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Abstract

We study the initial-boundary value problem for the Stokes equations
with Robin boundary conditions in the half-space R}. It is proved that the
associated Stokes operator is sectorial and admits a bounded H *°-calculus
on LI(R%}). As an application we prove also a local existence result for
the nonlinear initial value problem of the Navier-Stokes equations with
Robin boundary conditions.
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1 Introduction

In this article we consider the Stokes equations of the type

Ou—Au+Vp = f in R} x(0,00),
divu = 0 in R} x (0,00), (1
u(0) = wup in RY,

T,u

0 in JR% x (0,00),

with velocity field 4 and pressure p in the Lebesgue space LI(R7%) for 1 < ¢ < oo.
The trace operator T, here is given by Robin boundary conditions, i.e.

’r /
Tou = < au nc?nu >
u

where u’ denotes the tangential part of u and a € [0,00]'. Observe, that the case

: (2)

B]I&i

a = 0 or @ = oo corresponds to the classical Neumann or Dirichlet boundary
conditions respectively.

*COE Post Doctoral Fellow at Hokkaido University, Sapporo
!We understand o = oo as follows: divide the first line in (2) by o and let o = 0.
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We will give a comprehensive discussion of the properties of A,, the associated
Stokes operator with Robin boundary conditions. As an application of the results
for the Stokes operator we further will prove a local existence result for the Navier-
Stokes equations with Robin boundary conditions, i.e. for the nonlinear system

Opu — Au+ (u-V)u+ Vp 0 in R} x(0,T),

divu = 0 in R x(0,7), 3
u(O) = uq in Ri, ( )
Tau = 0 in 8[&3_ X (O,T)

We start our discussion for the Stokes operator A, by constructing an explicit
solution formula for the Stokes resolvent problem with Robin boundary conditions
in the half-space R’}. Based on this formula we will prove resolvent estimates,
which imply, that the Stokes operator is the generator of a bounded holomorphic
strongly continuous semigroup in the solenoidal space LZ(R’t). Moreover, this
semigroup satisfies LP — L7 estimates which are stated for holomorphic semigroups
in Li-spaces in a more general framework in a previous section. Next we show
that the Stokes operator with Robin boundary conditions even admits a bounded
H*®-calculus on LZ(R%). Hence, according to the results in [13], A, has maximal
regularity, i.e. the solution of problem (1) satisfies the estimate

/ (||ut(t)||s+||v2u<t>||§+||Vp<t>||§)dtsc(||uo||§p+ / IIf(t)IIZdt>

for all f € LP((0,00), LI(R%)) and uq € IP := (LL(R7Y), D(An));
1 <p,qg<oo.

It 1s known that the class of all operators admitting a bounded H®°-calculus
coincides with the (a priori smaller) class of all operators admitting an R-bounded
H®-calculus if the underlying Banach space has property («), see [16] and [4].
Since the space LZ(Q) is known to enjoy this property for any domain ©Q and any
q € [1,00], we can immediately conclude that the Stokes operator with Robin
boundary conditions even admits an R-bounded H*-calculus on LZ(R%). This is
relevant for further types of functional calculi for linear operators in view of the
results in [16].

The strategy for proving the resolvent estimates and the bounded H°-calculus
for the Stokes operator A, is to use the rotation invariance in n — 1 dimensions
of large parts of the constucted solution formula. This enables us to apply the
bounded H *°-calculus for the Poisson operator (—A]Rn—l)]/z on L4(R™~1). In other
words we regard the computed representation of the solution as a function of the
Poisson operator g((—Agn-1)'/?), which can be estimated in the operator norm
on L?(R"~!) by the infinity norm of g on a complex sector. Thus, besides the
holomorphy of g, it suffices to verify pointwise estimates on a complex sector for
the terms in the representation of the Stokes resolvent, regarded as functions of
(_A]Rn—l)l/2. This approach seems to be nicer and less complicated than applying
multiplier results directly to the lengthy solution formula. The pointwise complex
estimates also provide a sufficient decay in the normal component z,,, such that the

“Llp where
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g-integration over z, afterwards is feasible. By using this metod we first show that
the pressure of (1) fullfills || Vpl||q < C|f||4 for some constant C' > 0. Plugging over
Vp to the right hand side of (1) we then are left with a problem for the Laplacian
with data f — Vp. By well known results for this operator we finally obtain the
desired resolvent estimates for the Stokes operator with Robin boundary conditions
Ay in LL(RY).

For proving the bounded H®-calculus for A, we apply the same method. But
here we estimate directly the explicit representation for the Stokes flow u of (1).

The local existence result for the Navier-Stokes equations (3) then is a con-
sequence of the proved results for the Stokes operator and the usual fixed point
argument. In the situation here we apply directly an abstract result for semilinear
parabolic equations in L%-spaces of Giga proved in [12].

For the special case of Dirichlet boundary conditions, i.e. in our situation the
case a = 0o, the above results for Stokes and Navier-Stokes equations are well
known. For resolvent estimates see e.g. [26], [18], [28], for maximal regularity see
[26], [2], [13], whereas in [7] it is proved that the Stokes operator with Dirichlet
boundary conditions admits a bounded H*-calculus on the space LZ(R7%) for 1 <
q < 0o0. On the other hand, as far as the author knows, up to now there are no
results available in the literature concerning our type of mixed boundary conditions.
We are only aware of some results for various types of other boundary conditions
if Q is a bounded domain (see e.g. [20], [11], [14]).

We want to remark, that the results presented in this work are included in [24].
There also the case of LL(R%) with ¢ = 1 or ¢ = co is handled, which will be the
content of the forthcoming article [25].

The organization of this work is as follows: After the introduction, in section 2
we will give the notations, used in this work, and will introduce the notion of
sectorial operators as well as of operators having a bounded H*-calculus. Section 3
is dedicated to LP — L9 estimates for holomorphic semigroups on L%-spaces. In
section 4 we construct an explicit representation for the solution of the Stokes
resolvent problem with Robin boundary conditions in R} which is used to prove
the resolvent estimates in section 5 and the bounded H*-calculus in section 6 for
the associated Stokes operator A,. Finally, In section 7 the local existence result
for the Navier-Stokes equations (3) is stated.

Acknowledgement: The author is grateful to Prof. Dr. Matthias Hieber for
attracting his attention to this problem and to him and the members of his research
group for many fruitful discussions.

2 Preliminaries

2.1 Notations

Here © always denotes an open subset of the real vector space R™. For m €
{0,1,...,00} we denote by C™(Q) the space of all m-times continuously differen-
tiable functions and by C2*(f2) its subspace consisting of all functions in C™(Q)



4 Jiirgen Saal

which are compactly supported. Further, let C™(Q) := {u [q: u € C™(R™)}, and
for m € Ny := NU {0} denote by C;"(Q) the Banach space of all m-times contin-
uously differentiable functions whose derivatives up to order m are bounded. For
the space of all testfunctions we use the abbreviation D(Q) := C¢°(Q) and for its
dual D'(Q).

The Fourier transform defined on S(R™), the Schwartz space of rapidly decreas-
ing functions, we denote by

() = Fu(€) = ! /ne_iz'gu(x)dz, u € S(R™).

