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Abstract

In this note we derive existence and regularity results on weak and
strong solutions for instationary flows in the half-space Rn+ that are subject
to partial slip (also known as Robin or Navier) boundary conditions. The
results are well known in the case of Dirichlet boundary conditions, which
represents a special case of our situation. We will show global existence
of weak solutions, higher regularity for arbitrary weak solutions, and the
existence of local strong solutions that exist even globally and coincide
with every weak solution, if we assume that space dimension is two. All
results are essentially based on the previous work [17] of the author, which
includes in particular the maximal regularity of the Stokes operator with
partial slip boundary conditions in Lqσ(Rn+), 1 < q <∞.
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1 Introduction and main results

For n ∈ N, n ≥ 2, and T ∈ (0,∞] we consider the Navier-Stokes equations with
partial slip boundary conditions





∂tu−∆u+ (u · ∇)u+∇p = f in Rn+ × (0, T ),
div u = 0 in Rn+ × (0, T ),
u(0) = u0 in Rn+,
Tαu = 0 on ∂Rn+ × (0, T ),

(1.1)

i.e. the trace operator Tα is given by

Tαu :=

(
αu′ − ∂nu′

un

)∣∣∣∣
∂Rn+

, (1.2)
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where u′ denotes the tangential part of u and α ∈ [0,∞]1. Observe, that the case
α = 0 or α = ∞ corresponds to the classical Neumann or Dirichlet boundary
conditions respectively. Note that in the literature these boundary conditions
are also known as Robin or Navier boundary conditions. In a first step we will
prove the existence and higher regularity of weak solutions for system (1.1).
Next we will state a result on existence and uniqueness of local strong solutions.
Finally, we show that the local strong solution extends uniquely to a global one
in two space dimensions, i.e. if n = 2.

Note that for the special case of Dirichlet boundary conditions the above
mentioned results are well known. The existence of weak solutions, for in-
stance, is known since the poineering works of Leray [14] and Hopf [10]. The
existence of uniquely determined global strong solutions in two space dimensions
was proved in [11] (see also [12]). Since that time a huge literature developed
concerning weak and local strong solutions for the Navier-Stokes equations with
Dirichlet boundary conditions. Therefore, here we just refer to the monographs
of Temam [21], Constantin and Foias [4], Galdi [8, 7], Sohr [20], and the ref-
erences cited therein for more information on this topic. For a comprehensive
approach on strong solutions see also the work of Amann [1] and for a result on
higher regularity on weak solutions which is similar to our result for partial slip
boundary conditions (Theorem 1.3) see the paper of Giga and Sohr [9].

The content of this article can be regarded as a generalization to partial
slip boundary conditions of the above mentioned results for Dirichlet boundary
conditions. Although the most common boundary conditions used in the fluid
mechanics literature are the no slip boundary conditions, it is known that in
some situations, e.g. for gas flows, non-Newtonian fluids, or moving contact
lines, partial slip can occur (see e.g. [15], [3], and [5] respectively). Moreover,
physico-chemical parameters as wetting, shear rate, surface charge, and surface
roughness can influence the behavior of a fluid at the solid-liquid interface. We
refer to [13] for a review on recent investigations on this subject and to the
literature cited therein. This shows that in certain situations it might be more
appropriate to assume partial slip boundary conditions. This was motivation
enough for the author to examine the Navier-Stokes equations with partial slip
boundary conditions, also in view of the lack of results on this problem in the
existing literature.

Before stating our main results let us introduce some notation and some
basic facts used in this note. We will use standard notation throughout this
paper. Let Ω ⊂ Rn be open, m ∈ N, p, q ∈ (1,∞), and X be a Banach space. By
Lp(Ω, X) and Wm,p(Ω, X) we denote the X-valued Lebesgue and Sobolev space
respectively with their canonical norms. If X = Cn or X = Rn we write Lp(Ω)
and Wm,p(Ω). Furthermore, we do not distinguish between spaces of functions
and spaces of vector fields in the sequel, i.e. we write also Lp(Ω) for Lp(Ω)n

for example. We also make use of the homogeneous Sobolev space Ŵm,p(Ω, X)
which is defined as the space {v ∈ L1

loc(Ω, X) : ‖∇mv‖Lp(Ω,X) < ∞} modulo

1The case α = ∞ is to understand in the following sense: divide the first line in (1.2) by
α and let α→∞.
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polynomials of order m− 1. The subspace of solenoidal vector fields of Lq(Rn+)
we denote as usual by

