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Abstract

We prove that the Stokes operator with Robin boundary conditions is the generator of a

bounded holomorphic semigroup on L∞σ (Rn+), which is even strongly continuous on the space
BUCσ(Rn+). Contrary to that result it is also proved that there exists no Stokes semigroup on
L1
σ(Rn+), except if we assume the special case of Neumann boundary conditions. Nevertheless,

we also obtain gradient estimates for the solution of the Stokes equations in L1
σ(Rn+) for all

types of Robin boundary conditions.
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1 Introduction

Here we consider the Stokes equations with Robin boundary conditions





∂tu−∆u+∇p = 0 in Rn+ × (0,∞),
div u = 0 in Rn+ × (0,∞),
u(0) = u0 in Rn+,
Tαu = 0 in ∂Rn+ × (0,∞),

(1)

i.e., the trace operator Tα is given by

Tαu :=

(
αu′ − ∂nu′

un

)∣∣∣∣
∂Rn+

, (2)

where u′ denotes the tangential part of u and α ∈ [0,∞]1. Observe, that the cases α = 0 or α =∞
correspond to classical Neumann or Dirichlet boundary conditions respectively.

The particular matter in our investigation of (1) are not only the Robin boundary conditions,
but also the function spaces for the initial value u0. The most available literature, which deals with
the Stokes equations in the Lq-framework, only includes the case where 1 < q < ∞. However,
in this note we examine system (1) for initial values u0 in L1(Rn+) or L∞(Rn+). In particular
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we will prove resolvent estimates for the solution of the associated resolvent problem to (1) in
solenoidal subspaces of L∞(Rn+). This leads to a generation results for the Stokes operator with
Robin boundary conditions in the spaces

L∞σ (Rn+) := {u ∈ L∞(Rn+) : (u,∇p) = 0, p ∈ Ŵ 1,1(Rn+)}, (3)

and
BUCσ(Rn+) = {u ∈ BUC(Rn+) : div u = 0, un|∂Rn+ = 0},

where BUC(Rn+) denotes the space of bounded uniformly continuous functions in Rn+. One diffi-
culty coming up in these spaces is to give a rigorous definition of the Stokes operator. Observe that
it can not be defined in the usual way used in Lqσ(Rn+) for 1 < q <∞. This is due to the fact that
the Helmholtz projection, associated to the Helmholtz decomposition Lq(Rn+) = Lqσ(Rn+)⊕Gq(Rn+)
for 1 < q <∞ (see [Sol77], [McC81], [BM88]), does not act as a bounded operator on L∞(Rn+) or
L1(Rn+). Therefore we will give a definition of the Stokes operator with Robin boundary conditions
through its resolvent.

The situation in L1(Rn+) is different. According to a result in [DHP01] it is known that in the
case of Dirichlet boundary conditions there exists no Stokes semigroup in

L1
σ(Rn+) = L1(Rn+) ∩ L2

σ(Rn+)
‖·‖1

.

On the other hand, by a reflection argument it can be easily seen that the Stokes operator with Neu-
mann boundary conditions is the generator of a bounded holomorphic C0-semigroup on L1

σ(Rn+).
Thus, the natural question arises, what happens in between, i.e., if one considers a mixture of
these two special types of Robin boundary conditions. In this paper we give a complete answer
to this question. It turns out, that the generation result holds if and only if we assume Neumann
boundary conditions, i.e., in the case α = 0. In other words, whenever we add an arbitrary small
Dirichlet part to the Neumann boundary conditions, the generation result in L1

σ(Rn+) fails. Let us
remark that the non generation result in L1(Rn+) for Dirichlet boundary conditions is also phys-
ically motivated. Indeed, in [Koz98] it is proved that the existence of a local strong solution of
the Navier-Stokes equations with Dirichlet boundary conditions in L1(Ω) for an exterior domain
Ω ⊆ Rn implies that no force could act on the boundary. This would mean that the Navier-Stokes
equations are physically meaningless, hence one does not expect a generation result in L1 to be
valid. In spite of that, we can prove gradient estimates ‖∇u‖1 ≤ C‖u0‖1 for all types of Robin
boundary conditions and initial values in L1

σ(Rn+). We summarize the main results presented in
this paper. In spaces of bounded functions we have

Theorem 1.1 Let α ∈ [0,∞] and

Xσ ∈
{
L∞σ (Rn+),BUCσ(Rn+)

}
.

The Stokes operator with Robin boundary conditions −Aα is the generator of a bounded holomor-
phic semigroup on Xσ. The semigroup is even strongly continuous if Xσ = BUCσ(Rn+).

In L1
σ(Rn+) we will obtain the following somehow surprising result.

Theorem 1.2 Let α ∈ [0,∞]. The Stokes operator with Robin boundary conditions Aα is the
generator of a semigroup on L1

σ(Rn+) if and only if α = 0, i.e., in the case of Neumann boundary
conditions.
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In spite of Theorem 1.2 we will be able to prove gradient estimates to be valid in all spaces
considered.

Theorem 1.3 Let α ∈ [0,∞] and let

Xσ ∈
{
L∞σ (Rn+),BUCσ(Rn+), L1

σ(Rn+)
}
.

The Stokes semigroup (e−tAα)t≥0 satisfies the estimate

‖∇e−tAαf‖Xσ ≤ Ct−1/2‖f‖Xσ , t > 0, f ∈ Xσ .

Note that for Xσ = L1
σ(Rn+) the above estimate is obtained by a density argument and the fact

that the Stokes semigroup on L2
σ(Rn+) can be applied to functions f ∈ L1(Rn+) ∩ L2

σ(Rn+).

In the previous literature problem (1) with initial values in L∞σ (Rn+) and L1
σ(Rn+) was only

investigated for the special case of Dirichlet boundary conditions. For example the counterexample
in L1

σ(Rn+) and the generation result for the Stokes operator with Dirichlet boundary conditions
in L∞σ (Rn+) and BUCσ(Rn+) are contained in [DHP01]. Based on the Green matrix for the Stokes
system in Rn+, a similar result is proved in a space of bounded and continuous solenoidal fields in
[Sol03]. There the author also applied his result for the linear problem to the nonlinear Navier-
Stokes equations and proved a local existence result for nondecaying initial values. Another
existence result of local-in-time solutions for the Navier-Stokes equations is proved in [IM] for
initial values in L∞σ (Rn+) and BUCσ(Rn+). Their proof relies on the results obtained in [DHP01].
Gradient estimates for Dirichlet boundary conditions in L1

σ(Rn+) are proved in [GMS99], [SS01],
and in L∞σ (Rn+) in [Shi99], [SS01].

The content of this article can be regarded as a generalization to Robin boundary conditions
of the above mentioned results in [DHP01], [GMS99], [Shi99], and [SS01] for Dirichlet boundary
conditions. Our results are based on an explicit solution formula constructed in [Saa06]. The
construction of this formula is similar to [DHP01]. However, we use a different method to derive
estimates for the solution. In [DHP01] the authors provide pointwise kernel estimates, whereas
our proofs rely on a multiplier result for rotation invariant multipliers. The mentioned results in
[GMS99], [Shi99], and [SS01] are based on Ukai’s formula for the solution of the Stokes equations
with Dirichlet boundary conditions (see [Uka87]).

One motivation for the author to consider the Stokes equations with Robin boundary conditions
of course was the just mentioned question of what happens in between the generation result for
Neumann boundary conditions and the non generation result for Dirichlet boundary conditions in
L1(Rn+). But we want to point out that the Robin boundary conditions in (1) are equivalent to

(
αu′ + (νT (u, p))′

un

)∣∣∣∣
∂Rn+

= 0,

where T (u, p) = (∇u + (∇u)τ − Ip) denotes the stress tensor and ν the outer normal at ∂Rn+.
These boundary conditions are usually called partial slip boundary conditions. This means, from
the physical point of view, Robin boundary conditions describe something in between no slip, i.e.,
Dirichlet boundary conditions, and full slip, i.e., Neumann boundary conditions. Although the
most common boundary conditions used in the fluid mechanics literature are no slip boundary
conditions, it is known that in some situations, e.g. for gas flows, non-Newtonian fluids, or moving
contact lines, partial slip can occur (see e.g. [Mun89], [BG92], and [DV79] respectively). Moreover,
physico-chemical parameters as wetting, shear rate, surface charge, and surface roughness can
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influence the behavior of a fluid at the solid-liquid interface. We refer to [LBS05] for a review
on recent investigations on this subject and to the literature cited therein. This shows that in
certain situations it might be more appropriate to assume partial slip boundary conditions, which
is another motivation for the examination of Stokes and Navier-Stokes equations with Robin
boundary conditions.

We want to remark that the content of this paper is included in [Saa03] and it extends the
previous work [Saa06], which deals with (1) in Lq(Rn+) for 1 < q <∞. In order to prove resolvent
estimates in [Saa06], we made use of the rotation invariance in n−1 dimensions of large parts of the
constructed solution formula. This enabled us to apply the bounded H∞-calculus of the Poisson
operator (−∆Rn−1)1/2 on Lq(Rn−1). In other words we regarded the computed representation of
the solution as a function g of the Poisson operator (−∆Rn−1)1/2, which can be estimated by

‖g((−∆Rn−1)1/2)‖L(Lq(Rn−1)) ≤ C‖g‖H∞(Σ), (4)

where H∞(Σ) denotes the space of all bounded holomorphic functions on a certain complex sector
Σ, equipped with the infinity norm. Thus, besides the holomorphy of g, it was sufficient to verify
pointwise estimates on a complex sector for the terms in the representation of the Stokes resolvent,
regarded as functions of (−∆Rn−1)1/2. These estimates also provided a sufficient decay in the
normal component xn, such that the q-integration over xn afterwards was feasible for 1 < q <∞.
In [Saa06] this method leads to resolvent estimates and a bounded H∞-calculus for the Stokes
operator with Robin boundary conditions in Lqσ(Rn+) for 1 < q <∞.

To estimate the solution formula in L1(Rn+) and L∞(Rn+) we will adapt the methods in [Saa06].
However, for this purpose we have to circumvent the following two main difficulties. Firstly, the
boundedH∞-calculus for the Poisson operator |∇′| = (−∆Rn−1)1/2 on Lq(Rn−1), which is the main
ingredient for the proof of the estimates in [Saa06], is neither valid in L1(Rn−1) nor in L∞(Rn−1).
Here we have to provide an appropriate substitute, which is based on the above mentioned classical
result on rotation invariant multipliers. This result enables us to obtain estimates as (4), but now
also valid in L1(Rn−1) and L∞(Rn−1). Besides the holomorphy and the boundedness on a complex
sector, here the functions also have to be holomorphic in 0 and have to satisfy a certain decay at
infinity, and we will show that the terms in our solution formula still satisfy these two additional
conditions. The second problem we have to deal with is the unboundedness of the Riesz operator
R′ := F−1 iξ

′

|ξ′|F in L1(Rn−1) and L∞(Rn−1). Roughly speaking, we will overcome this problem
by rephrasing the solution formula in a way such that no more Riesz operator appears.