For ¢ € [1,00], LI(Q) denotes the Lebesgue space, which consists of all ¢-
integrable functions if 1 < ¢ < oo and L () is the space of all functions u that
satisfy ||u||Lm(Q) = esssupzeﬂ|u(1‘)| < o0o. Further L?OC(Q) ={ueD'(Q) : ue

L1(K) for each compact K C Q}. W™%(Q) denotes the Sobolev space of order
m € Ng. Its norm is given by

1/q

llullwm.a(ay = Zij“H%q(n) a
7=0

where V7 is the tensor of all possible j-th order differentials. Moreover, W;™¢(Q)
denotes the closure of C°(Q) in W™9(Q2). If no confusion seems likely, we also
write [| - [lg = [ [[La(e) and || [lm,qg = [ - [lwm.a(a)-

If 9 is Lipschitz, the trace operator defined by y(u) := u [aq maps W14(Q)
continuously into W'=1/99(5Q), where

W*9(0Q) = (L9(09), W™ (09))/mq. 0 < 5 < m,

and (-,-)g p denotes the real interpolation space for 0 < # < 1 and 1 < p < oco. Tts
kernel is exactly the space Wol’q(Q_). See [1], p. 215.

We shall further need the homogeneous Sobolev space Wl’q(Q) consisting of all
Ll .(Q)-functions u having finite Dirichlet energy [ [Vu|?dz, modulo constants.
It becomes a Banach space when equipped with the norm

1/q
ooy = ([ (9uaa)

Let us remark that we will use the same notation for the corresponding spaces
of vector fields on Q, i.e. (L4(Q))" = L4(Q), (WH(Q))" = WF1(Q), etc. Denote
by ¢’ the Holder conjugated exponent, i.e. ;—,-I—% =1 Ifue L) andv € LY Q)
we use the notation (u,v) := (u,v)q := [, uvdz for the dual pairing.

If X and Y are Banach spaces, the space of all bounded linear operators from
X to Y is denoted by £(X,Y), and £(X) is the abbreviation for £(X, X). For
any closed operator A in X, its domain and range are denoted by D(A) and R(A),
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respectively. Tts resolvent set is denoted by p(A) and its spectrum by o(A). Fur-
thermore, we call A a generator, if (etA)tZO satisfies the semigroup properties.

As usual C'; M, ... denote constants that may change from line to line. Some-
times we would like to express a special dependence on some parameter s. Then
we use either the subscript notation C, M,, ... or we write it as an argument
C(s), M(s), ... .

The space of solenoidal fields in the half-space R is defined by LZ(R?}) :=
C'Coj’o(]Ri)”'”q, where C7%(RY) = {v € CF(RY) : dive = 0}. It is well known
that LL(R%}) = {v € LY(RY) : dive = 0,v”|al&¢ = 0} and that this space is
complementary in L¢(R%) for 1 < ¢ < co. More precisely we have the Helmholtz

decomposition

LARY) = L3 (RE) @ Go(RY),
where G(R%) := {Vp;p € /Wl’q(Ri)} (see e.g. [26], [18], [2]). Then the Stokes
operator A, 4 in LL(RY), 1 < ¢ < 00, is defined by
Agqui=—PjAu, u€ D(Ayq) ={uc€ WQ’q(Ri) : Tou = 0},

where P, @ LY(R7Y) — LZ(R7Y) is the Helmholtz projection, which is the bounded
projection associated to the Helmholtz decomposition.

2.2 Sectorial Operators and Bounded H*-Calculus

Definition 2.1 A closed operator A in a Banach space X is called sectorial, if it
satisfies the following two conditions:

(1) A is densely defined, injective and has dense range,

(ii) (—o0,0) C p(A) and there is some M > 0 such that [[A(A+ A)7'|| < M
for all A > 0.

In this case (see e.g. [6]) there is some ¢ € [0, ) such that the sector
Sy =1z € C\{0} : [arge| < 7— 6}

is contained in p(—A), and sup{|A(A+ A)7'|: A € Xr_4} < co. The infimum over
all such ¢ is called the spectral angle of A and is denoted by ¢4. Oberserve that
o(A)\ {0} C Xy, . Moreover, if A is sectorial, and ¢4 < %, it generates a bounded
holomorphic Cy-semigroup on X. Recall that A is sectorial if and only if A~ is
sectorial and that D(A%) N R(A*) is a dense subspace of X for each £ € N (see [6]).
A special class of sectorial operators, on which we will focus in Section 6, is the
set of operators admitting a bounded H®-calculus. For a comprehensive treatment
of this property see [19] and [6]. Before we can introduce operators admitting a
bounded H*-calculus, we need to define for ¢ € (0, 7) the commutative algebra

H®(Xy) :={h:34 — C: h is holomorphic and bounded}
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as well as its subalgebra H3°(X4) given by

HE(Z4) :={h € H®(Xy) : |h(2)| < C’% for some C' > 0,5 > 0}.  (4)
14z

Let A be a sectorial operator in X with spectral angle ¢4, let ¢ € (¢4, 7) and
6 € (¢a,¢). The path

T={te’ too>t >0 U{te™ :0<t < 00}, (5)

passing from ooe’? to coe™# stays in the resolvent set of A with the only possible
exception at ¢ = 0. In view of Cauchy’s integral formula, for h € H§®(Z4), we may

define h(A) via Dunford’s formula by

1
h(A) = — [ h(A\)(A = A)~1dA 6
()= 50 [ A= A7 )
which is well defined due to (4) and the sectoriality of A. Note that for each sectorial
operator A, formula (6) defines the algebra homomorphism @ 4 : H3°(X4) — L(X),
®4(h) := h(A). The operator A is said to admit a bounded H*-calculus on X, if
there is some C' > 0 such that

[[A(A)z]| < CllAfloo |]] (7)

for all h € H® (E¢) and all z € X. The infimum over all possible ¢ for which
inequality (7) holds is called the H* -angle of A and is denoted by ¢ . Clearly, we
always have ¢ > ¢a. We denote by H®(X) the class of all sectorial operators
that admit a bounded H *-calculus on X.

For arbitrary h € H*(X,) we may define h(A) by the following method. Put
Y(z) = z(1 4+ 2)~% Then ¥ € H{°(4) and by

A

[(ESE (1+4)7" +L(1+A)—2+(A—A)—1A(1+A)—2

14+ A
(8)

and Cauchy’s Theorem we see that 1/(A) = A(1 + A)~2. Hence this operator is
bounded and injective, its range equals D(A) N R(A) and its inverse is given by
A71(14 A)%. Now for h € H*®(X,) we set

A
N (S

-1 1 A -1 2 4-1

) = )AL = oo ([0 - 7 ) 1+ aa
)
initially defined on the dense subspace D(A) N R(A) of X. Thanks to the conver-
gence Lemma (see [5, Lemma 2.1]) it follows that inequality (7) is still valid for
those h if A € H*(X). Consequently, ®4 extends to bounded algebra homomor-
phism from H*(X4) to £(X). Again by identity (8) and Cauchy’s Theorem it is
easy to see that this definition of h(A) is compatible with the definition (6) in the

case h € HF® ().
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Since z + 2%, s € [—1,1], is a bounded holomorphic function on each sector
Yy, we see that H*(X) is a subclass of

BIP(X) := {A: D(A) = X :||A”||¢x) < C, s € [-1,1]}.