Lqσ(Rn+) := C∞c,σ(Rn+)
Lq

,

where C∞c,σ(Rn+) := {v ∈ C∞c (Rn+) : div v = 0} and C∞c (Rn+) denotes the space
of all smooth compactly supported functions in Rn+. Lqσ(Rn+) is known to be
a complementary subspace of Lq(Rn+) and the related Helmholtz projection
operator, which maps Lq(Rn+) onto Lqσ(Rn+) in the sequel we denote by P . For
short we will often write ‖ · ‖q for the norm in Lq(Rn+) and ‖ · ‖q,p for the norm

in Lp((0, T ), Lq(Rn+)), where T ∈ (0,∞]. Finally, the Lq-Lq
′

dual pairing we
denote by (·, ·), where 1/q + 1/q′ = 1.

All the results for system (1.1) proved in this note are based on results of the
author obtained in the works [17] and [19]. There it is proved that the Stokes
operator with partial slip boundary conditions, defined by

Aq := −P∆, D(Aq) := {v ∈W 2,q(Rn+); div v = 0, Tαv = 0},

is a sectorial operator on Lqσ(Rn+) for q ∈ (1,∞) which is selfadjoint for q = 2.
It is even proved that Aq admits a bounded H∞-calculus on the space Lqσ(Rn+).
Since (Aq)q∈(1,∞) is a compatible family, we will often omit the subscript q in the
sequel, if no confusion seems likely. As a consequence we obtain the maximal reg-
ularity of A on Lqσ(Rn+), since by the Dore-Venni Theorem in the form given in [9]
the class of all operators that admit a boundedH∞-calculus on Lqσ(Rn+) is known
to be a subclass of the class of all operators having maximal regularity. The
maximal regularity means that for all data u0 ∈ Ipq := (Lq(Rn+),D(Aq))1−1/p,p

(real interpolation space) and f ∈ Lp((0, T ), Lqσ(Rn+)) the Cauchy problem as-
sociated to A, {

d
dtv +Av = f, t ∈ (0, T ),

v(0) = u0
(1.3)

has a unique solution u that satisfies (1.3) for almost all t ∈ (0, T ) and the
estimate

‖ d

dt
u‖q,p + ‖Aqu‖q,p ≤ C

(
‖u0‖Ipq + ‖f‖q,p

)
(1.4)

with C > 0 independent of u and T ∈ (0,∞]. Estimate (1.4) will play an
essential role in the proof of all results presented in this note.

Another consequence of the results in [17] and [19] which will be frequently
used here, are Sobolev estimates of the form

‖Ak/2v‖q ≤ C1(k)‖∇kv‖q ≤ C2(k)‖Ak/2v‖q (1.5)

for v ∈ D(Ak/2) and k ∈ N (see [19, Proposition 4.17]). This allows us to switch
freely between the norms ‖Ak/2 · ‖q and ‖∇k · ‖q, k = 1, 2.

We proceed by recalling the notion of a weak solution to system (1.1).

Definition 1.1. Let n ∈ N, n ≥ 2, and T ∈ (0,∞]. We call u a weak solution
of system (1.1), if u belongs to the Leray-Hopf class, i.e.

u ∈ L∞((0, T ), L2
σ(Rn+)) ∩ L2((0, T ), Ĥ1(Rn+))

3



and u satisfies
∫ T

0

[
−(u, ∂tφ)− (u,∆φ) +

n∑

j=1

(∂ju, u
jφ)

]
dt = (u0, φ(0)) +

∫ T

0

(f, φ)dt

for all φ ∈ C∞c ([0, T ), C∞c,σ(Rn+)) so that

Tαφ(t) = 0, t ∈ (0, T ).

Our main results on weak solutions read as follows.

Theorem 1.2. Let n ∈ N, n ≥ 2, and T ∈ (0,∞]. For each u0 ∈ L2
σ(Rn+)

and distribution f such that A−1/2f ∈ L2((0, T ), L2
σ(Rn+)) there exists a weak

solution
u ∈ L∞((0, T ), L2

σ(Rn+)) ∩ L2((0, T ), Ĥ1(Rn+))

of (1.1) satisfying the energy inequality

‖u‖22,∞ + ‖∇u‖22,2 ≤ ‖u0‖22 +

∫ T

0

(f(t), u(t))dt.