We organized this article as follows. In Section 2 we introduce the notation and establish
the mentioned substitute (Corollary 2.3) for the bounded H∞-calculus of the Poisson operator
which is only valid in Lq(Rn−1) for 1 < q < ∞. We also recall some known properties of the
Laplacian in Rn and Rn+ and the explicit solution formula for the system (1) constructed in
[Saa06]. With the aid of these preparations, in Section 3 we will first prove that the Stokes
operator with Neumann boundary conditions is the generator of a bounded holomorphic C0-
semigroup on L1

σ(Rn+). Furthermore, we state the counterexample for the other types of mixed
boundary conditions, as well as the mentioned gradient estimates for the Stokes semigroup on
L1(Rn+), valid for all considered boundary conditions. In Section 4 then we will verify resolvent
estimates in L∞(Rn+). This leads to the result that the Stokes operator is the generator of a
bounded holomorphic semigroup on the space L∞σ (Rn+), which is even strongly continuous on the
spaces C0,σ(Rn+) and BUCσ(Rn+).
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2 Preliminaries

2.1 Notations

In most parts of this note we use standard notation. For m ∈ {0, 1, . . . ,∞} and a domain Ω ⊆ Rn,
by Cm(Ω) we denote the space of all m-times continuously differentiable functions and by Cmc (Ω)
its subspace consisting of all functions in Cm(Ω) which are compactly supported. Furthermore,
let Cmc (Ω) := {u �Ω: u ∈ Cmc (Rn)} and Cmb (Ω) be the Banach space of all m-times continuously
differentiable functions whose derivatives up to order m are bounded. Moreover, we write BUC(Ω)
for the space of all bounded and uniformly continuous functions in Ω.

We denote the Fourier transform defined on S(Rn), the Schwartz space of rapidly decreasing
functions, by

û(ξ) := Fu(ξ) :=
1

(2π)n/2

∫

Rn
e−ix·ξu(x)dx, u ∈ S(Rn).

For q ∈ [1,∞], Lq(Ω) denotes the Lebesgue space, which consists of all q-integrable functions if
1 ≤ q <∞ and L∞(Ω) is the space of all functions u that satisfy ‖u‖L∞(Ω) := ess supx∈Ω|u(x)| <
∞. We define by Lqσ(Ω) := C∞c,σ(Ω)

‖·‖q
the space of solenoidal functions in Lq(Ω) for 1 < q <∞,

where C∞c,σ(Ω) denotes all C∞c (Ω)-functions with vanishing divergence, i.e., div u = ∇ · u = 0. If
Ω = Rn+ we will also make use of the well-known fact that

Lqσ(Rn+) = {u ∈ Lq(Rn+) : div u = 0, un �∂Rn+= 0}.

Furthermore, we set Lqloc(Ω) := {u ∈ S ′(Ω) : u ∈ Lq(K) for each compact K ⊆ Ω}. Wm,q(Ω)
denotes the Sobolev space of order m ∈ N0. Its norm is given by

‖u‖Wm,q(Ω) :=




m∑

j=0

‖∇ju‖qLq(Ω)




1/q

,

where ∇j is the tensor of all possible j-th order differentials. Moreover, Wm,q
0 (Ω) denotes the

closure of C∞c (Ω) in Wm,q(Ω). If not otherwise stated, we also write ‖ · ‖q := ‖ · ‖Lq(Ω) and
‖ · ‖m,q := ‖ · ‖Wm,q(Ω).

We also make use of the homogeneous Sobolev space Ŵ 1,q(Ω) consisting of all L1
loc(Ω)-functions

u having finite Dirichlet energy
∫

Ω
|∇u|qdx, modulo constants. It becomes a Banach space when

equipped with the norm

‖u‖cW 1,q(Ω) :=

(∫

Ω

|∇u|qdx
)1/q

.

We will use the same notation for the corresponding spaces of vector fields on Ω, i.e., (Lq(Ω))n =
Lq(Ω), (W k,q(Ω))n = W k,q(Ω), etc. We denote by q′ the Hölder conjugated exponent, i.e., 1

q′+
1
q =

1. If u ∈ Lq(Ω) and v ∈ Lq
′
(Ω) we use the notation (u, v) := (u, v)Ω :=

∫
Ω uvdx for the dual

pairing.

If X and Y are Banach spaces, the space of all bounded linear operators from X to Y is
denoted by L(X,Y ), and L(X) is the abbreviation for L(X,X). For any closed operator A in X ,
its domain and range are denoted by D(A) and R(A), respectively. Its resolvent set is denoted
by ρ(A) and its spectrum by σ(A). Furthermore, we call A a generator, if (etA)t≥0 satisfies the
semigroup properties.
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As usual C, M , . . . denote constants that may change from line to line. Sometimes we would
like to express a special dependence on some parameter s. Then we use either the subscript
notation Cs, Ms, . . . or we write it as an argument C(s), M(s), . . . .

2.2 Rotation Invariant Multipliers

In this subsection we establish the substitute for the H∞-calculus of the Poisson operator |∇′|,
which is only valid in Lq(Rn) for 1 < q < ∞ (Proposition 2.2 and Corollary 2.3). The result
is essentially a consequence of a multiplier result for rotation invariant multipliers and Cauchy’s
estimate formula for holomorphic functions. Compared to the H∞-calculus of |∇′|, besides the
boundedness and the holomorphy on a sector, here a function m also has to be holomorphic in 0
and has to satisfy a decay condition (see condition (5)). But then the boundedness of m(|∇′|) is
valid in Lq(Rn) for all q ∈ [1,∞]. We start with the multiplier result.

For k ∈ N0 = N ∪ {0} we denote by BVk+1 the normed space of all functions m ∈
C0([0,∞),C) := {m ∈ C([0,∞),C) : limt→∞m(t) = 0} with m,m′, . . . ,m(k) being locally ab-
solutely continuous on (0,∞) and satisfying limt→∞m(j)(t) = 0 for j = 0, . . . , k and

‖m‖BVk+1
=

1

Γ(k + 1)

∫ ∞

0

tk|m(k+1)(t)|dt <∞.

By a simple calculation we can see that BVk+1 ↪→ BVk. The introduction of this space allows us
to formulate the next lemma about rotation invariant multipliers. A proof can be found in [Tre73].

Lemma 2.1 Let n, k ∈ N satisfy k > n/2 and let m ∈ BVk+1. Then the function m(| · |) : Rn →
C, ξ 7→ m(|ξ|) belongs to the space FL1(Rn) := {Ff : f ∈ L1(Rn)} and there is a constant
C = C(n, k) > 0 such that

‖F−1m(| · |)‖L1(Rn) ≤ C‖m‖BVk+1
.

As a consequence we obtain the following proposition for bounded holomorphic functions m,
where we denote the space of bounded holomorphic functions on a domain G ⊆ C by H∞(G).

Proposition 2.2 Let m : [0,∞)→ C. Assume there exist φ ∈ (0, π), ε ∈ (0, 1), and C0 > 0 such
that m ∈ H∞(Σφ ∪ {0}), where Σφ = {z ∈ C \ {0} : arg z < φ}, and

|zεm(z)| ≤ K, z ∈ Σφ. (5)

Then [ξ 7→ m(|ξ|)] ∈ FL1(Rn) and there is a constant C > 0 such that

‖F−1m(| · |)‖L1(Rn) ≤ CK.

Proof. In view of Lemma 2.1 we have to prove that m ∈ BVk+1 for some k > n/2. Since
m ∈ H∞(Σφ ∪ {0}) ⊆ C∞([0,∞)), by (5) it immediately follows that m ∈ C0([0,∞)) and

all derivatives m(j) with j ≤ k are locally absolutely continuous functions on (0,∞). By the
holomorphy of m in 0 there is a δ0 > 0 such that m is holomorphic in Bδ0(0) ∪ Σφ, where
Br(w) := {z ∈ C : |z − w| < r}. Thus we may choose δi = δi(δ0) ∈ (0, 1), i = 1, 2, in a way such
that for

r : C→ (0,∞), z 7→ r(z) := δ1(Re z + δ2),

the ball Br(z)(z) lies completely in the domain Bδ0(0) ∪ Σφ for all z ∈ [0,∞) (see Figure 1). For
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Σφ

δB  (0)
0

δ2
z
r(z)

-

C

Figure 1: The ball with center z ∈ [0,∞) and radius r(z) is contained in Bδ0(0) ∪ Σφ.

t ∈ [0,∞) we therefore get by Cauchy’s formula and by our assumption (5) on m

|m(j)(t)| ≤ j!

r(t)j
max

|t−z|=r(t)
|m(z)| ≤ C(j, δ0)

1

(t+ δ2)j
max

|t−z|=r(t)

K

|z|ε

≤ C(j, δ0)

(t+ δ2)j
K

|t− r(t)|ε ≤
C(j, δ0)K

(t+ δ2)j |(1− δ1)t− δ1δ2|ε

for j ∈ N ∪ {0}. This implies limt→∞m(j)(t) = 0 for j ∈ N ∪ {0} and, if we set j = k + 1, that

‖m‖BVk+1
=

1

Γ(k + 1)

∫ ∞

0

tk|m(k+1)(t)|dt

≤ C(k, δ0)K

∫ ∞

0

tk
1

(t+ δ2)k+1|(1− δ1)t− δ1δ2|ε
dt

≤ C(k, δ0, ε)K. (6)

This yields the assertion. �
In the subsequent sections we will also frequently make use of the following corollary on mul-

tipliers depending on parameters. It is an immediate consequence of estimate (6).

Corollary 2.3 Let n ∈ N, I ⊆ Rn, and b : I → [0,∞), s 7→ b(s). Assume there exist φ ∈ (0, π),
ε ∈ (0, 1), and δ0 > 0, such that m : [0,∞) × I → C satisfies m(·, s) ∈ H∞(Σφ ∪ Bδ0(0)) for all
s ∈ I and

|zεm(z, s)| ≤ b(s), z ∈ Σφ, s ∈ I.
Then [ξ 7→ m(|ξ|, s)] ∈ FL1(Rn) and there is a constant C > 0 such that

‖F−1m(| · |, s)‖L1(Rn) ≤ Cb(s), s ∈ I. (7)
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2.3 Some known results for the Laplacian

Here we recall some well-known results for the Laplace and Poisson operator in L1- and L∞-spaces,
which we will use in the sequel. Let n ∈ N and |∇| = (−∆Rn)1/2 the Poisson operator in Lq(Rn)
for 1 ≤ q ≤ ∞. Then we have the estimates

‖|∇|se−|∇|2mt‖L(Lq(Rn)) ≤ C

ts/2m
, t > 0, m ∈ N, s ≥ 0, 1 ≤ q ≤∞, (8)

‖∇je−|∇|2mt‖L(Lq(Rn)) ≤ C

tj/2m
, t > 0, m ∈ N, j ∈ N0, 1 ≤ q ≤∞. (9)

Let ∆D and ∆N be the Dirichlet Laplacian and the Neumann Laplacian on Lq(Rn+) for 1 ≤ q ≤ ∞
respectively, defined by their Lq-realizations

∆Du := ∆u, u ∈ D(∆D) := {v ∈ Lq(Rn+) : ∆v ∈ Lq(Rn+), v|∂Rn+ = 0},
∆Nu := ∆u, u ∈ D(∆N ) := {v ∈ Lq(Rn+) : ∆v ∈ Lq(Rn+), ∂nv|∂Rn+ = 0}.