So operators in H* (X) enjoy all the properties of this larger class as for instance
the representation of the domain of fractional powers A® as a complex interpolation
space, i.e. D(A*) = [X, D(A)]s, s € (0, 1), or the maximal Regularity of the Cauchy
problem associated to A if X is a UMD space and ¢§ < /2. As mentioned
in the introduction, for our purposes in what follows, one important example is
the Poisson operator |V| = (—Ag»)'/?. Indeed we have |V| € H*®(LI(R")) for
1 < q < co. This follows easily by the selfadjointness of |V| in L?(R™), which
implies |V| € H*®(L?(R")), and the results in [8]. Further classes of operators
which are known to admit a bounded H*-calculus are:

Bounded operators, normal sectorial operators in Hilbert spaces (in particular self-
adjoint operators) and negative generators of positive contraction semigroups on
L4-spaces. For details see [6].

3 L? — Li-Estimates for Holomorphic Semigroups

LP — Li-estimates for solutions of linear initial value problems have turned out to
be an important tool for treating corresponding semilinear equations. For instance
in [17] and [12] the authors constructed local strong solutions for the Navier Stokes
system by only using such estimates for the solution of the Stokes equations. Here
we state LP — L%-estimates for certain families of holomorphic Cy-semigroups on
L1(2)-spaces. The proof is based on Gagliardo-Nirenbergs inequality as provided
n [10], [21] (see also [9, Theorem 9.3]) on R™. In combination with the results
in [3] this inequality is also valid for unbounded (g, 00) domains (see also [15]),
recalling that for example R™, R} and bent half-spaces belong to this class (see
[22, Appendix A] or [24]).

We state the following results in a more general framework, as in this work it is
merely applied to the Stokes semigroup. The expenditure is quite the same. Here
let (Xg)qe(1,00) be a family of closed subspaces X, of L(2) equipped with the
Li-norm. We assume that

D= (1 X

r€(1,00)

lies dense in each X4, ¢ € (1,00). Furthermore, we suppose —A; to be the gen-
erator of a bounded holomorphic Cy-semigroup (e_tAq_)tZO on X, and the family

(Ag)ge(1,00) to be compatible, i.e. if u € D(Ag) N D(Ay) then Aju = Apu for
p,q € (1,00).

Proposition 3.1 Let Q@ C R™ be an (g,00) domain. Assume (Xg)ge(1,00) and
(Aq)qe(1,00) to be as described above such that

(i) D(A;) — W24(Q) and
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(i1) (|V?ullg < Cl|Aqull, u € D(Ay),
for each q € (1,00). Then there is a constant C = C(n) such that the inequalities

—tA
lle™* 4= f1lp
[Ve™ = fll,

et flly, >0, FEX,N Xy, (10)
ct=3= 53| fll,, t>0, € X,N Xy, (11)

AN

are valid for all p,q € (1, 00] satisfying 1 < ¢ <p< oo orl<q<p<oo.
Proof. Let ¢ € (1,00) and p € [g, 00]. Choosing ¢1 € [q, p] such that -< 5 + -

yields a 1= % (q% — %) < % Hence, by assumption and the Gaghardo—Nlrenberg
inequality, we obtain
le™ 2 fll, < C||V2e_m‘“f||§1|| e fllgr

IA

C||A e~ TAn o~ % qlf||q1||e $Aq o= 3% qlf||1—a
< e 3 ]|,

for t > 0 and f € D. Choosing now ¢s € [g, q1] such that q% <Lt q% <24 % we
can continue the above calculation getting
el < G2 it

< o HEH) () e tan g

< catm 3@ e,
Tterating this procedure results

le= 225l < Cmt=3(Em3) e T Aam ],

with =— <2 + S qm > b mp-l—n So, for certain m € {1,...,n}, we can reach ¢

and (10) is proved if feD.
To see the estimate for the first order derivatives we again apply the Gagliardo-
Nirenberg inequality which yields by similar arguments

IVe 2 fll, < C|[VZe 4 f2, [l e f[L70

< Ctem 2 f|l,,

for some ¢1 € [2n,p]and a = § + 2 (q—l - %) < 3. To continue, if ¢ > 2n we set

q1 := ¢, otherwise we use the just proved estimate for e=*42. In any case we may
conclude

[vemtAagl, < cemimElEmE) g,

for £ > 0 and f € D. Since D is assumed to be dense in X, the assertion follows.
O

, under some additional assumptions we can

If we set Xy := DN Ll(Q)HAH1

extend the above statements to cases where ¢ = 1.
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Proposition 3.2 Let all the assumptions of Proposition 3.1 be fulfilled. Further
assume for the families (X;)re[1,00) and (Ar)re(1,00) additionally the properties
X} = X, and A}, = A, respectively, where 1 + L = 1. Then inequalities (10)

and (11) remain true also for values of p,q € [1,00] such that 1 < ¢ < p < 0.

Proof. Tt remains to verify the two cases 1 <g¢g<p<ooand 1 =¢<p=o0c0. To
see the first one, observe that by assumption we have (e7*44)’ = e~*44’. Thus it
follows that

le~* 42 fll, = sup  [(e™rfu) = sup  |(f,e7 o)
UGD,||1/||I,/:1 UGD7||U||pI:1
< sup [f|llle™" 2 0] oo
UED,||U||F/:1

fort > 0 and f € DN X;. Applying estimate (10) of Proposition 3.1 we may
continue the calculation, which yields

lle=t42 7] C sup [t E o]l
P p 1 P

vED, ||| =1
ot~ E (=) £l
This implies for the gradient of e=t4z f
IVeT™ 421l < Ct3llem 3421,
< o =g,

IA

fort > 0 and f € DN X;, where we applied (11) for the case 1 < ¢ = p < co. By
density the case 1 = ¢ < p < oo is proved.

The case 1 = ¢ < p = oo follows by a combination of the cases 1 = ¢ < p < 0o and
1<g<p=oco. a

4 A Solution Formula for the Resolvent Problem
in R%

The results for the Stokes operator with Robin boundary conditions, presented in
this work, are based on an explicit representation for the resolvent of the Stokes
operator in the half-space R}, which we state now. For dealing with problems in
R%, the following notation has proved to be useful: 2’ := (21, z2,...,20_1) € R7-1
always denotes the first n—1 components of the variable z € R} ji.e. x = (2',2,) =
(#1,...,Zn_1,%,). We use the same notation for vector fields u : R} — C*, i.e.
u = (v u") = (u',...,u"" ' u") and also for operators, e.g. R = (R, R,) =
(Ri,...,Rn1, Rp).

Consider the Stokes resolvent problem
(A=A)u+Vp f in RT
(SRP)f o divu = 0 in RY,
Tau = 0 in Rn_l,
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where A € Xr_,, for ¢o € (0,7) and o € [0,00]. The right hand side f satisfies
the compatibility conditions div f =0 and f" raﬂgiz 0, where the trace operator

Ty 18 given by
Tow e < oy’ —nanu' )
u

By a similar way as in [7] we now state a solution formula for (u,p). Fourier
transform with respect to the variable 2’ of the system (SRP); s o gives

(12)

ORY

A+ &PV 2n) = 00 (& mn) + i wn) = [ 2a), (1)
A+ [EP)am (€ wn) = na" (€ zn) + 0up(€ ma) = [P 20),  (14)
ig'.a'(g' Zn) 4 On (¢ 2n) = 0, (15)

ad'(¢',0) — nﬂ( 0 =0, (16)

a"(g,0) = 0 (17)

for & € R~ and z,, > 0. Applying div (in the sense of distributions) to the first
line of (SRP)f x,o We obtain