Theorem 1.3. Let n ∈ N, n ≥ 2, and T ∈ (0,∞]. Let u be any weak solution
of (1.1) (not necessarily satisfying the energy inequality). Furthermore, assume
that u0 ∈ Ipq := (Lq(Rn+),D(Aq))1−1/p,p and f ∈ Lp((0, T ), Lq(Rn+)) with 1 <
p, q <∞ such that

n/q + 2/p = n+ 1.

Then there exists a C > 0 independent of u0 and f such that

‖∂tu‖q,p+‖∇2u‖q,p+‖∇p‖q,p ≤ C(‖u0‖Ipq +‖f‖q,p+‖u‖22,∞+‖∇u‖22,2). (1.6)

The proof of these two results is given in Section 2. Concerning strong solutions
we have

Theorem 1.4. Let n ∈ N, n ≥ 2, (n+ 2)/3 < q < ∞, and T ∈ (0,∞]. Then,
for each v0 ∈ Iqq and f ∈ Lq((0, T ), Lq(Ω(t))) there exists a T ∗ ∈ (0, T ) and a
unique solution (u, p) of problem (1.1) such that

u ∈ W 1,q((0, T ∗);Lq(Rn+)) ∩ Lq((0, T ∗);D(Aq)),

p ∈ Lq((0, T ∗); Ŵ 1,q(Rn+)).

Since it is quite standard we will not demonstrate the proof of Theorem 1.4 in
this note. For example it can be copied almost verbatim from [18, Theorem 1.2].
Essentially it is also a consequence of the maximal regularity of the Stokes
operator A with partial slip boundary conditions on Lqσ(Rn+).

On the other hand, in two space dimensions we will present a proof of the
following result in Section 3.

Theorem 1.5. Let T ∈ (0,∞]. Suppose that u0 ∈ L2
σ(R2

+) ∩ H1(R2
+), and

f ∈ L2((0, T ), L2
σ(R2

+)) such that A−1/2f ∈ L2((0, T ), L2(R2
+)). Then the weak

solution u of Theorem 1.2 is unique. Furthermore, u and the pressure p satisfy

∇u ∈ L∞((0, T ), L2(R2
+)), ∂tu,∇2u,∇p ∈ L2((0, T ), L2(R2

+)).
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2 Existence and regularity of weak solutions

In order to construct weak solutions we follow the approach used in [2]. To this
end we switch to the operatorial form of system (1.1), that is

{
d
dtu+Au+ P (u · ∇)u = f, t ∈ (0, T ),

u(0) = u0.
(2.1)

Next we set

Jk := (1 +
1

k
A)−1, k ∈ N. (2.2)

The Lp − Lq-estimates for the semigroup (e−tA)t≥0 in [17, Corollary 5.8] then
yield

‖Jku‖p = ‖
∫ ∞

0

e−te−tA/kudt‖p

≤ C

∫ ∞

0

e−t(t/k)−
n
2 ( 1

q− 1
p )dt‖u‖q

≤ C(p, q, n, k)‖u‖q, u ∈ Lqσ(Rn+),

if n
2 ( 1

q − 1
p ) < 1. Thus, if we choose N ∈ N such that N > 1 + n/4, by an

iterative application of the above estimate we can achieve that

‖JNk u‖∞ ≤ C(n, k)‖u‖2, u ∈ L2
σ(Rn+). (2.3)

Now, for each k ∈ N consider the approximate system

{
d
dtv +Av + P (JNk v · ∇)v = Jkf =: fk, t ∈ (0, T ),

v(0) = Jku0 =: u0,k.
(2.4)

Since A is the generator of a holomorphic semigroup in Lqσ(Rn+), solving (2.4)
is equivalent to show that the mapping

Fv(t) := e−tAu0,k +

∫ t

0

e−(t−s)AP (JNk v(s) · ∇)v(s)ds +

∫ t

0

e−(t−s)Afk(s)ds

(2.5)
has a unique fixed point.