Then for each ϕ0 ∈ (0, π) and 1 ≤ q ≤ ∞ there is a C = C(ϕ0) > 0 such that the resolvent
estimates

|λ|‖(λ −∆D)−1‖L(Lq(Rn+)) +
√
|λ|‖∇(λ−∆D)−1‖L(Lq(Rn+)) ≤ C, (10)

|λ|‖(λ−∆N )−1‖L(Lq(Rn+)) +
√
|λ|‖∇(λ−∆N )−1‖L(Lq(Rn+)) ≤ C (11)

are valid for all λ ∈ Σπ−ϕ0 . It is well-known that the resolvents of ∆D and ∆N can be represented
through the resolvent of the Laplacian in the whole space via reflection, namely as

(λ−∆D)−1f =
(
(λ−∆Rn)−1E+f

)
�Rn+ , f ∈ Lq(Rn+), (12)

and
(λ−∆N )−1f =

(
(λ−∆Rn)−1E−f

)
�Rn+ , f ∈ Lq(Rn+), (13)

respectively, where

(E±f)(x′, xn) =

{
f(x′, xn) : xn > 0,

±f(x′,−xn) : xn < 0.
(14)

Thus, estimates (10) and (11) immediately follow from estimates for the Laplacian in the whole
space ∆Rn , which can be obtained, as well as (8) and (9), for instance by an application of the
Mikhlin multiplier result.

2.4 A solution formula for the Stokes resolvent problem

Here we recall the explicit solution formula for the Stokes resolvent problem with Robin boundary
conditions obtained in [Saa06]. We also recall from [Saa06] some complex estimates for specific
terms occuring in the formula. In Sections 3 and 4 they will turn out to be the key estimates in
order to obtain estimates for the solution in L1(Rn+) and L∞(Rn+).

In the sequel we will adopt the notation in [Saa06]. In particular x′ := (x1, x2, . . . , xn−1) ∈
Rn−1 always denotes the first n−1 components of the variable x ∈ Rn+. Also for vector fields u and
operators R we write u = (u′, un) = (u1, . . . , un−1, un) and R = (R′, Rn) = (R1, . . . , Rn−1, Rn)
respectivly.
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Recall that the Stokes resolvent problem is given by

(SRP )f,λ,α





(λ−∆)u+∇p = f in Rn+,
div u = 0 in Rn+,
Tαu = 0 in Rn−1.

Here we assume λ ∈ Σπ−ϕ0 for some ϕ0 ∈ (0, π) and that f satisfies the compatibility conditions
div f = 0 and fn|∂Rn+ = 0. By applying partial Fourier transform, which we denoted by F ,
that is Fourier transform with respect to x′, in [Saa06, section 6] we established the following
representation for u:

u′ = (λ−∆D)−1f ′ −R′vn + e−ω(|∇′|)·φ′, (15)

un = (λ−∆D)−1fn + vn. (16)

Here R′ = F−1 iξ
′

|ξ′|F denotes the Riesz operator,

v̂n(ξ′, xn) := Fvn(ξ′, xn) := Mxn,λ(|ξ′|) [1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)] ĥn(ξ′) (17)

for (ξ′, xn) ∈ Rn+, and

φ̂′(ξ′) =
1

ω(|ξ′|) + α

(
ĥ′(ξ′) + α

iξ′

|ξ′|mλ(|ξ′|)ĥn(ξ′)

)
, ξ′ ∈ Rn−1. (18)

The functions ω, Mxn,λ, and mλ are given by

ω(z) :=
√
λ+ z2, (19)

Mxn,λ(z) :=
e−ω(z)xn − e−zxn

ω(z)− z , (20)

mλ(z) :=
1

ω(z) + z + α
, (21)

whereas h = (h′, hn) is defined as

ĥn(ξ′) :=

∫ ∞

0

e−ω(|ξ′|)sf̂n(ξ′, s)ds, ξ′ ∈ Rn−1, (22)

ĥ′(ξ′) :=

∫ ∞

0

e−ω(|ξ′|)sf̂ ′(ξ′, s)ds, ξ′ ∈ Rn−1. (23)

Applying once integration by parts and using the compatibility conditions div f = 0 and fn �∂Rn+=
0 for f we easily observe that

ω(|ξ′|)ĥn(ξ′) = −iξ′ · ĥ′(ξ′), ξ′ ∈ Rn−1. (24)

This relation will be of crucial importance to overcome the unboundedness of the Riesz operators
Rj in L1(Rn−1) and L∞(Rn−1) in Sections 3 and 4. Note that in [Saa06] also a corresponing
representation for the pressure is derived. It is given by

p̂(ξ′, xn) = −e−|ξ
′|xn ω(|ξ′|) + |ξ′|

|ξ′| αmλ(|ξ′|)ĥn(ξ′). (25)
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Remark 2.4 Let ϕ0 ∈ (0, π/2) and ϕ ∈ (0, ϕ0/2). Then there is a constant C = C(ϕ0, ϕ), such
that

(a) | argω(z)| ≤ π−ϕ0

2 ,

(b) Re ω(z) ≥ C
√
|λ|,

(c) Re ω(z) ≥ C|z|

for all λ ∈ Σπ−ϕ0 and z ∈ Σϕ.

We set
Gλ(z) :=

z

ω(z)
. (26)

By elementary calculations we can obtain the following estimates.

Lemma 2.5 Let σ, ρ ≥ 0, ϕ0 ∈ (0, π/2) and ϕ ∈ (0, ϕ0/4). Then there are constants C, δ > 0
such that

(a) |Gλ(z)| ≤ C,

(b) |z1+ρMxn,λ(z)| ≤ C e−δ|z|xn

xρn(1 +
√
|λ|xn)

,

(c) |ω(z)mλ(z)| ≤ C,

(d) |αmλ(z)| ≤ C α√
|λ|+ α

,

(e) |zmλ(z)| ≤ C,

(f) |ω(z)σe−ω(z)xn | ≤ C e−δ
√
|λ|xn

xσn
,

for all z ∈ Σϕ, xn > 0 and λ ∈ Σπ−ϕ0 .

For a detailed proof of the lemmas above we refer to [Saa06, Lemma 5.3] or [Saa03, Lemma 4.3].

3 The L1-case

We will start our discussion in this section with the case of Neumann boundary conditions. In
this case the problem can be completely reduced to a problem for the Laplacian due to the
fact that the crucial terms in the solution formula vanish. Since the generation result for the
Laplacian in L1(Rn+) is well-known, this property transfers immediately to the Stokes operator
(see Theorem 3.3). This is not the case for all other types of Robin boundary conditions. As long
as α > 0 the crucial terms do not vanish, which implies that there is no generation result in that
case. In fact, in Theorem 3.5 we give a counterexample of a right hand side f ∈ L1

σ(Rn+) such that
the corresponding solution u is not an L1-function. Utilizing the complex estimates in Lemma 2.5
we then will proceed by proving estimates for the remainder term v of the solution formula (15),
(16) in the spaces L1(Rn−1) and L∞(Rn−1). Based on these estimates and Lemma 2.5 we prove
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in Theorem 3.7 that the solution u satisfies the typical semigroup gradient estimates in L1(Rn+),
in spite of the fact that the solution itself does not belong to L1(Rn+).

Setting α = 0, in view of (17), (18), and (23) we see that

vn = 0 and φ̂′ =
1

ω
ĥ′ =

∫ ∞

0

e−ωs

ω
f̂ ′(·, s)ds. (27)

Furthermore, according to the results in [Saa06] we have the representations

F [(λ−∆D)−1fn](ξ′, xn) =

∫ ∞

0

k−(ξ′, xn, s, λ)f̂n(ξ′, s)ds (ξ′, xn) ∈ Rn+, (28)

and

F [(λ−∆N )−1f ′](ξ′, xn) =

∫ ∞

0

k+(ξ′, xn, s, λ)f̂ ′(ξ′, s)ds (ξ′, xn) ∈ Rn+, (29)

where

k±(ξ′, xn, s, λ) :=
e−ω(|ξ′|)|xn−s| ± e−ω(|ξ′|)(xn+s)

2ω(|ξ′|) .

Inserting (27) and (28) in (15) we deduce

û′ =

∫ ∞

0

k−(ξ′, xn, s, λ)f̂ ′(ξ′, s)ds+

∫ ∞

0

e−ω(xn+s)

ω
f̂ ′(·, s)ds

=

∫ ∞

0

k+(ξ′, xn, s, λ)f̂ ′(ξ′, s)ds.

Hence the formula for u = (u′, un) simplifies considerably. Namely, in this case we have that

u′ = (λ−∆N )−1f ′, (30)

un = (λ−∆D)−1fn. (31)

In view of (10) and (11) we therefore obtain the following result.

Corollary 3.1 Let f ∈ L1(Rn+) ∩ Lqσ(Rn+) for some q ∈ (1,∞). For α = 0, i.e., in the case of
Neumann boundary conditions, there is a constant C = C(ϕ0) > 0, such that the solution u of the
Stokes resolvent problem (SRP )f,λ,α satisfies

|λ|‖u‖1 +
√
|λ|‖∇u‖1 ≤ C|‖f‖1, λ ∈ Σπ−ϕ0 .

Next, let

B :=




−∆N 0 . . . 0

0
. . .

. . .
...

...
. . . −∆N 0

0 . . . 0 −∆D




be defined in L1(Rn+) with domain

D(B) := D(∆N )n−1 ×D(∆D).

The formulas (30) and (31) motivate the following definition.

11



Definition 3.2 Let L1
σ(Rn+) := L1(Rn+) ∩D‖·‖1 , where D =

⋂
q∈(1,∞) L

q
σ(Rn+). We call

ANu := Bu, u ∈ D(AN ) := D(B) ∩ L1
σ(Rn+)

the Stokes operator with Neumann boundary conditions in L1
σ(Rn+).

