(N,M, n) · (|ξ|m + |λ|)N−1(10)

for γ ∈ {0, 1}n. In order to estimate ξα−γDα−γ ξβ

det(λ−a0(ξ))
, we apply

Lemma 5.10, the parabolicity condition, and again the Leibniz rule to
obtain

(11)

∣∣∣∣ξ
α−γDα−γ ξβ

det(λ− a0(ξ))

∣∣∣∣

≤
∑

δ≤α−γ

∣∣ξ(α−γ)−δD(α−γ)−δξβ
∣∣
∣∣∣∣ξ

δDδ 1

det(λ− a0(ξ))

∣∣∣∣

≤ C(m,n,N,M,CP )
|ξ||β|

(|ξ|m + |λ|)N
.

Now (9), (10), and (11) imply

‖ξαDαmβ,λ(ξ)‖CN×N

≤ C(n,m,N,M,CP )
(|λ|1/m)m−|β||ξ||β|

(|ξ|m + |λ|)

≤ C(n,m,N,M,CP )
(|ξ|+ |λ|1/m)m

(|ξ|m + |λ|)
≤ C(n,m,N,M,CP ).

Note that the operator Tmβ(·,λ) commutes with Λk and therefore

[Tmβ(·,λ)]|W k,p(Rn,CN ) = Λ−kTmβ(·,λ)Λk.

Assertion (iii) now follows immediately from (ii). �
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Proposition 5.12. Let A(D) be given as in (8) and assume that it
is parameter-elliptic in Σθ for a θ ∈ (0, π) and a constant CP > 0.
Furthermore, assume that we have

∑
|α|=m ‖aα‖CN×N ≤ M for an M >

0. Then, there hold the following assertions for the W k,p- realization
Ak,p (k ∈ N0) of A(D):

(i) Σθ \ {0} ⊂ ρ(Ak,p).

(ii) For every β ∈ N
n
0 with 0 ≤ |β| ≤ m we have, that {λ

m−|β|
m Dβ(λ−

Ak,p)
−1 : λ ∈ Σθ \ {0}} ⊂ L(W k,p(Rn,CN)) is R-bounded. In

addition, we have λ
m−|β|

m Dβ(λ − Ak,p)
−1 = [Tmβ,λ

]|W k,p(Rn,CN )

for mβ,λ(ξ) := λ
m−|β|

m ξβ(λ − a0(ξ))
−1 (λ ∈ Σθ \ {0}, ξ ∈ R

n).
Furthermore, the Rp-bound is bounded from above by a constant
only depending on k, p, n,m,N,CP and M . In particular, this
yields the R-sectoriality of Ak,p with ϕR(Ak,p) ≥ θ.

(iii) For all λ ∈ Σθ \ {0} there exists a constant Cλ > 0 depending
on k, p, n,m,N,CP ,M such that

‖(λ− Ak,p)
−1‖L(W k,p(Rn,CN ),W k+m,p(Rn,CN )) ≤ Cλ.

Proof. For λ ∈ Σθ \ {0} and 0 ≤ |β| ≤ m we define

Tβ,λ := [Tmβ,λ
]|W k,p(Rn,CN ) ∈ L(W k,p(Rn,CN ),W k+m−|β|,p(Rn,CN )).

Then it follows easily λ(λ− Ak,p)
−1 = T0,λ or rather

λ
m−|β|

m Dβ(λ− Ak,p)
−1 = Tβ,λ.

Therefore we proved (i) and

{λ
m−|β|

m Dβ(λ− Ak,p)
−1 : λ ∈ Σθ \ {0}} = T k

β .

By Lemma 5.11 (iii) assertion (ii) follows.
To prove (iii), we use λ(λ − Ak,p)

−1 = T0,λ and (ii) to obtain the
estimate

‖(λ− Ak,p)
−1‖L(W k,p(Rn,CN ),W k+m,p(Rn,CN ))

≤
C

|λ|
max
|β|≤m

‖Tξβm0,λ
‖L(Lp(Rn,CN ))

≤ C(λ)C(p, n,m,N,CP ,M) =: Cλ.

Hence the assertion is proved. �

By means of interpolation this results extends to the model-problem
of the (F , k, p)-realization of A(D).
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Corollary 5.13. Let p, q ∈ (1,∞) and let F be an Lq-compatible
interpolation functor of type h. If A(D) is parameter-elliptic in Σθ

(θ ∈ (0, π)) with constant CP > 0, then the (F , k, p)-realization of
A(D) is R-sectorial with ϕR(AF ,k,p) ≥ θ, provided that

W k,p(Rn,CN ) →֒d F({Lp(Rn,CN),W k,p(Rn,CN)}).

Proof. For simplicity we set

X0 := Lp(Rn,CN ), D(A0) := Wm,p(Rn,CN ),

X1 := W k,p(Rn,CN), D(A1) := W k+m,p(Rn,CN).