Proposition 2.1. Let k ∈ N and T ∈ (0,∞). There exists a unique solution

u ∈ C([0, T ],D(A1/2)) ∩ L2((0, T ),D(A)) ∩H1((0, T ), L2
σ(Rn+))

of (2.5) that satisfies (2.4) f.a.a. t ∈ (0, T ).

Proof. Since the proof is standard we will be brief in details. Fix k ∈ N. First
note that by definition u0,k ∈ D(A1/2) and fk ∈ L2((0, T ); D(A1/2)). Next
define

BM := {v ∈ C([0, T ],D(A1/2)) : v(0) = u0,k, ‖v‖T ≤M},
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where ‖v‖T := supt∈[0,T ](‖v(t)‖2 + ‖A1/2v(t)‖2). Observe that by (1.5) and
(2.2),

‖P (JNk v(s) · ∇)v(s)‖2 ≤ C‖v(t)‖2‖A1/2v(t)‖2, t ∈ (0, T ). (2.6)

From this estimate we easily obtain that

‖Fv‖T ≤ C1(‖u0,k‖D(A1/2)‖fk‖L2((0,T ),D(A1/2)) +M2(T + T 1/2))

for v ∈ BM . Similarly, by using

‖P (JNk v(s) · ∇)v(s)− P (JNk w(s) · ∇)w(s)‖2
≤ C

(
‖v(t)− w(t)‖2‖A1/2v(t)‖2 + ‖A1/2(v(t)− w(t))‖2‖w(t)‖2

)

for t ∈ (0,∞), we have that

‖Fv − Fw‖T ≤ C2M(T + T 1/2)‖v − w‖T
for v, w ∈ BM . Fixing M such that C1‖u0,k‖D(A1/2)‖fk‖L2((0,T ),D(A1/2)) ≤M/2

and then T > 0 so that CjM(T + T 1/2) ≤ 1/2, j = 1, 2, we see that F is a
contraction on BM . The contraction mapping principle then yields a unique
solution u ∈ BM for small T > 0.

Next observe that estimate (2.6) for u implies that

P (JNk u · ∇)u ∈ L2((0, T ), L2
σ(Rn+)).

By the maximal regularity of A on L2
σ(Rn+) we then obtain

u ∈ L2((0, T ),D(A)) ∩H1((0, T ), L2
σ(Rn+)). (2.7)

This proves the assertion for small T > 0. In order to show that u exists uniquely
for arbitrary T > 0 we derive a priori bounds for ‖u‖T . Using the equations
(2.4) and relation (2.7) we obtain that

1

2

d

dt
‖u(t)‖22 + ‖A1/2u(t)‖22 = (fk, u), t ∈ (0, T ). (2.8)

Integrating over t yields

1

2
‖u‖22∞ + ‖A1/2u‖22,2 ≤

1

2
‖u0,k‖22 + ‖A−1/2fk‖2,2‖A1/2u‖2,2.

Again note that by ‖ · ‖q,p we always mean the norm on the full time interval
(0, T ), i.e. here ‖ · ‖2,2 = ‖ · ‖L2((0,T ),L2(Rn+)). Applying ab ≤ a2/2 + b2/2 on the
latter term and rearranging then results in

‖u‖22,∞ + ‖A1/2u‖22,2 ≤ ‖u0,k‖22 + ‖A−1/2fk‖22,2. (2.9)

Multiplying (2.4) by Au instead by u and employing once again (2.2) we can
also obtain the estimate

d

dt
‖A1/2u(t)‖22 + 2‖Au(t)‖22 ≤ C

(
‖u(t)‖22‖A1/2u(t)‖22 + ‖fk(t)‖22

)
+ ‖Au(t)‖22

(2.10)
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for t ∈ (0, T ). Now (2.9) implies that

‖u(t)‖22 ≤ ‖u0,k‖22 + ‖A−1/2fk‖22,2, t ∈ (0, T ).

Inserting this into (2.10) and rearranging the resulting estimate yields

d

dt
‖A1/2u(t)‖22 ≤ C‖fk(t)‖22 + C

(
‖u0,k‖22 + ‖A−1/2fk‖22,2

)
‖A1/2u(t)‖22.