The next result shows that the operator AN can be regarded as the restriction of B to L1
σ(Rn+),

i.e.,
AN = B �L1

σ(Rn+) .

We remark that this is valid for all q ∈ [1,∞], i.e., AN,q = B �Lqσ(Rn+).

Theorem 3.3 The operator −AN is the generator of a bounded holomorphic C0-semigroup on
L1
σ(Rn+). Moreover, ρ(AN ) = C \ [0,∞), and, if uf (λ) is the unique solution of (SRP )f,λ,0 for

f ∈ L1
σ(Rn+) ∩ D, then uf (λ) = (λ + AN )−1f for −λ ∈ ρ(AN ). The semigroup (e−tAN )t≥0 also

satisfies the gradient estimate

‖∇e−tANf‖1 ≤ Ct−1/2‖f‖1, t > 0, f ∈ L1
σ(Rn+). (32)

Proof. Since the operator B is the generator of a bounded holomorphic C0-semigroup on Lq(Rn+),
1 ≤ q <∞, it remains to verify the invariance of the subspace L1

σ(Rn+) under the action of (λ+B)−1

in order to prove the generation result for AN . To this end, pick λ ∈ C\[0,∞) and f ∈ L1(Rn+)∩D.
By virtue of representation (30) and (31) it readily follows that

div (λ+B)−1f = div uf (λ) = 0 and that ((λ+B)−1f)n �∂Rn+= 0,

which implies that (λ+B)−1f ∈ L1(Rn+)∩D. The continuity of (λ+B)−1 in L1(Rn+) then yields
(λ+B)−1(L1

σ(Rn+)) ⊆ L1
σ(Rn+).

In order to show the gradient estimates observe that for f ∈ L1
σ(Rn+) we may write

e−tANf =
1

2πi

∫

Γ

e−λt(λ−AN )−1fdλ

with Γ = {teiθ : ∞ > t > ε} ∪ {εeit : θ ≤ t ≤ 2π − θ} ∪ {te−iθ : ε < t < ∞} for ε > 0 and
θ ∈ (0, π/2). By Corollary 3.1 and a density argument we deduce

‖∇e−tANf‖1 = ‖ 1

2πi

∫

Γ

e−λt∇(λ−AN )−1fdλ‖1

≤ C

(
ε1/2

∫ 2π−θ

θ

eεt cos θds+

∫ ∞

ε

e−st cos θ

√
s

ds

)
‖f‖1

for all f ∈ L1
σ(Rn+). Letting ε→ 0 yields (32). �

Remark 3.4 Note that L1
σ(Rn+) coincides with the space L1(Rn+) ∩ Lqσ(Rn+)

‖·‖1
for each q ∈

(1,∞). In fact, let f ∈ L1(Rn+) ∩ Lqσ(Rn+)
‖·‖1

, (vk) ⊆ L1(Rn+) ∩ Lqσ(Rn+) such that vk → f in
L1(Rn+), and consider the sequence

uk := uk,jk := exp(− 1

jk
B)vk , k, jk ∈ N,
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with B defined as above. Choosing jk for each k ∈ N and ε > 0 in a way, such that
‖ exp(− 1

jk
B)vk − vk‖1 < ε/2, it easily follows that uk → f in L1(Rn+). Moreover, since

exp(− 1
jk
B)g = exp(− 1

jk
AN,q)g for g ∈ Lqσ(Rn+), 1 < q < ∞, by the Lp − Lq-estimates in [Saa06,

Corollary 5.8] for exp(− 1
jk
AN,q) we see that (uk) ⊆ Lpσ(Rn+) for each p ∈ [q,∞). In view of

the inclusion Lqσ(Rn+) ∩ L1(Rn+) ⊆ Lpσ(Rn+) for p ∈ (1, q], this implies that uk ∈ L1(Rn+) ∩ D.
Consequently, f ∈ L1

σ(Rn+).

As we observed in the case of Neumann boundary conditions the crucial terms in the solution
formula for u = (u′, un) vanish. That is not the case if α ∈ (0,∞]. Here the corresponding result
to Corollary 3.1 reads as follows.

Theorem 3.5 Let α ∈ (0,∞]. For λ ∈ R+ there is an f ∈ L1(Rn+) ∩ L2
σ(Rn+) such that u 6∈

L1(Rn+), where (u, p) is the solution of problem (SRP )f,λ,α given in (15), (16), and (25).

Proof. For the proof we consider representation (16) for the n-th component of the Stokes flow
u and denote the two addends of un by un1 and un2 . Next we define a special function f satisfying
the assumptions of the theorem such that the L1(Rn+)-norm of un2 is infinite. Since in view of (10),
un1 for each f ∈ L1

σ(Rn+) is an L1-function we deduce

‖u‖L1(Rn+) ≥ ‖un‖L1(Rn+) =∞

for this special f .

The construction of our counterexample is similar to [DHP01]. We will see that f is constructed
in a way such that the L1(Rn+)-norm of the n-th component of the corresponding solution can be
estimated from below by the L1(Rn−1)-norm of RjGr, where Rj is a Riesz operator and Gr is the
Gauss kernel. However, as an obvious consequence of well-known properties of the Hardy space
H1(Rn−1) we have RjGr 6∈ L1(Rn−1). This will imply the result.

For this purpose, first let us remind the reader to well-known properties of the Hardy space
H1(Rn). It is defined as

H1(Rn) := {f ∈ L1(Rn) : f∗ ∈ L1(Rn)},

where f∗(x) := supt>0 |(Gt ∗ f)(x))|, x ∈ Rn, and Gt denotes the heat kernel given by Gt(x) =
1

(4πt)n/2 e−|x|
2/4t, x ∈ Rn, t > 0. Equipped with the norm ‖f‖H1 := ‖f∗‖1 the space H1(Rn)

becomes a Banach space and we have that
∫
Rn f = 0 for f ∈ H1(Rn) (see [Ste93] or [FS72]). It is

well-known that an L1(Rn)-function f belongs to H1(Rn) if and only if its Riesz transforms Rjf
belong to L1(Rn) for j = 1, . . . , n. This equivalent definition will be of crucial importance in what
follows.

Now let λ ∈ R+. We define γ by

γ(|ξ′|) := 1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|) =
α

ω(|ξ′|) + |ξ′|+ α
(33)

and consider the function

f̂n(ξ′, xn) :=
iξj

ω(|ξ′|)4γ(|ξ′|)x
2
ne−ω(|ξ′|)xn ĝr(ξ

′), (ξ′, xn) ∈ Rn+,

where j ∈ {1, . . . , n− 1} will be fixed later and gr is defined as

gr := (λ −∆′)4Gr ∈ S(Rn−1) ⊆ Lq(Rn−1), 1 ≤ q ≤ ∞,
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for some fixed r ∈ (0,∞). Setting

f := (0, . . . , 0, f j , 0, . . . , 0, fn)

with

f̂ j(ξ′, xn) := − 1

ω(|ξ′|)4γ(|ξ′|)
(
2xn − ω(|ξ′|)x2

n

)
e−ω(|ξ′|)xn ĝr(ξ

′), (ξ′, xn) ∈ Rn+,

it follows that div f = 0 and f �∂Rn+= 0. To see that f fulfills our assumptions it remains to show

f ∈ L1(Rn+) ∩ L2(Rn+). To this end observe that

1

ω(z)4γ(z)
=

1

ω(z)4

1

α
(ω(z) + z + α)

=
1

ω(z)3

[
1

α
(1 +G(z)) +

1

ω(z)

]
, z ∈ Σϕ.

Hence, for ε ∈ (0, 1) we may conclude by Lemma 2.5 (a)

∣∣∣∣
zε

ω(z)4γ(z)

∣∣∣∣ =

∣∣∣∣G(z)ε
1

ω(z)3−ε

[
1

α
(1 +G(z)) +

1

ω(z)

]∣∣∣∣

≤ C(λ)

∣∣∣∣
1

α
(1 +G(z)) +

1

ω(z)

∣∣∣∣

≤ C(λ)

(
1

α
+

1√
λ

)

for z ∈ Σϕ. Therefore, according to Proposition 2.2, ξ 7→ 1
ω4(|ξ|)γ(|ξ|) is a Fourier multiplier on

Lq(Rn−1) for 1 ≤ q ≤ ∞ and α ∈ (0,∞]. By virtue of Lemma 2.5 (f) this leads to

‖fn‖Lq(Rn+) =

(∫ ∞

0

‖F−1 1

ω(| · |)4γ(| · |)x
2
ne−ω(|·|)xnF∇′gr‖qLq(Rn−1)dxn

)1/q

≤ C(λ)

(∫ ∞

0

x2q
n e−c1

√
λqxndxn

)1/q

‖∇′gr‖Lq(Rn−1)

≤ C(λ)‖∇′gr‖Lq(Rn−1)

for 1 ≤ q <∞. Analogously we see that f j ∈ Lq(Rn+), which implies f ∈ Lq(Rn+) for 1 ≤ q <∞.

Now let us calculate the L1(Rn+)-norm of un2 , the second addend of un. Note that

[1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)] ĥn(ξ′) =
iξj

4ω(|ξ′|)7
ĝr(ξ

′)

and

−
∫ ∞

0

Mxn,λ(|ξ′|)dxn =

∫ ∞

0

e−|ξ
′|xn − e−ω(|ξ′|)xn

ω(|ξ′|)− |ξ′| dxn =
1

ω(|ξ′|)|ξ′| .

Hence, an application of Remark 2.4 (b), Lemma 2.5 (b), and Corollary 2.3 shows that the function

ξ′ 7→ ûn2 (ξ′, xn) = −Mxn,λ(|ξ′|) iξj
4ω(|ξ′|)7

ĝr(ξ
′), xn > 0,
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belongs to L1(R+;L2(Rn−1)) and the function

ξ′ 7→
∫ ∞

0

ûn2 (ξ′, xn)dxn =
1

4ω(|ξ′|)8

iξj
|ξ′| ĝr(ξ

′) =
1

4

iξj
|ξ′|e

−|ξ′|2r

belongs to L2(Rn−1). The continuity of F on L2(Rn−1) then implies

∫ ∞

0

un2 (x′, xn)dxn = F−1

(∫ ∞

0

ûn2 (·, xn)dxn

)
(x′) =

1

4
RjGr(x

′), x′ ∈ Rn−1.

To show that Gr 6∈ H1(Rn−1), it can be simply observed that Gr ∈ S(Rn−1), but Ĝr 6= 0.
By the equivalent definition of H1(Rn−1) we thus may choose j ∈ {1, . . . , n − 1}, such that
RjGr 6∈ L1(Rn−1). This leads to

‖un2‖L1(Rn+) ≥
∫

Rn−1

|
∫ ∞

0

un2 (x′, xn)dxn|dx′ =
1

4

∫

Rn−1

|RjGr(x′)|dx′

=
1

4
‖RjGr‖L1(Rn−1) =∞

and the assertion follows. �
Note that Theorem 3.3 and Theorem 3.5 imply Theorem 1.2.