According to Remark 5.4 the spaces X0 and X1 are of class HT .
Setting A0 := Ap and A1 := Ak,p, Proposition 5.12 yields the R-
sectoriality of A0 and A1 with minj=0,1 ϕR(Aj) ≥ θ. Hence we obtain
the R-sectoriality of the (F , k, p)-realization by Theorem 3.23. Note
that we use graph norms on D(Aj) in Theorem 3.23. On the other
hand, we have the equivalence of the graph norms and the Sobolev
norms by the fact that A0 ∈ L(Wm,p(Rn,CN ), Lp(Rn,CN)) and A1 ∈
L(W k+m,p(Rn,CN ),W k,p(Rn,CN )). Theorem 3.23 also yields the rela-
tion ϕR(AF ,k,p) ≥ θ. �

Remark 5.14. In particular, Corollary 5.13 holds for the real and the
complex interpolation method. This follows directly from Remark 3.25.

Corollary 5.15. The result of Proposition 5.12 and Corollary 5.13 is
also true for a θ > π

2
, if we regard parabolic model problems. This

follows immediately from Remark 5.9.

Example 5.16. Let Xs ∈ {Bs
p,q(R

n), Hs,p(Rn)}. For all s ∈ (0,∞),
1 < p, q < ∞ the Laplace operator ∆ : D(∆) ⊂ Xs −→ Xs with
D(∆) := Xs+2 is R-sectorial on Xs, and we have ϕR(∆) = π.

5.2.2. Perturbation results. To handle the case of slightly varying co-
efficients we provide suitable perturbation results for R-sectorial oper-
ators. The following notation as well as Theorem 5.20 are taken from
[15].

Definition 5.17. Let A : D(A) ⊂ X → X be an operator on a Banach
space X. For 1 < p < ∞ we define

ΘR(A) :={
θ ∈ (0, π) : Σθ ⊂ ρ(A) ∧Rp({λ(λ− A)−1 ⊂ L(X) : λ ∈ Σθ}) < ∞

}
.

It is obvious that A is R-sectorial with ϕR(A) = supΘR(A) provided
that ΘR(A) 6= ∅. For θ ∈ ΘR(A) we define

Nθ(A) := sup{‖λ(λ− A)−1‖L(X) : λ ∈ Σθ},
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Rθ,p(A) := Rp({λ(λ− A)−1 : λ ∈ Σθ}),

Ñθ(A) := sup{‖A(λ− A)−1‖L(X) : λ ∈ Σθ},

R̃θ,p(A) := Rp({A(λ− A)−1 : λ ∈ Σθ}).

Of course (0, ϕR(A)) ⊂ ΘR(A), but ϕR(A) 6∈ ΘR(A) in general.

Remark 5.18. It can be easily seen that R̃θ,p(A) ≤ 1 + Rθ,p(A),

Rθ,p(A) ≤ 1 + R̃θ,p(A), Nθ(A) ≤ Rθ,p(A) and Ñθ(A) ≤ R̃θ,p(A).

The next lemma is an obvious consequence of the definition of R-
sectoriality.

Lemma 5.19. Let A : D(A) ⊂ X → X be an R-sectorial operator

and θ ∈ ΘR(A), µ > 0 be arbitrary. Then we have R̃θ,p(A − µ) ≤

C ′
θ + CθR̃θ,p(A) and therefore the R-sectoriality of A − µ : D(A) ⊂

X → X with constants Cθ, C
′
θ > 0 only depending on θ. Furthermore,

θ ∈ ΘR(A− µ) and ϕR(A− µ) ≥ θ.

Theorem 5.20. Let X be a Banach space, A : D(A) ⊂ X → X be
an R-sectorial operator, and suppose that θ ∈ ΘR(A). Assume that
B : D(B) ⊂ X → X is an operator satisfying D(A) ⊂ D(B) and

‖Bx‖X ≤ a‖Ax‖X + b‖x‖X (x ∈ D(A))

for some a, b ≥ 0 such that a <
(
Ñθ(A)(C

′
θ + CθR̃θ,p(A))

)−1

(C ′
θ, Cθ

from Lemma 5.19). Then there is a constant

C(a, b, θ, A) :=
bNθ(Ak,p)(C

′
θ + CθR̃θ,p(Ak,p))

1− aÑθ(Ak,p)(C ′
θ + CθR̃θ,p(Ak,p))

> 0

such that for all µ > C(a, b, θ, A) the operator A + B − µ : D(A) ⊂
X → X is R-sectorial with θ ∈ ΘR(A+B−µ) and ϕR(A+B−µ) ≥ θ.
Moreover, for all λ ∈ Σθ the resolvent is represented through

(12) (λ− (A− µ+ B))−1 = (λ+ µ− A)−1(1− B(λ+ µ− A)−1)−1

and we have

‖(1−B(λ+ µ− A)−1)−1‖L(X)

≤

(
1−

[
aÑθ(A) + b

1

µ
Nθ(A)

]
R̃θ,p(A− µ)

)−1

.