Integrating this expression finally results in

‖A1/2u(t)‖22 ≤ C
(
‖A1/2u0,k‖22 + ‖fk‖22,2

)

+ C
(
‖u0,k‖22 + ‖A−1/2fk‖22,2

)∫ t

0

‖A1/2u(s)‖22ds.

By the lemma of Gronwall we therefore may conclude

‖A1/2u(t)‖22 ≤ C
(
‖A1/2u0,k‖22 + ‖fk‖22,2

)
exp

(
C
(
‖u0,k‖22 + ‖A−1/2fk‖22,2

)
t
)

(2.11)
for all t > 0. This shows that u exists uniquely on arbitrary intervals [0, T ] (as
long as f exists of course) and that it admits the claimed regularity properties.

�

In order to deal with the nonlinear term the next lemma will be useful.

Lemma 2.2. Let T ∈ (0,∞]. For 1 < p, q < ∞ satisfying 2/q + n/p = n + 1
there exists a C = C(p, q, n) > 0 so that

‖(v · ∇)u‖q,p ≤ C
(
‖v‖22,∞ + ‖∇v‖22,2 + ‖∇u‖22,2

)

for all v, u satisfying v ∈ L∞((0, T ), L2
σ(Rn+)) and ∇u,∇v ∈ L2((0, T ), L2(Rn+)).

Proof. Applying the Hölder inequality with 1/q = 1/r + 1/2 to the term on
the left hand side gives

‖(v(t) · ∇)u(t)‖q ≤ C(n, q)‖v(t)‖r‖∇u(t)‖2, t ∈ (0, T ). (2.12)

Next, the Gagliardo-Nirenberg inequality (see [6, Theorem 9.3], for the validity
on Rn+ see also [16, Appendix A]) implies that

‖v(t)‖r ≤ C(r, n)‖∇v(t)‖θ2‖v(t)‖1−θ2 ,

where 1/r = 1/2−θ/n. Inserting this into (2.12) and taking Lp-norm in t yields

‖(v · ∇)u‖q,p ≤ C(n, q, p)‖v‖2−2/p
2,∞ ‖∇v‖2/p−1

2,2 ‖∇u‖2,2,
where we took into account that 2/q+n/p = n+ 1. By applying twice Young’s
inequality we end up with

‖(v · ∇)u‖q,p ≤ C(n, q, p)
(
‖v‖22,∞ + ‖∇v‖2−p2,2 ‖∇u‖p2,2

)

≤ C(n, q, p)
(
‖v‖22,∞ + ‖∇v‖22,2 + ‖∇u‖22,2

)
.

�
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We turn to the proof of our results on weak solutions for arbitrary space
dimension n ≥ 2.

Proof. (of Theorem 1.2). Since the right hand side of (2.9) is bounded by
‖u0‖22,∞+‖A−1/2f‖22,2, we obtain that the sequence uk is bounded and therefore
has a weak limit u in the Leray-Hopf class. It remains to show that u is a weak
solution of (1.1). To this end let vk be the unique solution of

{
∂tv +Av = fk, t ∈ (0, T ),

v(0) = u0,k.
(2.13)

Observe that vk even converges strongly in

L∞((0, T ), L2
σ(Rn+)) ∩ L2((0, T ), Ĥ1(Rn+)).

Then wk := uk − vk converges weakly in the same class. Moreover, wk satisfies

{
∂twk +Awk = P (JNk uk · ∇)uk, t ∈ (0, T ),

wk(0) = 0.
(2.14)

Note that Lemma 2.2 implies that the right hand side of (2.14) is bounded
in Lq((0, T ), Lq(Rn+)) for q = (n + 2)/(n + 1). For finite T > 0 the maximal
regularity of the operator A then yields that the sequence wk is bounded in

W 1,q((0, T ), Lq(Rn+)) ∩ Lq((0, T ),D(Aq)).

Therefore we can apply [21, Chapter III, Theorem 2.1] to the result that wk
converges strongly in

L2
loc(R+ × Rn+).