Ap=divf =0, (18)

where we used divu = div f = 0. This implies that p is of the form
PE wn) = T Go(€), € ERM >0, (19)
with some boundary value pg. We set w(|£']) := \/)TW and make the following

ansatz for the velocity u:
W€ xn) :/0 k(€ 2, 8)(f(€,5) = i€/p(€', 5))ds + 1D /(") (20)
(&, xn) :/0 k(€ 2, 8)(f7 (€, 5) = (€, 8))ds + e« 1€ g (¢7) (21)
with

1
20(1€")

and a function ¢ = (¢’,¢™)7 to be determined. For this purpose we use div f = 0,
(18) and the identity

k(€' an, s, A) = (e=w(EDlen=sl 4 o=w(i€'D@n+a))y

axnk+(£laxna5) = _63k—(£la$na5) (22)
to obtain
Ot (&', 2p) =
/0 O kg (€20, 8) (7 (€1, 5) — Bup(€', 5))ds — wo(JE']) =€ D=n g (&)

—/0 Ok (€, 20, 8)(f* (€', 5) = Bup(&, 5))ds — w(|¢/)e WD gn ()
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[ € G )+ s - wlle eV g )
—ie! ([ R () (€ s + Do )

o emelehe, (i&' H(€) - w(€)6" (")

= i ) + eI (i () — (i) (E))

Equality (15) now implies
ig ' (¢) =w(lee"(¢), € err (23)
In the following we set
()= [ e s, ¢ eRn
0

and

(e = /Ooo emelEDs (et s)ds, ¢ e R

Our compatibility assumptions on f then imply for ¢/ € R?~1

SAEDinE) = [ wlgpeten == [T g syas
= /0 e—w(IE’I)sasfn(g,S) 5:_1'5/./0 e—w(lg Ds g7 (e s)ds
= —ig - h(¢). (24)
Further, from (17) and (19) we obtain
angg _ 1 T we)s  gn e Ho—le's o (et et
0= €0 = o [ ) I (€ 4 )
1 In (¢l |EI| ~ / Tn (el
= — b :
sten” @ SrEmegen ey @) et

This equality can be solved with respect to pg, which leads to

w(I€) +1€']
1€']
From the boundary conditions for the remaining components we obtain a second

formula for py. Using (8,,k_)(£',0,s) = e=“U€Ds and (19) a simple calculation
yields

Pol€') = - (wleéne) +h"€)), € er™ (25)

&’

0o, ' (€',0) = h'(€) — w(€')d'(€') - Wpo(

(26)
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Therefore, by (16), it follows
0 = ad(¢,0)-0,4'(¢,0)

ad/(€) (iz'@') w(ENdE) - ﬁ;mmm) .

Multiplying this equation with i¢’, using (23) and (24) yields for ¢/ € R"~!

i) = LELEEL e [ +wpem by iee)] . e

Now, by (25) and (27) po can be eliminated and we obtain the following formula
for ¢™, which depends on the data f of the Stokes resolvent problem only:

ey w(|£ll)+|£l| 1 ]"_ln / / n—1 ¢
PO = Ceh e asgen” ¢ EEET =

A similar calculation as for ¢™ leads to the following formula for ¢:

b (! ! ireny o, 1€ o B (¢! > ! n-1 (e
=——-—1|h s % h .
e w([¢']) + < &)+ (e + E+a &) ), ¢er (29)

5 Resolvent Estimates for the Stokes Operator

In the following we prove resolvent estimates for the solution (u,p) of the system
(SRP)¢,x o with the help of the formulas constructed in Section 4. The main result
in this section reads as follows

Theorem 5.1 Letn > 2, 1 < g < oo, and ¢q € (0, 7). Further let a € [0, 00] and
T, be defined as in (12). Then for f € LY(RY) and X € Xr_,, there is a unique

solution
(u,p) € {v € WHI(R}) : div v =0, Tov =0} x /WLQ(R?D

of the system (SRP)¢ x a-
Moreover, there exists a constant C = C'(n, q, o), independent of f, A, and o such
that

Mllully + VIMIVully + [V 7ully +[[VPllg < ClIllq- (30)

Based on this result we verify the existence of a compatible family (A4 4)qe(1,00)
of sectorial operators in LZ(R7) associated to (SRP)fx . For proving Theo-
rem 5.1, we first show that Vp € LZ(R%}). Then, by putting Vp on the right hand
side, the problem for the Stokes operator is reduced to a resolvent problem for the
Laplacian with Robin boundary conditions. Hence, the estimates for the solution
of that problem, which are also proved below, transfer to the Stokes flow. The
proof of Theorem 5.1 requires some further preparations.
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To treat the terms appearing in the solution formulas of the just mentioned
problems we will frequently make use of the bounded H“°-calculus of the operator

V' = (~Ape) 2 = FE o )7
in the space L9(R"~1) for 1 < ¢ < co. This result provides estimates of the form
1AV D ciza@n-1y) < Col|P]oo

for holomorphic functions h that are bounded on the sector X, where ¢ € (0, )
Since ¢|V’| =0, we even may choose ¢ as small as we want. For f € S(R"™") and

m € H®(X,) we have

m(VNf = Fam [ mOO 19D = o [ myF( - 9 paa

= o [ MOV~ €D A = m(g )]
r

By definition (9) it easy follows that the equality above is valid for allm € H*(X,).
Therefore it remains to show m € H®(Z,) for some ¢ € (0,7) for proving that
m(| - ]) is a multiplier on L¢(R™~"). For this reason the pointwise estimates in the
next two lemmas will be very useful in the sequel.

Lemma 5.2 Let pg € (0,7/2) and ¢ € (0,90/2). Then there is a constant C' =
C(o, ), such that

(a) |arg VA + 22| < T520,
(b) Re VA+27 > O/,
(¢) Re VA+ 27 > C|z|

for all X\ € Sr_y, and z € X,

Proof. (a) Since 2¢p < ¢y < 7/2 < 7 — @y we have | arg(A+2z?)| < 7 — g, hence

larg VA + 2% < (7 — o) /2.

(b) and (c) In view of |arg VA + 22| < (m—pq)/2 < /2 the function f : Yr_,, x
X, = R, f(X, z) = Re VA + 22 is continuous and strictly positive on the compact
set K :={(\,2) € Er_y, x Uy : V/|A|+ |2] = 1}. This yields f(\,z) > C on K

for a certain C' > 0, consequently

Re VA 422 =

A z ?
W ((¢N+ |z|>) (VI 1)

CVIN+ I2])

x X, which proves (b) and (c). O

v

for all (A, z) € X,

o
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We set w(z) = VA + 22 and fix o € [0, 00]. Then for z € ¥, and A € Xr_,, we

define the functions

z
@=Ly
e—w'(z)xn e 3Tn
Ma,a(2) = w(z) — =z ’
_ 1
ma(2) = wiz)+z+a’

(31)
(32)

(33)

If we replace z by |€'| these are all functions which appear in the solution formulas

for the Stokes flow u and the pressure p of of the system (SRP)¢ » .

Lemma 5.3 Let o,p > 0, po € (0,7/2) and ¢ € (0,00/4). Then there are con-

stants C,6 > 0 such that

(a) 1Gx(2)| < C,

—d|z|zy
b) |24 My, A (2)] € O
) 14 My (41 € O

(c) lw(z)mr(2)| < C,

(d) |amy(z)] < CW)

(¢) [emr(2)] < C,

9—6 e

(f) lw(z)7em*En| < O—n—,

n

forallz € Xy, xn >0 and X € Xr_ypy.