Lemma 5.21. Let k ∈ N (k 6= 0) and A(D) =
∑

|α|=m aαD
α be

parameter-elliptic in Σθ with constant CP > 0 and constant coefficients



THE PERMANENCE OF R-BOUNDEDNESS UNDER INTERPOLATION 29

aα ∈ C
N×N such that

∑
|α|=m ‖aα‖CN×N ≤ M . Then there exists a

constant C = C(k,m, n, p,N,M,CP ) > 0 such that

‖Dαf‖W k−1,p(Rn,CN )

≤ C|λ|−
1
m‖Ak,pf‖W k,p(Rn,CN ) + C|λ|1−

1
m‖f‖W k,p(Rn,CN )

for all f ∈ W k+m,p(Rn,CN ), |α| = m, and λ ∈ Σθ \ {0}.

Proof. Let f ∈ W k+m,p(Rn,CN ), |α| = m, and λ ∈ Σθ\{0} be arbitrary.
Choose any β ∈ N

n
0 with |β| = m − 1 and βi ≤ αi for all i = 1, . . . , n.

Proposition 5.12 yields λ ∈ ρ(Ak,p) and therefore

Dαf = λ
|β|−m

m Dα−β
[
λ

m−|β|
m Dβ(λ− Ak,p)

−1
]
(λ− Ak,p)f.

According to Proposition 5.12 (ii) there exists a constant C > 0 only
depending on p, n,m,N,M, k and CP such that max|β|=m−1 Rp(T

k
β ) ≤

C. In view of |β| = m− 1 and the triangle inequality we then deduce

‖Dαf‖W k−1,p(Rn,CN )

≤ C|λ|
|β|−m

m (|λ|‖f‖W k,p(Rn,CN ) + ‖Ak,pf‖W k,p(Rn,CN )).

�

We are now in position to handle perturbations of the principal part
of a parameter-elliptic differential operator with constant coefficients.

Notation: In the following context the constants k,m, n, p,N are
always fixed. So, we do not mention the dependence of them explicitly.

Proposition 5.22. Let M,CP , τ > 0, k ∈ N0, 1 < p < ∞, and
θ ∈ (0, π). There exist constants ε(M,CP , θ) > 0, K(M,CP , θ) > 0,
and µ(M,CP , τ, θ) > 0 such that for all A(D) :=

∑
|α|=m aαD

α and

S(x,D) :=
∑

|α|=m sα(x)D
α with

(i) A(D) parameter-elliptic in Σθ with constant CP and aα ∈ C
N×N

such that
∑

|α|=m ‖aα‖CN×N ≤ M ,

(ii) sα ∈ W k,∞(Rn,CN×N ) satisfying
∑

|α|=m ‖sα‖∞ < ε
and in the case of k 6= 0 additionally that

max
0<|γ|≤k,|α|=m

‖Dγsα‖∞ ≤ τ

we have that

Rθ,p(Ak,p + Sk,p − µ) ≤ K.

Thus the W k,p-realization Ak,p + Sk,p − µ is R-sectorial and we have
θ ∈ ΘR(Ak,p+Sk,p−µ), i.e., in particular that ϕR(Ap,k+Sp,k−µ) ≥ θ.
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Furthermore, for all λ ∈ Σθ there exists a constant Cλ(M,CP , µ) > 0
such that

(13) ‖(λ− (Ak,p − µ+ Sk,p))
−1‖L(W k,p(Rn,CN ),W k+m,p(RN ,CN )) ≤ Cλ.

Proof. We define mα(ξ) := ξαa(ξ)−1 with |α| = m. Due to the homo-
geneity of mα this symbol is a Fourier multiplier. Note that

Tmα
A(D)g = Tmα

F
−1aFg = F

−1ξαFg = Dαg.(14)

Thanks to Tmα
∈ Tα,0 Lemma 5.11 (ii) yields

max
|α|=m

‖Tmα
‖L(Lp(Rn,CN )) ≤ η(15)

for a constant η(M,Cp) > 0 that does not depend explicitly on the
coefficients aα.

According to Proposition 5.12 we have the R-sectoriality of Ak,p with
θ ∈ ΘR(Ak,p) and a constant K(M,CP ) > 0 with

Ñθ(Ak,p), Nθ(Ak,p), R̃θ,p(Ak,p), Rθ,p(Ak,p) < K/2.