Next we recall a scaling argument, which allows us to confine ourselves to the case |λ| = 1,
λ ∈ Σπ−ϕ0 . For the time being, we set

ω(λ, ξ′) := ω(|ξ′|), ĥf̂ (λ, ξ′) := ĥ(ξ′),

and
mα(λ, ξ′) := mλ(|ξ′|), φ̂α,f̂ (λ, ξ′) := φ̂(ξ′), and ûα,f̂ (λ, ξ′, xn) := û(ξ′, xn)

for (ξ′, xn) ∈ Rn+ and λ ∈ Σπ−ϕ0 , where f is the right hand side of (SRP )f,λ,α and ω, h = (h′, hn),
φ = (φ′, φn), and u are defined as above. Further we define

f̂λ(ξ′, xn) := f̂(|λ|1/2ξ′, |λ|−1/2xn), λ ∈ Σπ−ϕ0 ,

for a function f ∈ Lq(Rn+). We may check that

ω(λ, ξ′) = |λ|1/2ω
(
λ

|λ| , |λ|
−1/2ξ′

)

and

ĥf̂ (λ, ξ′) = |λ|−1/2ĥf̂λ

(
λ

|λ| , |λ|
−1/2ξ′

)
,

as well as

mα(λ, ξ′) = |λ|−1/2mβ(
λ

|λ| , |λ|
−1/2ξ′)

with β = α|λ|−1/2. This implies that

φ̂α,f̂ (λ, ξ′) = |λ|−1φ̂β,f̂λ

(
λ

|λ| , |λ|
−1/2ξ′

)
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and

ûα,f̂ (λ, ξ′, xn) = |λ|−1ûβ,f̂λ

(
λ

|λ| , |λ|
−1/2ξ′, |λ|1/2xn

)
.

Since Rn−1 and R+ are invariant under dilations, by the change of coordinates

ξ′ → |λ|1/2ξ′, x′ → |λ|−1/2x′, xn → |λ|−1/2xn,

we therefore may suppose |λ| = 1, λ ∈ Σπ−ϕ0 . Let us mention that the dilated function uβ,fλ
now satisfies the boundary condition βu′β,fλ − ∂nu′β,fλ = 0 on Rn−1. In other words, we reduced

(SRP )f,λ,α with arbitrary λ ∈ Σπ−ϕ0 to the system (SRP )fλ,µ,β with |µ| = 1 and β = α|λ|−1/2,
i.e to equations with a boundary parameter depending on λ. However, this will not cause any
trouble, in view of the fact that all the constants occuring in the estimates that we prove in the
sequel do not depend on the boundary parameter. Therefore they also do not depend on λ, if we
have β = α|λ|−1/2.

In the next lemma we provide with the help of Lemma 2.5 estimates for the remainder terms
v and Rjv of formula (15),(16). Recall from (17) that v is given by

v̂(ξ′, xn) := Mxn,λ(|ξ′|) [1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)] ĥ(ξ′), (ξ′, xn) ∈ Rn+. (34)

One problem here is to handle the unboundedness of Rj in L1(Rn−1) and L∞(Rn−1). The main
idea to overcome this difficulty is to write the symbol iξj/|ξ′| of Rj in the form

iξj/|ξ′| = iξj |ξ′|3
∫ ∞

0

e−|ξ
′|4rdr,

then to split the integral at r = 1, and use relation (24) for the part with r ≥ 1.

Lemma 3.6 Let p ∈ {1,∞}, ϕ0 ∈ (0, π), and λ ∈ Σπ−ϕ0 with |λ| = 1. Furthermore, if p = 1,
suppose that f ∈ L1(Rn+) ∩ L2

σ(Rn+) and, if p = ∞, suppose that f ∈ L∞(Rn+) so that div f = 0
and that condition (24) for h is satisfied. Then, for δ ∈ [0, 1) there are constants C = C(δ) > 0
and σ = σ(δ) ∈ (0, 1) such that

(i) ‖|∇′|δv(·, xn)‖L∞(Rn−1) ≤ C‖f‖L∞(Rn+), xn > 0,

(ii) ‖|∇′|1+δv(·, xn)‖Lp(Rn−1) ≤
C

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0,

(iii) ‖|∇′|δRjvn(·, xn)‖L∞(Rn−1) ≤ C‖f‖L∞(Rn+), xn > 0, j = 1, . . . , n− 1,

(iv) ‖|∇′|1+δRjv
n(·, xn)‖Lp(Rn−1) ≤

C

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0, j = 1, . . . , n− 1,

(v) ‖|∇′|δ∂kvn(·, xn)‖Lp(Rn−1) ≤
C

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0, k = 1, . . . , n,

(vi) ‖|∇′|δRj∂kvn(·, xn)‖Lp(Rn−1) ≤
C

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0, j = 1, . . . , n− 1,

k = 1, . . . , n.
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Proof. We start with (i). Note that Mxn,λ can be represented as

Mxn,λ(z) = −
∫ xn

0

e−ω(z)(xn−s)e−zsds.

Hence, for δ ∈ [0, 1) and ε = ε(δ) ∈ (0, 1− δ) we have that

|ξ′|δ v̂(ξ′, xn) = −
∫ ∞

0

∫ xn

0

|ξ′|δ
ω(|ξ′|)δ+ε e−ω(|ξ′|)(xn−ρ)e−|ξ

′|ρ

· [1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)]ω(|ξ′|)δ+εe−ω(|ξ′|)sf̂(ξ′, s)dρds

for (ξ′, xn) ∈ Rn+. The estimates in Lemma 2.5 (a), (c), (e), and (f) imply for the kernel of the
integral that

|zε zδ

ω(z)δ+ε
e−ω(z)(xn−ρ)e−zρ [1− (ω(z) + z)mλ(z)]ω(z)δ+εe−ω(z)s| ≤ Ce−c1(xn−ρ) e−c1s

sδ+ε

for all z ∈ Σϕ, where ϕ ∈ (0, ϕ0/4). Hence we may conclude by Corollary 2.3

‖|∇′|δv(·, xn)‖L∞(Rn−1) ≤ C

∫ xn

0

e−c1(xn−ρ)dρ
∫ ∞

0

e−c1s

sδ+ε
‖f(·, s)‖L∞(Rn−1)ds

≤ C(δ)‖f‖L∞(Rn+)

for all xn > 0.

Let p′ be the Hölder conjugated exponent to p ∈ {1,∞}. After applying Fourier transform the
term in (ii) can be expressed as

|ξ′|1+δ v̂(ξ′, xn) =

∫ ∞

0

|ξ′|δ

ω(|ξ′|)
δ+ε
p′
|ξ′|Mxn,λ(|ξ′|)

· [1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)]ω(|ξ′|)
δ+ε
p′ e−ω(|ξ′|)sf̂(ξ′, s)ds (35)

for (ξ′, xn) ∈ Rn+. Here Lemma 2.5 (a), (b), (c), (e), and (f) imply

∣∣∣∣∣z
ε zδ

ω(z)
δ+ε
p′
zMxn,λ(z) [1− (ω(z) + z)mλ(z)]ω(z)

δ+ε
p′ e−ω(z)s

∣∣∣∣∣ ≤
C

x
(δ+ε)/p
n (1 + xn)

e−c1s

s(δ+ε)/p′

for all z ∈ Σϕ. Here we applied Lemma 2.5 (b) with ρ = δ + ε if p = 1 (observe that ω(z)
δ+ε
p′ ≡ 1

in this case), and, if p =∞, we applied Lemma 2.5 (a) on zδ+ε

ω(z)δ+ε = Gλ(z)δ+ε and Lemma 2.5 (b)

with ρ = 0. Corollary 2.3 then yields

‖|∇′|δv(·, xn)‖Lp(Rn−1) ≤ C(δ)

x
σ/p
n (1 + xn)

∫ ∞

0

e−c1s

sσ/p′
‖f(·, s)‖Lp(Rn−1)ds

≤ C(δ)

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0,

where σ := δ + ε ∈ (0, 1). This proves (ii).
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Let δ1 ∈ [0, 1). To see (iii) observe that ωv̂n = −iξ′ · v̂′ thanks to (24). Inserting 1 =

|ξ′|4
∫∞

0
e−|ξ

′|4rdr in the formula for F|∇′|δ1Rjvn we obtain for γ ∈ (0, 1− δ1) that

|ξ′|δ1 iξj|ξ′| v̂
n(ξ′, xn) = iξj |ξ′|3+δ1

∫ ∞

0

e−|ξ
′|4rv̂n(ξ′, xn)dr

=

∫ 1

0

iξj |ξ′|3−γe−|ξ
′|4r|ξ′|δ1+γ v̂n(ξ′, xn)dr

−
n−1∑

k=1

∫ ∞

1

iξjiξk|ξ′|3e−|ξ
′|4r |ξ′|δ1

ω(|ξ′|) v̂
k(ξ′, xn)dr.

Now (8) and (9) (with m = 2) imply

‖|∇′|δ1Rjvn(·, xn)‖L∞(Rn−1) ≤ C

∫ 1

0

r
γ
4−1‖|∇′|δ1+γvn(·, xn)‖L∞(Rn−1)dr

+

n−1∑

k=1

∫ ∞

1

r−5/4‖ω(|∇′|)−1|∇′|δ1vk(·, xn)‖L∞(Rn−1)dr

≤ C(δ)‖f‖L∞(Rn+)

for xn > 0, where we used the boundedness of the operator ω(|∇′|)−1 and applied (i) once with
δ = δ1 + γ and once with δ = δ1.

We will not carry out the proof of (iv), since the term in (iv) can be reduced to the one in (ii)
exactly in the same way as (iii) is reduced to (i) .

For k = 1, . . . , n− 1 assertion (v) is an immediate consequence of (iv), if we take into account
that |∇′|δ∂kvn = |∇′|1+δRkv

n. If k = n, note that

∂nMxn,λ(|ξ′|) = −|ξ′|Mxn,λ(|ξ′|)− e−ω(|ξ′|)xn , (ξ′, xn) ∈ Rn+.

Hence, with w(·, xn) := |∇′|δe−ω(|∇′|)xn [1− (ω(|∇′|) + |∇′|)mλ(|∇′|)]hn we get that

|∇′|δ∂nvn(·, xn) = −w(·, xn)− |∇′|1+δvn(·, xn), xn > 0. (36)

Similarly to (35) we write the first addend w in the form

ŵ(ξ′, xn) =

∫ ∞

0

|ξ′|δ
ω(|ξ′|)δ+εω(|ξ′|) δ+εp e−ω(|ξ′|)xn/2e−ω(|ξ′|)xn/2

· [1− (ω(|ξ′|) + |ξ′|)mλ(|ξ′|)]ω(|ξ′|)
δ+ε
p′ e−ω(|ξ′|)sf̂n(ξ′, s)ds

and obtain analogously to the proof of (ii)

‖w(·, xn)‖Lp(Rn−1) ≤ C(δ)e−c1xn/2

x
σ/p
n

∫ ∞

0

e−c1s

sσ/p′
‖fn(·, s)‖Lp(Rn−1)ds

≤ C(δ)

x
σ/p
n (1 + xn)

‖f‖Lp(Rn+), xn > 0,

where σ = δ + ε. Relation (v) now follows, if we apply (ii) on the second addend of (36).