Proof. (a) From Lemma 5.2 (¢) we obtain

w(2)

z

2
> Re A -

D W+|Z|2>C>0’ ZEELP, AEE"_LPU,

which shows that (a) holds true.
(b) Let A€ Er_y,. For My, » we have the representation

Mxm)\(z) = _/ e—w(Z)(zn—s)e—zst’ 2 €%, >0
0

In virtue of Lemma 5.2 (b) and (c) there is a constant ¢; > 0 such that

Re w(z) = Re VA + 22 > cl(\/m-l— |z])

(34)
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for all z € ¥,. This implies, if we set z = ret?,

T e e A
0

IN

|Z|1+p/ |€—w(z)(:cn—s)||€—23|ds

0

< r1+p/ ne—Re(w(z))(zn—s)e—Re(z)st

- 0

< r]-|—p/ ne—cl( |>\|+T)(z"_s)€_rCOS(G)SdS.
0]

Setting ¢s := min{eq,cos(p)} < cos(f) we may continue the calculation above
obtaining

Tn
|Zl+prn7)\(Z)| S 7’1+p/ e—cQ( |A|+r)(zn—s)6—chst
Q

Tp
r1+p6—czr:cn / e—czy/|)\|(:cn—s)d8
0
1

IA

< pltpg—coran (1_6—62 |>\|$n).
B ca/[A|

The estimate sup, o r*e™% < C-%, which is valid for all a € (0, c0) and s € [0, 00),
now leads to

1
M ()] S ettt (e

Co |)\
—corT, /2 (1—6_C2 |>‘|z") —CcorTy [2
< ¢t <c—"
- Tn car/ |\ zn T zh (1 + o/ A zn)

6—6|z|xn
[ —
zn(1+ V[Alzn)

for z€ Xy, &n > 0and A € Xr_yy.
(c) According to Lemma 5.2 (a) we have |argw(z)| < 7522 for z € ¥,. This
leads to

<

m — 2¢
|~ arg(s) + arg 2| < arge(s)| + Jargz| < T < 2
for z € Xy, since ¢ € (0,¢0/4). Hence it follows
P [ : ]
— iargw(z) jargz _ _ > 0.
Re 20 Re |w(z)|6 |z|e mel cos(—argw(z) + arg(z)) > 0

From Re w(z) > 0, which is valid according to Lemma 5.2 (b), we obtain Re w(lz) >

0. Consequently

z

Re <1+L+i> — 14+Re —— +4aRe —— > 1,
w(z)  w(z) w(z) w(z)
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which gives

w(z)ma(2)] =

< <Re <1+ w(zz) + W?Z)»_l <1

for all z € X, and ) € Y-

(d) and (e) are analogous to (c).

(f) Here we write w as w(z) = re with r > 0 and 6 € (0, ). By Lemma 5.2 (a)
and (b) we get

|w(z)oe—w(z)zn| — |w(z)oe—Ew(z)zne—%w(z)zn|

=03/ NS

o —%rcos(())xn —%Re w(z)Tn

= Tr e €

(cos(B)z, ) <¢ zg

for z € ¥y, ®n > 0 and A € Xr_y, and the proof is complete. O
The next theorem is motivated by our intention to reduce the Stokes system
(SRP)¢ x o to a problem for the Laplacian. Consider

A=Ay = f in RY,
(LRP)f’A’“{ au—30,u = 0 on OJRY,

where a € [0,00]. The results for the system (LRP)¢ x o stated below are well
known. But in order to present a preferably self-contained approach we give a
proof by our methods.

Proposition 5.4 Let n > 2, ¢g € (0,7), and 1 < ¢ < oco. Then for every
f € LYRY) and X € Sr_y,, there is a unique solution u € {v € WY(R}) : ayv —
¥0nv = 0} of equation (LRP)¢ x o. Further there exists a constant C = C(n, q, o),
independent of f, A, and a € [0, 00] such that

Mllully + VIXIVullg + 1V%ullg < ClIf]la- (35)

Proof. Since C2°(R%) lies dense in LI(R%) we may assume f € C¢°(R%). Fourier
transform with respect to z’ yields

LR - en) = f(E xa), € €RMTL an € Ry,
(LRP)f,A,a { OHJ([':I, 0) _ 811@(51, 0) 0, ¢¢ Rn-1 +

Again we set w(|¢'|) = /A + |¢/|? and define the extension operators E+ E~ by

Py f@en) + wn >0,
(Eif)(”"’”"")_{if(m’,—rn) ©oan <0

2

(36)
Since the fundamental solution for the operator w? — d?2 is given by

1
G(zn) = Z@“"l“l, zn €ER,
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we obtain for the convolution with FE* f

<1
/OO %e_wlz"_sl}'Eif(s)ds

® 1
_ - —w|za—s|
= /0 55¢ Ff(s)ds (37)
|
= ewlEnts) ppE e
+/0 55¢ FE=* f(—s)ds
0 —w|r,—s| —w(zn+s)
_ / ¢ *¢ Ff(s)ds.  (38)
0 20.)

Thus, defining

—w(|¢')]zn—s| ~w([€')(@nts)
ki(glamnasa)‘) = ‘ e )

20(1€")

the solution of (LRP_)AJ; .o 1s of the form

il ) = Ar [ (€ s VA )5+ Ay [ k(€5 NFE )
0 0
(39)
where Ay and A_; are complex valued functions, that may depend on & As u
shall satisfy (w(]-])? — 82)@ = f, the first condition on A; and A_; is
A +A_1 =1.

Taking the trace of 4 at z, = 0 results

e 0= [ e s = )
u s = _— ,8)ds = ,
oo el w(IE)

where h(¢') := I e—w(|§'|)sf(£’, s)ds. By the equality
9, e~ wENIma=sl — _ g o=w(€)|zn—s
we obtain
Oy, ky (&', 2n,s,A) = —33k:F(£f', Tn, S, A),
which yields
Ontt(E' xn) = —Al/ Osk_ (€', xp, 5, \)f(€', 5)ds
0

_A_1/0 Osky (& 2n, s, \)F(€', 5)ds

A / b (€, 20,5, M0, F(€, 5)ds

+A_1/0 ky (€', 2n,5,0)0,f(E, 5)ds. (40)
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Hence we get for the trace of 0,4

a ~ EI 0) A /Oo E_w(|EI|)58 f.‘(EI )d
niE0 = A ey ¢
s )

= —A_1/0 85Wf(£,s)ds:A_]h(£).

The boundary condition now gives

Together with the condition A; + A_; = 1 one obtains

M= -V g AL =

w(lg']) + a (') +

for ¢’ e R"land A € Trepo-
Now let ¢ € (0,¢0/2). In view of Lemma 5.2 we deduce

0% «

|[A_1(2)] = |w(z) + o = Re(w(z) + a) =3 Al + o =1

We also have

1
< — <1
1+aR67—)

wilz

|A1(z)

| =
‘1 + w@)
forall z € ¥, A € Tr_y, and a € [0,00]. Consequently, A;(|V’|) and A_(|V'])

are bounded operators on L¢(IR”~") and the operator norm is less then a constant,
which does not depend on A and «.