In the following we aim for an application of Theorem 5.20. Thus we
have to show that

‖Sk,pf‖W k,p(Rn,CN ) ≤ a‖Ak,pf‖W k,p(Rn,CN ) + b‖f‖W k,p(Rn,CN )(16)

for

a := a(M,CP , θ) := (K(C ′
θ + CθK))−1

< (Ñθ(Ak,p)(C
′
θ + CθR̃θ,p(Ak,p)))

−1

and a b(M,CP , τ) ≥ 0.
Step 1: Proof of estimate (16).
Here we will only give the proof for the case k ≥ 1, since the case k = 0
is given in [15]:
Let g ∈ W k,p(Rn,CN) with |α| = m. Then we have thanks to assump-
tion (ii) that

‖sαg‖W k,p(Rn,CN ) ≤ C

[∑

|β|≤k

‖sα‖∞‖Dβg‖Lp(Rn,CN )

+
∑

|β|≤k

∑

γ<β

‖Dβ−γsα‖∞‖Dγg‖Lp(Rn,CN )

]
(17)

≤ C‖sα‖∞‖g‖W k,p(Rn,CN ) + C(τ)‖g‖W k−1,p(Rn,CN ).

Summing up, we obtain for f ∈ W k+m,p(Rn,CN) that

‖Sk,pf‖W k,p(Rn,CN ) ≤ C max
|α|=m

‖sα‖∞
∑

|α|=m

‖Dαf‖W k,p(Rn,CN )
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+ C(τ)
∑

|α|=m

‖Dαf‖W k−1,p(Rn,CN ).

Now we have to find estimates for the expressions ‖Dαf‖W k−1,p(Rn,CN )

and ‖Dαf‖W k,p(Rn,CN ). By applying (14) and (15) we can conclude

‖Dαf‖W k,p(Rn,CN ) ≤ η‖Ak,pf‖W k,p(Rn,CN ).(18)

For ‖Dαf‖W k−1,p(Rn,CN ) we have by Lemma 5.21 for λ0 > 0 and a
constant C(M,CP ) > 0 that

‖Dαf‖W k−1,p(Rn,CN ) ≤ C(M,CP )λ
− 1

m

0 ‖Ak,pf‖W k,p(Rn,CN )(19)

+ C(M,CP , λ0)‖f‖W k,p(Rn,CN ).

This results in

‖Sk,pf‖W k,p(Rn,CN )

≤

[
C(η) max

|α|=m
‖sα‖∞ + C(M,CP , τ, )λ

− 1
m

0

]
‖Ak,pf‖W k,p(Rn,CN )(20)

+ C(M,CP , τ, λ0) · ‖f‖W k,p(Rn,CN ).

Step 2: Application of Theorem 5.20
We set ε(M,CP , θ) :=

1
2

a
C(η)

> 0 and fix λ0 > 0 such that

C(M,CP , τ)λ
− 1

m

0 <
1

2
a

with a as be given before. Since the choice of λ0 only depends on the
variables M,CP , τ and θ we obtain that b := C(M,CP , τ, λ0) does not
depend explicitly on the coefficients aα and sα. Since

∑
|α|=m ‖sα‖∞ < ε

we obtain

‖Sk,pf‖W k,p(Rn,CN ) ≤ a‖Ak,pf‖W k,p(Rn,CN ) + b‖f‖W k,p(Rn,CN ).

By the fact that K/2 > Ñθ(Ak,p), K > Nθ(Ak,p), R̃θ(Ak,p) and since

µ(M,CP , τ, θ) :=
bK(C ′

θ + CθK)

1− aK
2
(C ′

θ + CθK)

>
bNθ(Ak,p)(C

′
θ + CθR̃θ,p(Ak,p))

1− aÑθ(Ak,p)(C ′
θ + CθR̃θ,p(Ak,p))

> 0,

we obtain the R-sectoriality of Ak,p+Sk,p−µ with θ ∈ ΘR(Ak,p+Sk,p−
µ). Observe that we have µ = 2bK(C ′

θ + CθK). Moreover, Theorem
5.20 yields the estimate

Rθ,p(Ak,p + Sk,p − µ) ≤
Rθ,p(Ak,p − µ)

1− [aÑθ(Ak,p) + b 1
µ
Nθ(Ak,p)]R̃θ,p(Ak,p − µ)
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≤
Rθ,p(Ak,p − µ)

1− K
2
[a+ b 1

µ
](C ′

θ + CθK)

≤ 4(1 + C ′
θ + CθK) =: K(M,CP , θ),

where we used that R̃θ,p(Ak,p − µ) ≤ C ′
θ + CθR̃θ,p(Ak,p) ≤ C ′

θ + CθK

and Rθ,p(Ak,p − µ) ≤ 1 + R̃θ,p(Ak,p − µ).
The proof of (13) with λ ∈ Σθ follows directly from

‖(1− Sk,p(λ+ µ− Ak,p)
−1)−1‖L(W k,p(Rn,CN ))

≤

(
1−

[
aÑθ(Ak,p) + b

1

µ
Nθ(Ak,p)

]
R̃θ,p(Ak,p − µ)

)−1

≤ 4

and the representation of the resolvent in (12) and Proposition 5.12
(iii). �

5.2.3. Some helpful facts on diagonal-operators. To prove our main the-
orem for parabolic systems we next establish some facts on diagonal op-
erators. Diagonal operators appear in a natural way during the process
of localization. The proof of the following results is rather elementary
and therefore omitted.