Thus, also uk = wk + vk converges strongly to u in L2
loc(R+ × Rn+). In view

of this fact, it is easy to see that u is indeed a weak solution of system (1.1),
whereas the energy inequality for u is an obvious consequence of (2.8). �

Proof. (of Theorem 1.3). If u is a weak solution of (1.1) then Lemma 2.2
implies that

‖P (u · ∇)u‖q,p ≤ C
(
‖u‖22,∞ + ‖∇u‖22,2

)

for 1 < p, q < ∞ so that 2/q + n/p = n+ 1. Now set H := f − P (u · ∇)u and
consider the system

{
∂tv +Av = H, t ∈ (0, T ),

v(0) = u0.
(2.15)

Once again the maximal regularity of A implies that the solution to (2.15) is
uniquely determined and satisfies

‖∂tv‖q,p + ‖∇2v‖q,p ≤ C(‖u0‖Ipq + ‖f‖q,p + ‖u‖22,∞ + ‖∇u‖22,2).
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It remains to show that v = u. Although v must not necessarily be a
weak solution (in the L2-sense) of (2.15) by forming the dual pairing with
φ ∈ C∞c ((0, T ), Cc,σ(Rn+)) we obtain that v solves

∫ T

0

{−(v(t), ∂tφ(t)) + (v(t), Aφ(t))} dt =

∫ T

0

{(F (t), φ(t))} dt. (2.16)

Since u obviously solves (2.16) as well, we have that

∫ T

0

{(u(t)− v(t),−∂tφ(t) +Aφ(t))} dt = 0.

On the other hand for each ψ ∈ C∞c ((0, T ), Cc,σ(Rn+)) it is well known that the
dual system {

−∂tφ+Aφ = ψ, t ∈ (0, T ),
φ(0) = 0,

has a solution φ such that

φ ∈ W 1,r((0, T ), Ls(Rn+)) ∩ Lr((0, T ),W 2,s(Rn+))

for all r, s ∈ (1,∞). By a density argument this implies that

∫ ∞

0

∫

Rn+
(u− v)ψdtdx = 0

for all ψ ∈ C∞c ((0, T ), Cc,σ(Rn+)) which shows that u = v. The pressure gradient
now can be recovered by

∇p = (I − P )(∆u− (u · ∇)u).

This shows that we can obtain estimate (1.6) also for ∇p and Theorem 1.3 is
proved. �

3 Global regularity in two dimensions

Here we prove that the weak solution constructed in the proof of Theorem 1.2
is unique and regular for all times t > 0, if we assume that dimension n = 2.
Besides the results in Section 1 on weak solutions, for the proof a basic ingredient
will be the estimate

‖v‖4 ≤ C‖∇v‖1/22 ‖v‖
1/2
2 , (3.1)

valid for all v ∈ H1(R2
+), and which is a special case of the Gagliardo-Nirenberg

inequality.

Proof. (of Theorem 1.5). Let T ∈ (0,∞] and uk be the approximate sequence
constructed in Proposition 2.1. The proof of Theorem 1.5 includes two steps.
Step 1: Here we first prove that ∇u ∈ L∞((0, T ), L2(R2

+)). For this purpose
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we show that relation (2.11) holds with a constant C independent of k ∈ N.
Indeed, employing (3.1) we can estimate the the nonlinear term by

|(P (JNk uk(t) · ∇)uk(t), Auk(t))| ≤ C‖uk(t)‖4‖∇uk(t)‖4‖Auk(t)‖2
≤ C‖uk(t)‖1/22 ‖∇uk(t)‖2‖Auk(t)‖3/22

≤ C‖uk(t)‖22‖∇uk(t)‖42 +
1

2
‖Auk(t)‖22.

Hence similar to (2.10) we deduce

d

dt
‖A1/2uk(t)‖22 + 2‖Auk(t)‖22

≤ C
(
‖uk(t)‖22‖A1/2uk(t)‖42 + ‖fk(t)‖22

)
+ ‖Auk(t)‖22, (3.2)

for t ∈ (0, T ) and k ∈ N, but now with a constant C > 0 independent of k. We
set φk(t) := ‖uk(t)‖22‖A1/2uk(t)‖22. Rearranging (3.2) we therefore obtain

d

dt
‖A1/2uk(t)‖22 ≤ C

(
φk(t)‖A1/2uk(t)‖22 + ‖fk(t)‖22

)
.