Note that

f_l(G*fEif) TTR;L: ()‘ - AH@")_lEif h&'p A€ E'n'—tpu'

By formula (39) we get the following representation for the solution wu:
w= A (VDO = Ara) B fny 44 (W) — Ape) B fIpy . (41)

The assertion now follows because estimate (35) for the resolvent of the Laplacian

(A — Ag=)~" in LY(R™) is well known (see [23]). O

Remark 5.5 The above theorem shows that the operator A, := Ami?"‘ defined
by Aq := A on D(A,) :={v € WQ’q(}R’_IL_) C(av — 8nv)|am1 = 0} is the generator
of a bounded holomorphic Cy-semigroup on L(R%) for 1 < ¢ < oc.

With the above preparations in hands, we turn to the proof of our main result
in this section.
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Proof. (of Theorem 5.1)
We prove the estimate

IVPllramy) < Clifllamy, A€ Brog,. (42)

To this end, we may assume f € LI(R%). Indeed, if f € LI(R%), then problem
(SRP)f o with its solution (u, p) may be rephrased as the problem (SRP)pf o,
which has the solution (u, p—q), where Vg = (I—P)f and P = Pgy is the Helmholtz
projection on L(R%). So if (42) is proved for f € LZ(R"}), the inequality

Vel < IV =allg +1IVallg < CUPfllg + 1T = P)fllg) < Cllfllgr - A € Ermon,s

implies the estimate for the general case.

For & € R™~! the term d,p by (19) can be written as
OnplE #n) = €T o (¢)
= —Jg)em 0V py (') '] (€D — emIEen ) o), (43)

Next we provide a formula for the boundary value pg of the pressure p. By (28)
and (33) ¢" is of the form

6" (€)= = (w(IE']) + 1€l ma(l€")) h(¢), & ernl,

1
w(I€)
Hence, in view of (25) we have

~w(lé') + 1€
€]

For the first addend of expression (43) we then deduce

po(¢) = (1= @€' + ') ma(le'N) A (€), ¢ eR™

|£ =D by (¢) =
= U0 (1)) + 1€) (1= (w(I€']) + [€']) ma(I€'])) A" (&)
(1+Gx(|£ ) (1= (@(€']) + [€'l) ma(1€'])) w(le'])e0E Do hn (1),

whereas inserting po in the second addend of (43) yields

/] (et e-'f"“) Po(€') =

= —|¢|M;y, (|5|)|5|( — (w(€']) + 1€y ma(I€'])) B (")
= XM, A(E]) (1= ((I€]) + [€') ma(1€'])) (|1£ m |§| (€,

where we used the abbreviations (31) and (32) and for the last equality (24).
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So Onp is represented as

Onp(x) =
= [1= (V') + V) ma (VD] (1 + GA(IV'))w (| )e=“UY Donhm (1)
+[L= @D + V) s (T DAY e (V'] S - () (4)

In order to estimate the above formula we need the following lemma.

Lemma 5.6 Let 1 < ¢ < oo and g € (0, 7). The components of the function h
satisfy

(@) [|W||paggn-ry < CINTV20 | fllamn)y, A € Deopo, d=1,..0,m,
(®) (19 De= 07 DOM|Lagy) < Cllfllzogry, A€ Brmgy, i =1,...,m

Proof. We fix ¢ € (0, p0/4). Here we also may use the estimates in Lemma 5.3.
(a) Lemma5.3 (f) and |V/| € H*(LZ(R"~1)) imply

(15| agrn-1)

||/ 6_w(|vll)sfj(';S)dSHL‘I(]K"—l)
Q

< [ O o
< (/000 fcql\/l?st) " 1 M| Lagen)
< CT | fllnaqmy)

for A\€ Xp_y, and j=1,... n.

b) Here again Lemma 5.3 (f) leads to
||w(| Y |) —«(l l)zthHLq (Rn=1)

I / (I7/)e 0¥ D) £3 (. 5)ds]| gy

IA

C/O In+S||fj(';5)||Lq(]Kn—1)d5

for 2, > 0. We denote by f the trivial extension of f on R™ By the variable
transform s +— —s the latter integral is equal to

(e}

[e's} 1 -
J, s P Moo = [ TP (s,

which is nothing but the Hilbert transform (denoted by H) of the function z,
1F(, —%p)|[La(gn-1) Testricted to R,. Since H is bounded on LI(R), there exists
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a C > 0 such that

||W(|VI|)@_M(|vl|)(‘)hj||Lq(]1&

IN

I (IF (. =(Dllzaen) llzages)
Ol (I ¢ =(Dllzoms) o
< ONlf pan < Cllfllzacmn)

for A€ X¥r_y,and j=1,...,n. O
Now, by Lemma 5.3 (a), (b), (c), (e) and since |V’| € H*° (LI (R"~1)) it follows

IA

[0npllLaey) < Cille(IV/ eI VOB | o)

1
R e e 2 (| Y (P y
o (14 /Nan)e FanmhTn

Lemma 5.2 (b), Lemma 5.6 (a) and the boundedness of R’ in L4(R”~!) imply

1/q
[e%) e _% 1+
1npllzoey < C 1+</0 (HLIAI ( q)dmn) 1 fllzeges)

|Alza)9
< Cllfllzen)
for A € Er_y,. Since
P iglemlElen e lelen g 6y = — 2
Ep(E ) = i€e o(&) = |€||€| 0(§) B Inp(&'s zn),

for ¢’ € R"~!and z,, > 0, we have V'p = —R'd,,p. Thus, again by the boundedness
of R' we also obtain

IV'Pllzamy) < Cllfluay), A € Samgn,

which implies inequality (42).

By putting Vp on the right hand side of the Stokes equation we can regard
(SRP)g s as the problem (LRP)f_vp o for the Laplacian in L?(R%). Proposi-
tion 5.4 then implies together with (42) for the Stokes flow u

Ml + VIMIVully + [V2ully < Cllf = Vpllg < C(1fllg +[1Vplla) < ClI£lq

for A € ¥r_,,. Combining this with (42) we deduce estimate (30) and Theorem 5.1
is proved. O

Recall that the Stokes operator A, 4 in LZ(R7Y), 1 < ¢ < 00, is defined by
Ao qu = —PgAu, u€ D(Anq) ={ué€ WQVq(IR’_IL_) cTou =0},

where P, is the Helmholtz projection on LI(R%). The next theorem shows that
(Aa,q)qe(1,00) 18 a compatible family of sectorial operators in LZ(R7). Essentially,
it is a consequence of Theorem 5.1.
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Theorem 5.7 Let 1 < q < co. The following statements hold true:
(1) C\[0,00) C p(An,q) and (A4 Ay q) ™' f = us(X), where ug(A) denotes the
unique solution of (SRP)j x o for f € LL(RY) and =X € p(Aq q)-
(2) A:x,q = A, ¢, where é + ql—, = 1. In particular A, » s self-adjoint.
(3) Ay = A, 4 is sectorial in LL(RY) with ¢4, = 0.
Proof. (1) TLet —X € C\ [0, 0c0). Then there is a o € (0, 7) such that A € Xr_,,,.

Theorem 5.1 says, that for each f € LI(IR%) there exists a unique u = uz(A) €
D(A,,q) such that

A+ Ao gJu= A= PA)u=Py((A=A)ut+Vp) = Ff = F,

which implies, that (A + As ) : D(Aa,q) — LE(IRY) is a continuous isomorphism.
Thus
A+ Aa )™t LL(RY) = D(Aa )

is also a continuous isomorphism and we have (A + A, ,)7'f = ug(A) for f €
LI(R%) as well as —X € p(Aa,q).