Lemma 5.23. Let (Tl)l∈N be a sequence of operators on a Banach
space X with D(Tl) := Y for another Banach space Y →֒ X. If there
additionally hold the conditions

(i) Tl ∈ L(Y,X) for all l ∈ N,
(ii) supl∈N ‖Tl‖L(Y,X) < ∞,

then the diagonal-operator

A : D(A) ⊂ X → X, (ul)l∈N 7→ (Tlul)l∈N

with X := ℓp(N, X) and D(A) := Y := ℓp(N, Y ) is well-defined and we
have A ∈ L(Y,X).

If the Tl’s are densely defined, then A is densely defined as well and
we have

ρ(A) =

{
λ ∈

∞⋂

l=1

ρ(Tl) : ∃Cλ > 0 : sup
l∈N

‖(λ− Tl)
−1‖L(X,Y ) ≤ Cλ

}
.

Furthermore, we obtain for all λ ∈ ρ(A) and (ul)l∈N ∈ X the represen-
tation

(λ− A)−1(ul)l∈N = ((λ− Tl)
−1ul)l∈N.

Lemma 5.24. Assume that (Tl)l is a sequence satisfying the conditions
of Lemma 5.23. Then the diagonal-operator A is R-sectorial with θ ∈
ΘR(A), if there exists a θ ∈ (0, π) such that we have:
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(i) Tl is R-sectorial with θ ∈ ΘR(Tl) for all l ∈ N.
(ii) There is a 1 < p < ∞ such that there exists a Kp > 0 with

supl∈NRθ,p(Tl) ≤ Kp.
(iii) For all λ ∈ Σθ there exists a Cλ > 0 with

sup
l∈N

‖(λ− Tl)
−1‖L(X,Y ) ≤ Cλ.

In particular, we have ϕR(A) ≥ θ and Rθ,p(A) ≤ Kp in this case.

Proof. Thanks to Lemma 5.23 and condition (iii), we have Σθ ⊂ ρ(A)
and

(λ− A)−1(ul)l∈Γ = ((λ− Tl)
−1ul)l∈Γ

for all (ul)l∈Γ ∈ X and λ ∈ Σθ.
It remains to prove the R-boundedness of {λ(λ−A)−1 : λ ∈ Σθ}. Let

M ∈ N, (λk)k=1,...,M ⊂ Σθ, and let (xk)k=1,...,M ⊂ X with xk =: (u
(k)
l )l∈N.

Then we obtain∥∥∥∥∥

M∑

k=1

rkλk(λk − A)−1xk

∥∥∥∥∥
Lp([0,1],X)

=

(
∞∑

l∈N

∫ 1

0

∥∥∥∥∥

M∑

k=1

rk(t)λk(λk − Tl)
−1u

(k)
l

∥∥∥∥∥

p

X

dt

)1/p

≤

(
∞∑

l∈N

Kp
p

∫ 1

0

∥∥∥∥∥

M∑

k=1

rk(t)u
(k)
l

∥∥∥∥∥

p

X

dt

)1/p

= Kp

∥∥∥∥∥

M∑

k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)

.

This implies Rp({λ(λ− A)−1 : λ ∈ Σθ}) ≤ Kp and ϕR(A) ≥ θ. �

5.2.4. Main result on parabolic systems of differential equations. First
we make a preliminary remark on the approach we use in this section:
our first aim is to prove R-sectoriality of the W k,p-realization of a
parabolic system. To this end, we essentially follow the approach given
in [15, Chapter 6]. However, since we deal with Sobolev spaces of
arbitrary order we need differentiability of the localized coefficients,
which is not required for the localization in Lp as performed in [15,
Chapter 6]. Therefore, we have to slightly modify the method used in
[15, Chapter 6] by introducing a smoother localization that assures the
well-definedness of the localized operators on the Sobolev space W k,p.

Our second aim is the transference of R-sectoriality to the realization
of a parabolic system on certain interpolation spaces. This, in turn,
is then obtained as an easy consequence of Theorem 3.19. As a well-
known fact we first have
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Lemma 5.25. For all r > 0 there exists a ϕ ∈ C∞
0 (Rn) with 0 ≤ ϕ ≤ 1,

suppϕ ⊂ (−r, r)n and
∑

l∈Γ

ϕ2
l (x) = 1 for all x ∈ R

n.

Here we set Γ := rZn and ϕl := ϕ(.− l) for all l ∈ Γ. Additionally, we
have suppϕl ⊂ l + [−3

4
r, 3

4
r]n.