We omit the proof of (vi) since the same method we used in (iii) applies to (vi). �
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Although the Stokes flow u of (SRP )f,λ,α does not belong to L1(Rn+), it is known that in
the case of Dirichlet boundary conditions the gradient of the velocity of the instationary Stokes
equations does, according to a result of Giga, Matsui, and Shimizu (see [GMS99]). As a conse-
quence of the theorem below we will see that this result generalizes to the case of Robin boundary
conditions.

Theorem 3.7 Let α ∈ [0,∞] and ϕ0 ∈ (0, π). Then there exists a constant C = C(ϕ0) > 0 such
that the Stokes flow u of (SRP )f,λ,α satisfies

‖∇u‖1 ≤
C√
|λ|
‖f‖1 (37)

for λ ∈ Σπ−ϕ0 and f ∈ L1
σ(Rn+).

Proof. By definition we may assume f ∈ L1(Rn+)∩D. Again we consider representation (15) and
(16) for the components of the Stokes flow u. The estimate for ∇(λ −∆D)−1f is a consequence
of (10). Due to Lemma 3.6 (v) and (vi) with δ = 0 we have that

‖∇v‖L1(Rn+) ≤ C
∫ ∞

0

1

xσn(1 + xn)
‖f‖L1(Rn+)dxn ≤ C‖f‖L1(Rn+)

and
‖∇R′v‖L1(Rn+) ≤ C‖f‖L1(Rn+)

for λ ∈ Σπ−ϕ0 , |λ| = 1. So, it remains to prove the corresponding estimate for the term u′2 =

e−ω(|∇′|)·φ′.
Let us remark that, if α = ∞, then mλ vanishes, which implies that the term e−ω(|∇′|)(·)φ′

does not occur in the formula for u. Thus, by rescaling, the claim follows for the case of Dirichlet
boundary conditions. As mentioned before, this case is also contained in [GMS99] (see also [SS01]).

If α ∈ [0,∞), then in view of (18) the term iξj û
′
2 is represented as

iξj û
′
2(ξ′, xn) =

iξje
−ω(|ξ′|)xn

ω(|ξ′|) + α

(
ĥ′(ξ′) + α

iξ′

|ξ′|mλ(|ξ′|)ĥn(ξ′)

)
, ξ′ ∈ Rn−1, xn > 0,

for λ ∈ Σπ−ϕ0 , |λ| = 1, and j = 1, . . . , n− 1. To evaluate this term we use the same methods as

in the proof of Lemma 3.6. By inserting 1 = |ξ′|4
∫∞

0
e−|ξ

′|4rdr we obtain for the first addend of
iξj û

′
2 that

iξje
−ω(|ξ′|)xn

ω(|ξ′|) + α
ĥ′(ξ′) =

∫ ∞

0

∫ 1

0

|ξ′|5/2iξje−|ξ
′|4r |ξ′|3/2

ω(|ξ′|) + α
e−ω(|ξ′|)(xn+s)f̂ ′(ξ′, s)drds

+

∫ ∞

0

∫ ∞

1

|ξ′|4iξje−|ξ
′|4r 1

ω(|ξ′|) + α
e−ω(|ξ′|)(xn+s)f̂ ′(ξ′, s)drds.

Let ϕ ∈ (0, ϕ0/4). Applying Remark 2.4 (c) and Lemma 2.5 (a) and (f) we obtain
∣∣∣∣z1/4 z3/2

(ω(z) + α)
e−ω(z)(xn+s)

∣∣∣∣ =

=

∣∣∣∣
(
z1/4 z3/2

(ω(z) + α)ω(z)3/4

)(
ω(z)3/4e−ω(z)xn

)
e−ω(z)s

∣∣∣∣

≤ C

(1 + α)x
3/4
n

e−c1(xn+s), xn, s > 0, z ∈ Σϕ,
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where we estimated the terms in brackets separately, and

∣∣∣∣
z3/4

(ω(z) + α)
e−ω(z)(xn+s)

∣∣∣∣ ≤
C

(1 + α)x
3/4
n

e−c1(xn+s), xn, s > 0, z ∈ Σϕ.

Then, Corollary 2.3 in combination with (8) and (9) leads to

‖∂j(ω(|∇′|) + α)−1e−ω(|∇′|)xnh′‖L1(Rn−1) ≤

≤ C

(1 + α)

∫ ∞

0

∫ 1

0

r−7/8x−3/4
n e−c1(xn+s)‖f ′(·, s)‖L1(Rn−1)drds

+
C

(1 + α)

∫ ∞

0

∫ ∞

1

r−5/4e−c1(xn+s)‖f ′(·, s)‖L1(Rn−1)drds

≤ C(x−3/4
n + 1)e−c1xn‖f‖L1(Rn+), xn > 0,

for j = 1, . . . , n− 1. Consequently we obtain for the first addend of ∇′u′2

‖∇′(ω(|∇′|) + α)−1e−ω(|∇′|)·h′‖L1(Rn+) ≤ C‖f‖L1(Rn+)

for λ ∈ Σπ−ϕ0 , |λ| = 1. Completely analogous calculations lead to the same estimate for the
second addend of ∇′u′2, i.e.,

‖∇′e−ω(|∇′|)·(ω(|∇′|) + α)−1αR′mλh
n‖L1(Rn+) ≤ C‖f‖L1(Rn+), λ ∈ Σπ−ϕ0 , |λ| = 1.

We also shall omit the details of the estimate for the derivative ∂nu
′
2, since this is very similar to

the one for ∇′u′2. Summarizing, we have that

‖∇u‖1 ≤ C‖f‖1, λ ∈ Σπ−ϕ0 , |λ| = 1. (38)

Now, if λ ∈ Σπ−ϕ0 , the claim is proved for the scaled flow uβ,fλ( λ
|λ| , ·) with β = α|λ|−1/2. Because

the constant C in (38) does not depend on β (therefore also not on λ) rescaling yields the assertion.
�

Remark 3.8 The proof of the above theorem shows that by our methods we can even obtain
more regularity for u. Indeed, for δ1 ∈ (0, 2), δ2 ∈ [0, 1) we can prove an estimate such as

|λ|(2−δ1)/2‖|∇′|δ1u‖1 + |λ|(1−δ2)/2‖|∇′|δ2∇u‖1 ≤ C(δ1, δ2)‖f‖1

for λ ∈ Σπ−ϕ0 and f ∈ L1
σ(Rn+). But, of course the constant C(δ1, δ2) blows up if δ1 → 0, δ1 → 2,

or δ2 → 1.

Corollary 3.9 Let α ∈ [0,∞]. The Stokes semigroup (e−tAα)t≥0 on Lqσ(Rn+), 1 < q <∞, satisfies
the estimate

‖∇e−tAαf‖1 ≤ Ct−1/2‖f‖1, t > 0, f ∈ L1(Rn+) ∩ Lqσ(Rn+).

Proof. We can argue analogously to the proof of (32). For f ∈ L1(Rn+)∩Lqσ(Rn+) and λ ∈ ρ(Aα) the
Stokes flow u is given by uf (−λ) = −(λ−Aα)−1f . Hence we have e−tAαf = −

∫
Γ e−λtuf (−λ)dλ,

and the assertion follows from estimate (37). �
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4 The Stokes operator in solenoidal L∞-spaces

Contrary to the non generation result in L1(Rn+) we will prove in this section the validity of
generation results for the Stokes operator with Robin boundary conditions in solenoidal subspaces
of L∞(Rn+). Again by utilizing the estimates in Lemma 3.6 and Lemma 2.5 we will start by proving
in Theorem 4.1 resolvent estimates in L∞σ (Rn+). A crucial point then will be to give a definition of
the Stokes operator. Due to the lack of the boundedness of the Helmholtz projection in L∞(Rn+)
it is not possible to define it in the standard way used in reflexive Lq-spaces. Instead, we will
give a definition by employing pseudo resolvent methods. To be more precise, we show that the
solution u of the Stokes resolvent problem corresponds to a real resolvent. The existence of the
resolvent then allows us to define the Stokes operator. By the resolvent estimates in Theorem 4.1
this leads to the generation result in L∞σ (Rn+), that is Theorem 4.3. Finally, we will turn our
attention to the subspaces of continuous functions C0,σ(Rn+) and BUCσ(Rn+). By restricting the
Stokes operator in L∞σ (Rn+) to these spaces the generation result is clear, but here we can also
prove that the semigroups are strongly continuous.

First let us justify the definition of L∞σ (Rn+) given in (3). It is well-known (see e.g. [Gal98])
that we have the following characterizations of Lqσ(Rn+) for 1 < q <∞:

Lqσ(Rn+) = C∞c,σ(Rn+)
‖·‖q

= {u ∈ Lq(Rn+) : div u = 0, un �∂Rn+= 0}
= {u ∈ Lq(Rn+) : (u,∇p) = 0, p ∈ Ŵ 1,q′(Rn+)},

where the last one follows by means of the Helmholtz decomposition. To the author the third one
seems to be the most appropriate characterization for the definition of L∞σ (Rn+), since the first
one can only be used to define a subspace of continuous functions, whereas the problem with the
second one is to give a sense to the trace un �Rn−1 . Thus we define L∞σ (Rn+) as in (3) that is

L∞σ (Rn+) := {u ∈ L∞(Rn+) : (u,∇p) = 0, p ∈ Ŵ 1,1(Rn+)}.

Theorem 4.1 Let α ∈ [0,∞] and ϕ0 ∈ (0, π). For each f ∈ L∞σ (Rn+) and λ ∈ Σπ−ϕ0 there is a
unique solution (u, p) of (SRP )f,λ,α such that u = uf (λ) ∈ C1

b (Rn+). Moreover, there is a constant
C = C(ϕ0) > 0 such that u satisfies

|λ|‖u‖∞ +
√
|λ|‖∇u‖∞ ≤ C‖f‖∞, f ∈ L∞σ (Rn+), λ ∈ Σπ−ϕ0 . (39)

Proof. For the proof we also intend to use representation (15), (16) for u = (u′, un). In the
derivation of these formulas in [Saa06, Section 4] we make use of the compatibility conditions
div f = 0 and fn �∂Rn+= 0, particularly in the verification of relation (24) for the function h =

(h′, hn). By an inspection of (24) one can see that the condition (f,∇p) = 0, p ∈ Ŵ 1,1(Rn+), is
still sufficient to obtain this relation, and therefore the formulas (15) and (16) are valid for all
f ∈ L∞σ (Rn+).