(2) Let u € D(Aqq), v € D(Aqy,q ). By the following calculation we see that

n

(—Au,v) = Z(—Auj, vj)

j=1

= Z/ vjanujdx+Z(Vuj,ij)
j=1 /R J=1

= / v Opu'de — Z/ w9, vl de — Z(uj,Avj)
Rr=t j=1 /R

j=1
= / v Opu'dr — / u' - Opv'de + (u, —Av)
R7—1 R7—1
= —f 1 v (au — Opu')de + / 1 u' - (v’ — 0,0 )da + (u, —Av)
= (u, IkiAv). :
This implies

(Ag,qu,v) = (=PyAu,v) = (—Au, Ppv) = (—Au,v)
= (u,—Av) = (Pyu,—Av) = (u, Ay gv)

foru € D(A, ) and v € ,D(Aa’ql)' To see that D(AY, ;) C D(Aq,q) let v € D(A )
and w € (Lg(Ri))’ =14 (Ri) such that

(u,w) = (Agqu,v) &  (w,w+v)=((1+A,,)u,v)
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for w € D(A,,4). According to assertion (1) there is a unique @ € D(Aq ) such
that o = (1 + Aayq/)_l(w%— v). Now let f € Lg(}R’_l‘_) and u = (1+ Aayq)_lf. Then

(fiv=1) = ((1+ Asg)u,v) = ((1+ Aaq)u, )
= (u,v) + (v, w) — (v, w+v) =0.
Hence v =9 € D(Aq o) and it follows A/a,q = Ay g

(3) The statements in (1) show that A, , is a closed, densely defined operator in
LZ(R%) such that, due to (30), for each o € (0, 7) the inequality

AN+ Aag) 7 lg < Cpoy X € By,

is valid for some constant Cy,, > 0. Moreover, it is known that a densely defined
operator A : D(A) — X in a reflexive Banach space X has dense range R(A) if its
dual A’ is injective. In order to obtain (3), therefore it suffices by (2) to show that
Aq,q 1s injective for ¢ € (1,00). To this end, let u € D(A, 4) satisfying A, qu = 0.
Since (A + Aayq)u = Au for A > 0, we see that u is the solution of the resolvent
problem (SRP)¢ \ o with f = Au. Hence, in view of (30)

[V2ully < CllAullg, 2> 0.

Letting A — 0 forces u to be a polynomial of degree less or equal to 1 in Wz’q(Ri),

consequently u = 0. O
The results in Theorem 5.7 imply in particular that all the assumptions
of Proposition 3.1 and Proposition 3.2 for the families <Lg(R1))q€[l,oo) and

A, 1.00) are fulfilled, if we set LL(R7) := L'(R"?)N D”'Hl, where D =
i qe( ) ) o + +

ﬂqe(l ooy I'd (R%). Thus the LP — Li-estimates stated there are valid for the Stokes
semigroup, more precisely we have

Corollary 5.8 The Stokes semigroup (e™'4),5q satisfies
e~ e fll, < CEGRfll, >0, fe LL(RY), (45)
Ve e fll, < €72 2ERiflly, 1>0, fe Lg(RY).  (46)

forp,qg €[1,00] such that 1 < ¢g<p< oo orl<qg<p<oo.

Proof. Since all other assumptions of the Propositions 3.1 and 3.2 follow from the
above results, it remains to verify condition (ii) of Proposition 3.1. To this end
observe that u € D(A,) solves (SRP)¢ 5 o with right hand side f = (A + Ay )u for
A > 0. Then (30) implies

IV2ully < ClI(A + Aa)ully, A >0,
and passing to the limit A — 0 gives the assertion. O

Remark 5.9 By the results in [25] (see also [24]) it follows that (46) is even valid
for all values of p,q € [1,00] satisfying 1 < ¢ < p < oo, and also (45) except if
p = ¢ =1in the case that a € (0, c0].
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6 Bounded H*-Calculus for the Stokes Operator

In this section we will see that the Stokes operator with Robin boundary conditions
admits a bounded H*°-calculus on LZ(IR%) for 1 < ¢ < co. For the case of Dirichlet
boundary conditions this result is already contained in [7]. We start with a lemma
and a corollary on integral operators on L (R ), which we copied from [7].

Lemma 6.1 Let T' be defined by

0 = [ ks >0 (47)

where k : Ry x Ry — C is a measurable function such that the above integral is
well defined. Further assume that for some q € (1,00) the operator T' satisfies

(T )] < tl/quHLq (Ry), >0

IfT € L(L(Ry)) for some qo € (q,00], then T € L(LP(R4)) for all p € (¢, qo]-

Proof. By assumption 7" : LI(Ry) — L% (Ry) is bounded, since ¢t — tl/q lies
in the weak Li-space L (R4) (for the notion of weak L?-spaces we refer to [27]).
The assertion then follows from the Marcinkiewicz interpolation Theorem (see [27,

Theorem 2.4.]). O

Corollary 6.2 Let k: Ry x Ry — C be a measurable function satisfying

C t
k(t < 1 14 - t
kol < 7omtog (142) ns>0
and define T as in (47). Then we have T € L(LF(R4)) for 1 < p < co.

Proof. Observe that

/ [k( t€|d9<0/ Og + d—:C/ Mds<oo,
0 1+— s 0 s)s

which implies that 7' € £(L*(R4)). For p € (1,00) and f € LP(R) we obtain by
the Holder inequality
’ 1/p’
c /OO flog (1 + H)p"ds | " |
A [ fllne(® )

' 1/p’
c °°[10g(1+s)]p as \'"
T\ e Illastm.

”f”“’ (R 4)

(TF)(®)]

IA

IA

t1/p
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for £ > 0. An application of Lemma 6.1 then completes the proof. O

Next we state a proper representation for the Stokes flow u, which shall be
used to prove the bounded H*-calculus for the Stokes operator. Since p(¢', zn) =
e~1€17n 50 (€7), we get by expression (25) for po

/ k+(E;In: )8nﬁ(€/,8)d82
_ / ki (€, 2, )6 €10 ds|¢/ o)

B e=l€'ltn _ g=w(|€')zn e~w(lE'Nzn |£ | i
= \=gen—er T wuen ) soen v

e~ (& h)en .
( e (1€ + W)[ w(€)8"(€) +h™(€)
and analogously

/ ko (€, 2, $)i€H(E, 5)ds = / k(€ an, 5)e™1€19ds i€/ po(€)
0 0

- |’§'| (€D lw(endn e + i)

Inserting this in (21) or (20), respectively, we obtain the representation
(€n) = [ k(€9 € 9)ds
0
+ Ma, A(€]) [w(€DS" () + B*(€)], (€,am) €RY, (48)

a' (& zn) / k_(¢ zn,s f(E',s)ds+e_w(lsll)“q;'(é:')

|’§| a1 [(€)8(€) + (€] (€',2.) € B, (49
for the solution u of (SRP)¢ x o, where
o () = _w(llﬁ’l) (w(€']) + E)mA(E' DA™ (€), & er™ (50)

and

TreEty 1 71fet aim INLT (el / n—1
HE) = s (ME +agmleine) ). ¢em )

according to (28), (29) and (33).

Theorem 6.3 lLet a € [0,00]. For 1 < q < oo the Stokes operator A, admits a
bounded H* -calculus on LL(R"}) with H* -angle d)fa =0.
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Proof. We shall estimate the addends in the formulas (48) and (49) for the Stokes
flow u separately. The first addends of 4™ and 4’ are transformed representations
of the resolvent of the Dirichlet Laplacian Ap in L?(R%), which is well known to
belong to the class H> (LY(R7)).