Definition and Lemma 5.26. Let

Xk := ℓp(Γ,W k,p(Rn,CN ))

for 1 < p < ∞, N ∈ N, and k ∈ N0 with Γ = rZ, r > 0. Let the
sequence (ϕl)l∈Γ be as given in Lemma 5.25 and define the ’localization-
operator’

J : Lp(Rn,CN) → X0, f 7→ (ϕlf)l∈Γ

and the ’patching-together-operator’

P : X0 → Lp(Rn,CN ), (fl)l∈Γ 7→

(
x 7→

∑

l∈Γ

ϕl(x)fl(x)

)
.

For k ∈ N0 we have

J|W k,p(Rn,CN ) ∈ L(W k,p(Rn,CN),Xk), P|Xk
∈ L(Xk,W

k,p(Rn,CN)),

and PJ = idLp(Rn,CN ).

Proof. Follows easily by the smoothness of ϕ. �

Next we recall an interpolation inequality for C
N -valued functions.

The scalar case is proved in [1, Theorem 5.2], for instance. The C
N -

valued case follows directly from the scalar case. We will apply this
inequality later to verify the conditions of the perturbation result.

Lemma 5.27. For every m ∈ N0 and each ε0 > 0 there exists a con-
stant K(p, n, k,N, ε0) > 0 such that for all ε ∈ (0, ε0] and j ∈ N0 with
0 ≤ j < k and u ∈ W k,p(Rn,CN ) we have

‖u‖W j,p(Rn,CN ) ≤ K(ε‖u‖W k,p(Rn,CN ) + ε−j/(k−j)‖u‖Lp(Rn,CN )).

Theorem 5.28. Let 1 < p < ∞, k ∈ N0, and the differential operator
A(x,D) :=

∑
|α|≤m aα(x)D

α be given. Furthermore, assume that the
coefficients satisfy the following regularities:

aα ∈ BUC(Rn,CN×N) ∩ Ck
b (R

n,CN×N ) for |α| = m,

aα ∈ W k,p∞(Rn,CN×N) for |α| < m
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(see (7) for the definition of p∞). If A(x,D) is parabolic with constant
CP > 0, then there exists a ν > 0 such that the W k,p-realization Ak,p−ν
is R-sectorial with ϕR(Ak,p − ν) > π

2
.

Proof. 1. Localization (“Freezing the coefficients”):
First, Remark 5.9 yields a θ ∈ (π

2
, π) such that we even have the pa-

rameter-ellipticity of A(x,D) in Σθ. For M :=
∑

|α|=m ‖aα‖∞ let ε =

ε(M,CP , θ), K = K(M,CP , θ) > 0 be the constants as given in the
statement of Proposition 5.22. By the uniform continuity of all aα
with |α| = m there exists a δ > 0 such that

∑

|α|=m

‖aα(x)− aα(y)‖CN×N < ε (x, y ∈ R
n, |x− y| < δ).

Next, we choose r > 0 such that diam (−r, r)n < δ. For this r we
choose a ϕ ∈ C∞

0 (Rn) as in Lemma 5.25. Furthermore, we choose
χ ∈ C∞

0 (Rn) satisfying χ(x) = 1 for ‖x‖1 :=
∑n

k=1 |xk| ≤
7
8
, χ(x) = 0

for ‖x‖1 ≥ 1, and 0 ≤ χ(x) ≤ 1 for all x ∈ R
n.

Then we define for l ∈ Γ := rZ the localized differential operator

Al(x,D) :=
∑

|α|=m

alα(x)D
α

with coefficients

alα(x) := aα

(
l + χ

(
x− l

r

)
(x− l)

)

=





aα(x) , ‖x− l‖1 ≤
7
8
r

aα(l) , ‖x− l‖1 ≥ r

aα(x̃) for some x̃ ∈ Ql , otherwise

,

for |α| = m, l ∈ Γ, and Ql := l + (−r, r)n. Next, we analyze the
structure of these coefficients. For Φl : x 7→ l+ χ

(
x−l
r

)
(x− l) ∈ Ql we

have Φl ∈ C∞
b (Rn,R) and there exists a constant Cχ(r) > 0 such that

for all l ∈ Γ, γ ∈ N
n
0 with 1 ≤ |γ| ≤ k we have ‖DγΦl‖∞ < Cχ. Thanks

to aα ∈ Ck
b (R

n,Cn×n) (|α| = m) the classical chain rule applies and
we obtain that alα ∈ Ck

b (R
n,CN×N). Moreover, there exists a constant

τ > 0 only depending on χ, r, and max0≤|γ|≤k

|α|=m
‖Dγaα‖∞ such that

max
0≤|γ|≤k

‖Dγalα‖∞ ≤ τ for all l ∈ Γ, |α| = m.

As before, let Al
k,p be the W k,p-realization of Al. Due to Lemma 5.23

we can form the diagonal-operator

Ak,p : D(Ak,p) ⊂ Xk → Xk, (ul)l∈Γ 7→ (Al
k,pul)l∈Γ
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with D(Ak,p) := Xk+m.
2. R-sectoriality of Ak,p − µ:
For the formal differential operator Al(x,D) we have the decomposition

Al(x,D) =
∑

|α|=m

[
alα(x)− aα(l)

]
Dα

︸ ︷︷ ︸
=:A′(x,D)

+
∑

|α|=m

aα(l)D
α

︸ ︷︷ ︸
=:A′′(D)

.