Here it also suffices to focus on the second addend u′2 in (15) since (10) implies (39) for the
term (λ −∆D)−1f , whereas for vn and R′vn estimate (39) follows from Lemma 3.6 (i), (iii), (v),
and (vi) by setting δ = 0 and p =∞. We sketch a derivation of (39) for u′2. The calculations are
very similar to the proof of Theorem 3.7.

Observe that at this point the proof is completed for the case of Dirchlet boundary conditions,
because u′2 vanishes for α =∞. As mentioned in the introduction the inequality |λ|‖u‖∞ ≤ ‖f‖∞
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is already proved in [DHP01]. However, their proof is based on kernel estimates and their result
does not include higher regularity. Estimates for Dirichlet boundary conditions and first order
derivatives are given in [Shi99] and [SS01] based on the formula of Ukai [Uka87].

If α ∈ [0,∞) and f ∈ L∞σ (Rn+), by (18) we have that

û′2(ξ′, xn) =
e−ω(|ξ′|)xn

ω(|ξ′|) + α

(
ĥ′(ξ′) + α

iξ′

|ξ′|mλ(|ξ′|)ĥn(ξ′)

)
, ξ′ ∈ Rn−1, xn > 0,

for λ ∈ Σπ−ϕ0 , |λ| = 1. To the first term of this formula we may apply Remark 2.4 (b),
Lemma 2.5 (f), and Corollary 2.3 to the result

‖e−ω(|∇′|)·(ω(|∇′|) + α)−1h′‖L∞(Rn+) ≤

≤ sup
xn>0

∫ ∞

0

‖e−ω(|∇′|)(xn+s)(ω(|∇′|) + α)−1f ′(·, s)‖L∞(Rn−1)ds

≤ C

1 + α
sup
xn>0

e−c1xn
∫ ∞

0

e−c1s‖f ′(·, s)‖L∞(Rn−1)ds

≤ C‖f‖L∞(Rn+), λ ∈ Σπ−ϕ0 , |λ| = 1.

The second addend we write with the help of (24) as

e−ω(|ξ′|)xn

ω(|ξ′|) + α
αmλ(|ξ′|) iξ

′

|ξ′| ĥ
n(ξ′) =

=

∫ ∞

0

∫ 1

0

|ξ′|5/2iξ′e−|ξ′|4r |ξ′|1/2
ω(|ξ′|) + α

αmλ(|ξ′|)e−ω(|ξ′|)(xn+s)f̂n(ξ′, s)drds

−
∫ ∞

0

∫ ∞

1

|ξ′|3iξ′iξ′ · e−|ξ′|4rαmλ(|ξ′|) e−ω(|ξ′|)(xn+s)

ω(|ξ′|)(ω(|ξ′|) + α)
f̂ ′(ξ′, s)drds.

Observe that by Remark 2.4 (b) and (c) we have that |∇′|/(ω(|∇′|) + α) ∈ L(L∞(Rn−1)). This
fact, relations (8), (9), Lemma 2.5 (d), (f), and Corollary 2.3 then lead to the estimate

‖e−ω(|∇′|)·(ω(|∇′|) + α)−1αmλ(|∇′|)R′hn‖L∞(Rn+) ≤

≤ C

1 + α
sup
xn>0

[∫ ∞

0

∫ 1

0

r−7/8e−c1(xn+s)‖fn(·, s)‖L∞(Rn−1)drds

+

∫ ∞

0

∫ ∞

1

r−5/4e−c1(xn+s)‖f ′(·, s)‖L∞(Rn−1)drds

]

≤ C‖f‖L∞(Rn+), λ ∈ Σπ−ϕ0 , |λ| = 1.

The estimate for ∇u′2 in L∞(Rn+) is analogous to the one in the proof of Theorem 3.7 in the
L1(Rn+)-norm with the only difference that the roles of the terms e−ωxn and e−ωs interchange.
More precisely, for δ ∈ (0, 1) we have to estimate in the present situation expressions of the form
ωδe−ω(xn+s) by

|ω(z)δe−ω(z)(xn+s)| ≤ C e−c1(xn+s)

sδ
xn, s > 0, z ∈ Σϕ.

This is due to the fact that we may have a singularity in s but not in xn, since we estimate in
the L∞-norm. Therefore, estimate (39) is proved for all λ ∈ Σπ−ϕ0 with |λ| = 1. Then rescaling
yields (39) for all λ ∈ Σπ−ϕ0 .
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It remains to prove that u ∈ C1
b (Rn+). For, observe that

∆p = div (f − (λ−∆)u) = 0,

which gives p ∈ C∞(Rn+). Then, since u, f ∈ L∞(Rn+), we obtain that

∆u = λu+∇p− f ∈ Lq(K)

for some q > n and each smooth compact K ⊆ Rn+. By elliptic regularity we deduce u ∈ W 2,q(K)
and thanks to Sobolev’s embedding u ∈ C1

b (K) for each smooth compact K ⊆ Rn+, consequently
u ∈ C1(Rn+). In view of (39) this yields u ∈ C1

b (Rn+) and the proof is completed. �

Remark 4.2 A similar statement as in Remark 3.8 is valid in L∞σ (Rn+). By checking the details
of the above proof, one will realize that by our methods for each δ1 ∈ [0, 2), δ2 ∈ [0, 1) we also can
get an estimate as

|λ|(2−δ1)/2‖|∇′|δ1u‖∞ + |λ|(1−δ2)/2‖|∇′|δ2∇u‖∞ ≤ C(δ1, δ2)‖f‖∞

for λ ∈ Σπ−ϕ0 and f ∈ L∞σ (Rn+). However, the constant C(δ1, δ2) blows up if δ1 → 2 or δ2 → 1.
But this is reasonable, since we do not expect that u ∈W 2,∞(Rn+).

Due to Theorem 4.1 above, for each λ ∈ C \ (−∞, 0] the mapping R(λ) : L∞σ (Rn+)→ C1
b (Rn+),

R(λ)f := uf (λ) is well-defined and continuous. Since C1
b (Rn+) ↪→ Cb(Rn+), we may apply the

Gauss Theorem to obtain for u = uf (λ)

(u,∇φ) =

∫

Rn−1

φundx′ − (div u, φ) = 0

for all φ ∈ C∞c (Rn+), which shows that we even have R(λ) : L∞σ (Rn+) → C1
b (Rn+) ∩ L∞σ (Rn+). In

order to establish a Stokes operator in L∞σ (Rn+) we now prove R(λ) to be a resolvent. To this end
let f ∈ L∞σ (Rn+) and set

w(λ, µ)f := (R(λ)− R(µ)− (µ− λ)R(λ)R(µ)) f.

It is clear that the resolvent identity holds, if we can show

(w(λ, µ)f, ϕ) = 0, ϕ ∈ C∞c (Rn+).

Pick ϕ ∈ C∞c (Rn+) and let {φj}j∈Z be a Littlewood-Paley decomposition of the unity, i.e.,∑
j∈Z φ̂j(ξ) = 1 for ξ ∈ Rn \ {0}, where φ̂j(ξ) := φ̂0(2−j |ξ|) and 0 6= φ0(| · |) ∈ S(Rn) such

that suppφ̂0 ⊆ {s ∈ R : 1/2 ≤ s ≤ 2}. Then we have that

rϕk → ϕ weakly in L1(Rn+)

for ϕk :=
∑k

j=−k φj ∗Eϕ. Here r is the restriction to Rn+ and Ef := (E+f ′, E−fn) with

E±f(x′, xn) :=

{
f(x′, xn), xn > 0,
±f(x′,−xn), xn < 0.

Also, note that it is well-known that the Helmholtz projection PRn+ in Rn+ can be represented by

PRn+ = rPRnE,
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where PRn = F−1
[
I + iξiξT

|ξ|2
]
F denotes the Helmholtz projection in Rn. A crucial observation

now is that Erϕk = ϕk, since by definition ϕ′k is even and ϕnk is odd with respect to the normal

component xn. This implies that PRn+ϕk = rPRnϕk. Also, note that iξiξT

|ξ|2 ϕ̂k ∈ FL1(Rn) thanks

to the fact that ϕ̂k has compact support away from 0. By the definition of L∞σ (Rn+) this yields

(w(λ, µ)f, (I − PRn+)rϕk) = (w(λ, µ)f,∇rF−1 [iξ/|ξ|2] · ϕ̂k) = 0.

Next observe that |∇′|−δPRn+rϕk = rPRn |∇′|−δϕk ∈ Lqσ(Rn+) for δ ∈ [0, 1] and 1 ≤ q <∞. Thanks
to Remark 3.8 this implies that

w(λ, µ)PRn+rϕk = |∇′|1/2w(λ, µ)(|∇′ |−1/2PRn+rϕk) ∈ Lqσ(Rn+), 1 ≤ q <∞.

Moreover, since according to the results in [Saa06] we already know that R(λ) : Lqσ(Rn+)→ Lqσ(Rn+)
is a resolvent for 1 < q <∞, it follows that w(λ, µ)PRn+rϕk = 0. This results in

(w(λ, µ)f, ϕ) = lim
k→∞

(w(λ, µ)f, rϕk)

= lim
k→∞

[
(w(λ, µ)f, (I − PRn+)rϕk) + (w(λ, µ)f, PRn+rϕk)

]

= lim
k→∞

(f, w(λ, µ)PRn+rϕk)

= 0.

Consequently, R(λ) : L∞σ (Rn+)→ L∞σ (Rn+) is a pseudo resolvent. To see the injectivity of R(λ) let
f ∈ L∞σ (Rn+) with R(λ)f = 0. Since R(λ)f = uf (λ) solves (SRP )f,λ,α we deduce

∇p = (λ−∆)uf (λ) +∇p = f.

Moreover, by ∆p = div f = 0 in the sense of distributions, p and also f = ∇p are harmonic in Rn+.
By the Schwarz reflection principle the odd extension of ∂np is a bounded and harmonic function
on Rn, hence fn = ∂np = 0 in view of ∂np �∂Rn+= fn �∂Rn+= 0. Observe that we require p to satisfy
formula (25). Since this formula does only depend on fn, but not on the other components of f ,
we deduce p = 0 and therefore also that f = ∇p = 0.

This implies R(λ), λ ∈ C\ (−∞, 0] to be a resolvent, hence there exists a closed operator Aα,∞
in L∞σ (Rn+) such that

(λ+Aα,∞)−1 = R(λ), −λ ∈ ρ(Aα,∞) = C \ [0,∞).