For the second addend of @' (as former denoted by @) we have according to

(51)

@_w(|§ll)zn . 7 ~
W€ an =N = R + am (1) (¢
€ o) = S (W) + (D))

et
= /(; —(_u(|EI|)+O[ f(gas) S

it! [ emwl€D@ats)
+ = a—7mm——
1€ Jo w(l¢']) + o

for (&', 2,) € RY, =X € Xr_y, and arbitrary ¢o € (0,7/2). Next let ¢ > 0,
h € Hi?(X4) and choose @q € (0, 8). We set for ¢ € (0, p0/4)

e~ w(@)(@nts)
w(z) +a

mox(|€') f™ (€', s)ds

!]17)\(2') = , ZE Etp;

and
e—w(z)(Tnts)

g2 (2) = am_,(z) O z € X,
and consider the functions
1
Gj(z) == 5 h(Mgia(z)dX, z€X,, j=1,2
T T

where T := {y € C: p = re!® r > 0} for some 6 € (o, ¢) (see figure 1 for a
sketch of the different angles used in this proof). In virtue of Lemma 5.2 (b) and
Lemma 5.3 (d), (f), the functions G, j = 1,2, can be estimated by

il [T
00 o

0 Ve
e

0
C
- xn+s

for all a € [0, 00]. Thus G € H®(X,) for j = 1,2 and we obtain by the bounded
H®-calculus for the operator |V’| on L¢(R"~1)

1
[ f B (-, 2, ~ N ooy <
N

1G;(z)]

IA

||h||°°’ ZEELP; Zn,s > 0,

2w

< N[ GOSNl + IR [ Gal 7D sdslaeosy
0 0

N

- o 0 T, + s
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H*-sector

Figure 1: The angles ¢, ¢o, 0, ¢.

for &, > 0. For 1 < r < oo and the operator (Tg)(z,) := fooo zg is ds we calculate

()" ([ () o)

Cae M \lgllormy)s 9 € LT (Ry).

1/r'

INA

[(Tg)(zn)]

IA

This implies that T € L(L"(Ry), Ll (Ry)) for any r € (1,00), where Lj (Ry)
denotes the weak L"-space (see [27]). In view of the Marcinkiewicz interpolation
Theorem we obtain 7' € L(L"(R4)), 1 < r < co. Applying this fact to the latter
term of the calculation above yields

1

2m1

| /h()‘)ulz('a 5 =AM [Lagrn)y < Cllhlleo]| fllaen)-
r

By (50) the second term of 4" can be written as
W€, =A) = Mo, a(€)[L = @(I€']) + €' mx(EN]A" ()

e o] ,
1o saen eI

1= (w(€']) + 1€ ymon(l€)] e UEDs fr(e! 5)ds

for (&', xn) € R} and —X € Xr_y,. This time we set

ga(z) = —ZMxm_A(z) [1— (w(z) + 2)m_x(z)] e @)

= - / ’ e~ @G Enmpts)o=zr ) (w(z) + z)m_x(2)]dp, 2z € Xy,
0
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and deduce with r = |z| by Lemma 5.2 and Lemma 5.3

s [

r T _ _
Cllh o / 7/ e_cl(r+\/0)($n—)0+5) —aredod
|| || 0 P - \/E 0 [S] paoc

C|lh oore_clr(r"“)/ / e V@) drd .
Il A p

G(2)] =

IN

IN

Here we applied Lemma 5.2 (b) and (c) to e~@@)@En=rts)  In virtue of

Sup,oore” @) < € we can continue the calculation by the substitution
r>0 = +s

nt:

o +— /o and obtain

G(2)]

IA

CHhHoo#/ "/ i e~ero@n=rts)qodp
(zn +5) Jo g rT+o

1 “n 1
S el A oy

= C|All log (14+22), 5> 0.

(en 1)

This implies

1
— | h(Muj (-, 2y, —A)dX <
271'2/1" Wi ( ) La(R»=1)
. HR/ GV S (-, 5)ds
0 La(Rn—1)
* log (1 + Z=)
< Cfhlles / —E =l

for z, > 0. Corollary 6.2 then yields

L/ h(A)uf (v, xn, —A)dA
T

271

< Cfhleol[flLagrn)
La(R™)

and, since uj = —R'u}, the same estimate is valid for the third addend of u’.

Summarizing and having in mind that (A— A)~!'f = —u(-, =) for =X € T, _,
we may conclude that

! / h(A)(A — A)~" fdA

2m Jr

I (A) fllLaqen) =

< Cllhlloo |l fllzamy)
La(RY)

for all h € H3®(Xg4), f € LEL(RY) and the assertion follows. O
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7 A Local Existence Result for the Navier-Stokes
Equations

To prove a local existence result for problem (3) we intend to apply Theorem 1 in
[12]. In an abstract setting this result provides a unique local solution for semilinear
parabolic initial value problems of the form

{ v+ Au+ F(u) = 0 in (0,7), (52)

u(0) = wuo,

where ug belongs to a certain Li-space F9, A is a generator of a Cy-semigroup,
and F is the nonlinear part. In particular Theorem 1 in [12] states the existence
of a mild solution of (52), i.e. a solution of the corresponding integral equation

u(t) = e g + /OO e_(t_s)AF(u(s)_)ds, te (0,7). (53)

In our situation, by applying the Helmholtz projection P = P]Ki to (3), we see that
this equation can be written as a problem of the form (52) with E? = LZ(R%),
F(u) = P(u,V)u, and A = A, = A, 4 the Stokes operator with Robin boundary
conditions in LI (IR%).

By checking the assumptions for the abstract existence result in [12] one will
realize that the main work for applying Theorem 1 is done in the previous sections.
For instance the LP — Li-estimates in (10) equal exactly assumption (A) in [12]
(with m = 2). Since divu = 0 we may write the nonlinearity F' as F' = Z;ﬂ I;Gj;,
where I';v := Pd;v and G(v) := viv. Since (Asq)' = Aa,g by a duality argument
and in view of estimate (11) we easy see that

le=t4T0l, < G 2ol 0<t < o0, 1< g< o0, veLL(RY).

Hence, also assumption (N1) in [12] is satisfied (with 4 = 1). For the nonlinearities
(; we obtain by applying the Holder inequality

IGjv — Giwllgz < C(l[(v; — wj)vllgsa + [Jwi(v — w)|lg/2)
< Cllv = wlg([[vllg + [Jwllg)

for1 < ¢ < 0o, v,w € LE(RY). This implies that also the third and last assumption
(N2) of Theorem 1 in [12] is fullfilled (with a = 1). Thus, we may apply this result
to our situation and we deduce

Theorem 7.1 Let n < g < co. Then for each uy € LY (R’_IL_) there is a Ty > 0 and
a unique mild solution of (3) on [0,Ty) such that

(1) w € BC((0, To); LE(R) 1 L7 (0, To); LE(B ),

(2) t'/7u € BC([0, To); L5 (R%)) with tY/7||u(t)]|; — 0 ift — 0
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2 n _ n
for;+;_g, r,s>q.

(3) Let ¢ = n > 1. There is an € > 0 such that Ty can be chosen as oo if
[|uol|lg < €, and we have

ifs>q.

(4) If ¢ > n > 1 then

(5) If ¢ > n > 1 and (0,T*) is the mazimal existence interval of the solution
u in C((0,177); LL(R%)) then

c .
llu(®)lly > (D te(0,77).
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