Note that the second part A′′(D) is parameter-elliptic in Σθ with the
same constant CP . For all l ∈ Γ, we have

∑

|α|=m

‖aα(l)‖CN×N ≤ M,
∑

|α|=m

‖alα(·)− aα(l)‖∞ < ε,

max
0<|γ|≤k

|α|=m

‖Dγ(alα(·)− aα(l))‖∞ ≤ τ for k 6= 0.

Applying Proposition 5.22 yields a constant µ(M,CP , τ, θ) > 0 inde-
pendent of l ∈ Γ such that A′′

k,p+A′
k,p−µ = Al

k,p−µ is R-sectorial with

θ ∈ ΘR(A
l
k,p−µ) and Rθ,p(A

l
k,p−µ) ≤ K. Since K according to Propo-

sition 5.22 only depends on CP ,M, and θ and since these constants are
uniformly in ℓ, we obtain

Rθ,p(A
l
k,p − µ) ≤ K (ℓ ∈ Γ).

Additionally, Proposition 5.22 yields

sup
l∈Γ

‖(λ+ µ− Al
k,p)

−1‖L(W k,p(Rn,CN ),W k+m,p(Rn,CN )) ≤ Cλ,

where the constant Cλ only depends on λ,M,CP und µ. Thus, Lemma
5.24 implies the R-sectoriality of Ak,p − µ with

θ ∈ ΘR(Ak,p − µ) and Rθ,p(Ak,p − µ) ≤ K.

3. Determination of JAk,p − Ak,pJ and Ak,pP − PAk,p:
In essentially the same way as in [15], we obtain

(JAk,p − Ak,pJ)u = Bk,pJu,(21)

(Ak,pP − PAk,p)(ul)l∈Γ = PDk,p(ul)l∈Γ,(22)

where we set D(Bk,p) := Xk+m−1, D(Dk,p) := Xk+m−1, Alow(x,D) :=
A(x,D)−A0(x,D), and where the operators Bk,p and Dk,p are defined
as

Bk,p : D(Bk,p) ⊂ Xk → Xk,
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(ul)l∈Γ 7→


Alow(x,D)ul +

∑

j∈Γ:
Qj∩Ql 6=∅

(ϕlA(x,D)− A(x,D)ϕl)(ϕjuj)




l∈Γ

,

Dk,p : D(Dk,p) ⊂ Xk → Xk,

(ul)l∈Γ 7→


Alow(x,D)ul +

∑

j∈Γ:
Qj∩Ql 6=∅

ϕl(A(x,D)ϕj − ϕjA(x,D))uj




l∈Γ

.

Observe that in Bk,p and Dk,p there appear only derivatives of order
less or equal to m− 1.

4. Perturbation of Ak,p − µ:

Our aim is to apply Theorem 5.20 to the operator A
(µ)
k,p := Ak,p − µ

combined with the perturbation Bk,p and to A
(µ)
k,p combined with Dk,p.

At first we have 1 ∈ ρ
(
A

(µ)
k,p

)
and

(
1− A

(µ)
k,p

)−1

∈ L(Xk,Xk+m) due to

Lemma 5.23. Next we set ε0 := 1 and choose 0 < ε′ < 1 such that

a := ε′KMB,D ·

∥∥∥∥
(
1− A

(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

<
(
Ñθ

(
A

(µ)
k,p

)(
C ′

θ + CθR̃θ,p

(
A

(µ)
k,p

)))−1

,

with MB,D := max{‖Bk,p‖L(Xk+m−1,Xk), ‖Dk,p‖L(Xk+m−1,Xk)} and with K >
0 from Lemma 5.27. For (ul)l∈Γ ∈ Xk+m−1, Lemma 5.27 and the bound-
edness of Bk,p and Dk,p yield

‖Bk,p(ul)l∈Γ‖Xk

‖Dk,p(ul)l∈Γ‖Xk

}
≤ a′‖(ul)l∈Γ‖Xk+m

+ b′‖(ul)l∈Γ‖X0

≤ a′‖(ul)l∈Γ‖Xk+m
+ b′‖(ul)l∈Γ‖Xk

for a′ := ε′KMB,D and b′ := KMB,D · (ε′)−(k+m−1). By virtue of

‖(ul)l∈Γ‖Xk+m
≤

∥∥∥∥
(
1− A

(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

·

(∥∥∥A(µ)
k,p(ul)l∈Γ

∥∥∥
Xk

+ ‖(ul)l∈Γ‖Xk

)

we conclude

‖Bk,p(ul)l∈Γ‖Xk

‖Dk,p(ul)l∈Γ‖Xk

}
≤ a

∥∥∥
(
A

(µ)
k,pul

)
l∈Γ

∥∥∥
Xk
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+

(
b′ + a′

∥∥∥∥
(
1− A

(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

)
· ‖(ul)l∈Γ‖Xk

.