Hence, having in mind that

∫ t

0

φk(s)ds ≤
(
‖u0(t)‖22 + ‖A−1/2f‖22,2

)2

for t ∈ (0, T ) and k ∈ N, completely analogous to (2.11) we deduce

‖A1/2uk(t)‖22 ≤ C
(
‖A1/2u0‖22 + ‖f‖22,2

)
exp

(
C
(
‖u0‖22 + ‖A−1/2f‖22,2

)2
)

valid for all t ∈ (0, T ) and k ∈ N. Consequently, we have that

A1/2uk → A1/2u weakly in L∞((0, T ), L2(R2
+)).

Note that integrating (3.2) over t also yields

‖A1/2uk‖22,∞ + ‖Auk(t)‖22
≤ C

(
‖uk‖22,∞‖A1/2uk(t)‖22,∞‖A1/2uk(t)‖22,2 + ‖fk(t)‖22

)
.

By the uniform boundedness of the right hand side we therefore see that
Au ∈ L2((0, T ), L2(R2

+)). This in turn implies that also P (u · ∇)u ∈
L2((0, T ), L2(R2

+)). In fact, applying the Hölder inequality and (3.1) gives us

‖P (u · ∇)u‖2,2 ≤ (‖u‖2,∞‖∇u‖2,2‖∇u‖2,∞‖Au‖2,∞)
1/2

,

and we deduce by using the equations (1.1) and (2.1) that also ∂tu,∇p ∈
L2((0, T ), L2(R2

+)).
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Step 2: Uniqueness. Let v be any other weak solution of (1.1). According to
Theorem 1.3 and Lemma 2.2 the difference w := u− v satisfies

{
∂tw +Aw + P (w · ∇)u+ P (v · ∇)w = 0, t ∈ (0, T ),

w(0) = 0,
(3.3)

in L4/3((0, T ), L4/3(R2
+)). On the other hand we infer from (3.1) that

‖w‖4,4 ≤ C‖w‖1/22,∞‖∇w‖
1/2
2,2 ,

which means that w is an element of the dual space of L4/3((0, T ), L4/3(R2
+)).

Thus we may form the dual pairing of w and the single terms in (3.3) which
yields

1

2

d

dt
‖w(t)‖22 + ‖A1/2w(t)‖22 =

2∑

j=1

(∂ju,w
jw)

≤ C‖A1/2u(t)‖2‖w(t)‖24
≤ C‖A1/2u(t)‖22,∞‖w(t)‖22 +

1

2
‖A1/2w(t)‖22,

and therefore that

d

dt
‖w(t)‖22 ≤ C‖w(t)‖22, t ∈ (0, T ).

The lemma of Gronwall then implies w = 0 and the assertion follows. �
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[10] E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grund-
gleichungen. Math. Nachr., 4:213–231, 1951.

[11] O.A. Ladyzhenskaya. Solution ”in the large” of the nonstationary bound-
ary value problem for the Navier-Stokes system with two space variables.
Commun. Pure Appl. Math., 12:427–433, 1959.

[12] O.A. Ladyzhenskaya. The Mathematical Theory of Viscous Incompressible
Flow. Gordon and Breach, New York, 1969.

[13] E. Lauga, M.P. Brenner, and H.A. Stone. Microfluids: The no-slip bound-
ary condition. 2005.
http://web.mit.edu/lauga/www/references/LaugaBrennerStone review slip 05 pdf.

[14] J. Leray. Etude de diverses equations integrales non lineaires et de quelques
problemes que pose l’hydrodynamique. J. Math. Pures Appl., 12:1–82,
1933.

[15] E. P. Muntz. Rarefied-gas dynamics. Ann. Rev. Fluid Mech., 21:387–417,
1989.

[16] A. Noll and J. Saal. H∞-calculus for the Stokes operator on Lq-spaces.
Math.Z., 244:651–688, 2003.

[17] J. Saal. Stokes and Navier-Stokes equations with Robin boundary condi-
tions in a half-space. J. Math. Fluid Mech., 8:211–241, 2006.

[18] J. Saal. Strong solutions to the Navier-Stokes equations in bounded and
unbounded domains with a moving boundary. Electronic Journal of Dif-
ferential Equations, to appear.

[19] J. Saal. Robin Boundary Conditions and Bounded H∞-Calculus for the
Stokes Operator. PhD thesis, TU Darmstadt. Logos Verlag, Berlin, 2003.

[20] H. Sohr. The Navier-Stokes Equations. An Elementary Functional Analytic
Approach. Birkhäuser, 2001.
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