We call Aα := Aα,∞ the Stokes operator in L∞σ (Rn+). Theorem 4.1 now implies the following result
(where the proof of the gradient estimates is analogous to Theorem 3.3).

Theorem 4.3 Let α ∈ [0,∞]. The operator −Aα is the generator of a bounded holomorphic
semigroup on L∞σ (Rn+) (which is not strongly continuous). The semigroup (e−tAα)t≥0 also satisfies
the gradient estimates

‖∇e−tAαf‖∞ ≤ Ct−1/2‖f‖∞, t > 0, f ∈ L∞σ (Rn+). (40)

Next we define corresponding Stokes operators in spaces of continuous functions. In the case
of Dirichlet boundary conditions we set

C0,σ(Rn+) := C∞c,σ(Rn+)
‖·‖∞

. (41)
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For −λ ∈ C \ [0,∞) and f ∈ C∞c,σ(Rn+) we have R(λ)f = uf (λ) ∈ W 1,q
0 (Rn+) ∩ Lqσ(Rn+), for each

1 < q <∞. Since

W 1,q
0 (Rn+) ∩ Lqσ(Rn+) = W 1,q

0,σ (Rn+) := C∞c,σ(Rn+)
‖·‖1,q

for 1 < q <∞ (see [Gal98] Chapter III.4.) the function uf (λ) can be approximated by a sequence
(uk) ⊆ C∞c,σ(Rn+) in W 1,q(Rn+). The imbedding W 1,q(Rn+) ↪→ Cb(Rn+) for q > n now implies

‖uk − uf‖∞ ≤ C‖uk − uf‖1,q → 0, for k →∞,

consequently R(λ)f ∈ C0,σ(Rn+). By the continuity of R(λ) we obtain R(λ)(C0,σ(Rn+)) ⊆
C0,σ(Rn+), and since C0,σ(Rn+) ⊆ L∞σ (Rn+), the mapping R(λ) : C0,σ(Rn+) → C0,σ(Rn+) is a re-
solvent. This results in the existence of a closed operator AC0,σ in C0,σ(Rn+) such that

(λ+AC0,σ )−1 = R(λ), −λ ∈ ρ(AC0,σ ) = C \ [0,∞),

which we call Stokes operator in C0,σ(Rn+). Now u ∈ C∞c,σ(Rn+) yields f := (1 + A2)u ∈ C∞c,σ(Rn+),
where A2 denotes the Stokes operator with Dirichlet boundary conditions in L2

σ(Rn+). Hence

u = (1 + A2)−1f = uf (λ) = (1 +AC0,σ )−1f ∈ D(AC0,σ ),

and we see, that AC0,σ is densely defined. Thus, we have proved the following result, which partly
can be found in [DHP01].

Theorem 4.4 The Stokes operator −AC0,σ is the generator of a bounded, holomorphic C0-
semigroup on C0,σ(Rn+). The gradient estimates (40) are also valid for the semigroup generated
by −AC0,σ .

A further space of continuous solenoidal functions in the case that α ∈ [0,∞) is

BUCσ(Rn+) := {u ∈ BUC(Rn+) : div u = 0, un �∂Rn+= 0},

where BUC(Rn+) denotes the space of all bounded uniformly continuous functions in Rn+. In the
case of Dirichlet boundary conditions, i.e., if α =∞, we set

BUCσ,D(Rn+) := {u ∈ BUC(Rn+) : div u = 0, u �∂Rn+= 0}.

This is motivated by the following fact. Suppose there exists a stronly continuous semigroup
{e−tABUCσ,D }t≥0. Then e−tABUCσ,D f → f in BUC(Rn+) for t→ 0 and e−tABUCσ,D f �∂Rn+= 0, t > 0,
imply that f �∂Rn+= 0.

Now let Xσ ∈ {BUCσ,D(Rn+),BUCσ(Rn+)}. We will prove that the Stokes operator is the
generator of a strongly continuous semigroup on Xσ. For this purpose we need

Lemma 4.5 Let α ∈ [0,∞], f ∈ Xσ, and vα,f (λ) = v as in (34). Then for each δ ∈ [0, 1) and
j ∈ {1, . . . , n− 1} we have that

λ1− δ2 |∇′|δvnα,f (λ)→ 0 and λRjv
n
α,f (λ)→ 0 in L∞(Rn+)

if λ→∞, λ > 0.
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Proof. By the scaling argument as described in the previous section and the proof of Lemma 3.6 (i)
we deduce

‖λ1− δ2 |∇′|δvnα,f (·, ·, λ)‖∞ = λ(n−1)/2 sup
x∈Rn+

||∇′|δvnβ,fλ(x′, xn, 1)|

≤ C(δ)λ(n−1)/2 sup
xn>0

(1− e−c1xn)

∫ ∞

0

e−c1s

s
δ
2 +ε
‖fnλ (·, s)‖L∞(Rn−1)ds

= C(δ)

∫ ∞

0

e−c1s

s
δ
2 +ε
‖fn(·, sλ−1/2)‖L∞(Rn−1)ds. (42)

Here we choose δ/2, ε ∈ (0, 1) such that δ
2 + ε ∈ (0, 1), whereas β = αλ−1/2 is the scaled boundary

parameter and fλ is the scaled function f . Now f ∈ Xσ gives

sup
x′∈Rn−1

|fn(x′, sλ−1/2)| = sup
x′∈Rn−1

|fn(x′, sλ−1/2)− fn(x′, 0)| −→ 0,

if λ→∞. Furthermore,

∣∣∣∣
e−c1s

s
δ
2 +ε

f(x′, λ−1/2s)

∣∣∣∣ ≤
e−c1s

s
δ
2 +ε
‖fn‖∞, λ > 0, (x′, s) ∈ Rn+.

Thus, the function e−c1s

s
δ
2

+ε
‖fn‖∞ is an integrable majorant for the λ-dependent integrand of the

integral in (42). Lebesgue’s dominated convergence theorem then implies that

lim
λ→∞

‖λ1− δ2 |∇′|δvnα,f (λ)‖∞ = 0.

Similar calculations as in the proof of Lemma 3.6 (iii) lead to the estimate

‖λRjvnα,f (·, ·, λ)‖∞ = λ(n−1)/2 sup
x∈Rn+

|Rjvβ,fλ(x′, xn, 1)|

≤ Cλ(n−1)/2 sup
xn>0

(∫ R

0

r
γ
4−1‖|∇′|γvnβ,fλ(·, xn, 1)‖L∞(Rn−1)dr

+
n−1∑

k=1

∫ ∞

R

r−5/4‖vkβ,fλ(·, xn, 1)‖L∞(Rn−1)dr

)

for some γ ∈ (0, 1), where we splitted the integral at r = R, instead of r = 1 as before. Applying
Lemma 3.6 (i) to the second addend, we can continue the calculation obtaining

‖λRjvnα,f (·, ·, λ)‖∞ ≤ Cλ(n−1)/2
(
Rγ/4‖|∇′|γvnβ,fλ(·, xn, 1)‖L∞(Rn−1) +R−1/4‖fλ‖∞

)

= C
(
Rγ/4‖λ1− γ2 |∇′|γvnα,f (·, xn, λ)‖L∞(Rn−1) +R−1/4‖f‖∞

)
.

Choosing R >
(

ε
2‖f‖∞

)−4

and afterwards λ big enough we can achieve

‖λRjvnα,f (·, ·, λ)‖∞ < ε

for arbitrary ε > 0. This yields the assertion. �
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In order to obtain densely defined generators we prove that for f ∈ Xσ

λR(λ)f = λuα,f (λ)→ f (43)

in L∞(Rn+) if λ → ∞. We first consider the case α ∈ [0,∞). Observe that the solution uα,f (λ)
can also be represented by the formula

u′α,f (λ) = (λ−∆N )−1f ′ −R′vnα,f (λ) + e−ω(|∇′|)·φ′ − ω(|∇′|)−1e−ω(|∇′|)·h′,

unα,f (λ) = (λ−∆D)−1fn + vnα,f (λ),

which we will use to prove (43). Since C∞b (Rn) ⊆ D(∆Rn) lies dense in BUC(Rn), the Laplacian
∆Rn is the generator of a bounded holomorphic C0-semigroup on BUC(Rn). This yields λ(λ −
∆Rn)−1f → f for all f ∈ BUC(Rn). For f ∈ BUCσ(Rn+) we set f̃ := (E+f ′, E−fn), where E± is

the extension operator defined in (14). Then obviously f̃ ∈ BUC(Rn). Hence representations (12)
and (13) imply that

lim
λ→∞

λ(λ −∆N )−1f ′ = f ′ and

lim
λ→∞

λ(λ −∆D)−1fn = fn,

respectively. Since λvnα,f (λ) and λR′vnα,f (λ) tend to zero if λ → ∞ according to Lemma 4.5, it
remains to show that

λ
(

e−ω(|∇′|)·φ′ − ω(|∇′|)−1e−ω(|∇′|)·h′
)

=

= λe−ω(|∇′|)·α(ω(|∇′|) + α)−1
(
−ω(|∇′|)−1h′ + R′mλ(|∇′|)hn

)
−→ 0

as λ → ∞, λ > 0. By virtue of Lemma 2.5, Corollary 2.3, and since α < ∞ the latter term can
be estimated by

‖λe−ω(|∇′|)·α(ω(|∇′|) + α)−1
(
−ω(|∇′|)−1h′ +R′mλ(|∇′|)hn

)
‖∞ ≤ Cλ(ε−1)/2‖f‖∞

for some ε ∈ (0, 1). This proves (43) for α ∈ [0,∞). In the case of Dirichlet boundary conditions
the solution u∞,f (λ) is given by

u′∞,f (λ) = (λ−∆D)−1f ′ −R′vn∞,f (λ),

un∞,f (λ) = (λ−∆D)−1fn + vn∞,f (λ).

Thus (43) follows directly from λ(λ−∆D)f → f , valid for all f ∈ BUCσ,D(Rn+), and Lemma 4.5.

In view of the inclusions Xσ ⊆ L∞σ (Rn+) and C1
b (Rn+) ⊆ BUC(Rn+) we have that R(λ)(Xσ) ⊆ Xσ

for λ ∈ C \ (−∞, 0]. This implies R(λ) : Xσ → Xσ to be a resolvent, hence the existence of a
closed operator Aα,Xσ such that

(λ +Aα,Xσ )−1 = R(λ), −λ ∈ ρ(Aα,Xσ ) = C \ [0,∞).

Aα,Xσ is also densely defined, due to the validity of (43) for f ∈ Xσ . We call Aα,Xσ the Stokes
operator in Xσ. Summarizing the just proved facts gives

Theorem 4.6 The operator −Aα,Xσ is the generator of a bounded holomorphic C0-semigroup on
Xσ. The gradient estimates in (40) are also valid for the semigroup generated by −Aα,Xσ .
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