Hence, from Theorem 5.20 we infer that there exists an η > 0 such

that A
(µ)
k,p + Bk,p − η and A

(µ)
k,p + Dk,p − η are R-sectorial with θ ∈

ΘR

(
A

(µ)
k,p + Bk,p − η

)
∩ΘR

(
A

(µ)
k,p + Dk,p − η

)
.

5. Determination of the resolvent (Ak,p − (µ+ η))−1:
Let λ ∈ Σθ and ν := µ + η > 0; Due to (21) and (22) we obtain a left
inverse of λ− (Ak,p − ν)) in form of

P
(
λ+ η −

(
A

(µ)
k,p + Bk,p

))−1

J|W k,p(Rn,CN )(23)

and a right inverse given as

P
(
λ+ η −

(
A

(µ)
k,p + Dk,p

))−1

J|W k,p(Rn,CN ).(24)

Hence (23) and (24) coincide and we have λ ∈ ρ(Ak,p − ν). The R-
boundedness follows directly from

λ (λ− (Ak,p − ν))−1 = P

[
λ
(
λ−

(
A

(µ)
k,p + Dk,p − η

))−1
]
J (λ ∈ Σθ)

and the fact that P|Xk
∈ L(Xk,W

k,p(Rn,CN )) and J|W k,p(Rn,CN ) ∈
L(W k,p(Rn,CN ),Xk). Consequently,

Rθ,p (Ak,p − ν) ≤ C(P, J)Rθ,p

(
A

(µ)
k,p + Dk,p − η

)
,

which implies Ak,p − ν to be R-sectorial with R-angle ϕR(Ak,p − ν) ≥
θ > π

2
. �

With the help of Theorem 3.23 the above result generalizes to para-
bolic systems realized on interpolation spaces.

Theorem 5.29. Let k ∈ N0 and A(x,D) :=
∑

|α|≤m aα(x)D
α be a

formal differential operator, where we assume the coefficients to have
the following regularities:

aα ∈ BUC(Rn,CN×N ) ∩ Ck
b (R

n,CN×N) for |α| = m

aα ∈ W k,p∞(Rn,CN×N) for |α| < m.

Let 1 < p, q < ∞ and F be an Lq-compatible interpolation functor of
type h such that

W k,p(Rn,CN ) →֒d F({Lp(Rn,CN),W k,p(Rn,CN)}),
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and let AF ,k,p be the (F , k, p)-realization of A(x,D) as defined in (6).
If A(x,D) is parabolic, then there exists ν > 0 such that AF ,k,p − ν is
R-sectorial with ϕR(AF ,k,p − ν) > π

2
.

Proof. By the assumed regularity of the coefficients the Lp- and W k,p-
realizations Ap and Ak,p are well-defined. Theorem 5.28 yields the
R-sectoriality of A0 := Ap − ν and A1 := Ak,p − ν for a ν > 0 with
ϕR(Ap − ν) > π

2
and ϕR(Ak,p − ν) > π

2
. We set

X0 := Lp(Rn,CN ), D(A0) := Wm,p(Rn,CN ),

X1 := W k,p(Rn,CN), D(A1) := W k+m,p(Rn,CN).

By the same arguments as in Corollary 5.13 we obtain in combination
with Theorem 3.23 the R-sectoriality of the operator

AF ,k,p − ν : D(AF ,k,p) → F({Lp(Rn,CN ),W k,p(Rn,CN )}),

D(AF ,k,p) := F({W k,p(Rn,CN),W k+m,p(Rn,CN )}),

(AF ,k,p − ν)f := (A(x,D)− ν)f, f ∈ D(AF ,k,p).

Moreover, Theorem 3.23 yields ϕR(AF ,k,p−ν) > π
2
, hence the assertion

is proved. �

Corollary 5.30. The parabolic system described in Theorem 5.29 has
maximal Lp-regularity on the space F({Lp(Rn,CN),W k,p(Rn,CN)}).

Proof. The characterization of maximal Lp-regularity by R-sectoriality
with R-angle bigger then π/2 yields the assertion. This characteriza-
tion can be found in [21], [15], or [6]. �

Corollary 5.31. Assume the situation of Theorem 5.29 to be given.
Then the Besov- and Bessel-potential-space realizations AB

s,p,q and AH
s,p

as defined in Remark 5.5 are R-sectorial on the spaces Bs
p,q(R

n,CN)

and Hs,p(Rn,CN ) with ϕR(A
B
s,p,q − ν) > π

2
and ϕR(A

H
s,p,q − ν) > π

2
,

respectively.

Proof. This follows directly from Theorem 5.29 and Remark 3.25. �
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