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Abstract. We prove strong convergence to singular limits for a linearized

fully inhomogeneous Stefan problem subject to surface tension and kinetic

undercooling effects. Different combinations of σ → σ0 and δ → δ0, where

σ, σ0 ≥ 0 and δ, δ0 ≥ 0 denote surface tension and kinetic undercooling coef-

ficients respectively, altogether lead to five different types of singular limits.

Their strong convergence is based on uniform maximal regularity estimates.

Dedicated to Jerry Goldstein on the occasion of his 70th anniversary

1. Introduction

The aim of this note is to consider the fully inhomogeneous system




(∂t − c∆)v = f in J × Ṙ
n+1,

γv± − σ∆xρ+ δ∂tρ = g on J × R
n,

∂tρ+ [[c∂y(v − aρE)]] = h on J × R
n,

v(0) = v0 in Ṙ
n+1,

ρ(0) = ρ0 in R
n,

(1.1)

which represents a linear model problem for the two-phase Stefan problem subject
to surface tension and kinetic undercooling effects. Here

v(t, x, y) =

{
v+(t, x, y), y > 0,
v−(t, x, y), y < 0,

x ∈ R
n, y ∈ R \ {0}, t ∈ J,

denotes the temperature in the two bulk phases Rn+1
± = {(x, y); x ∈ R

n, ±y > 0},
and we have set Ṙn+1 = R

n+1
+ ∪R

n+1
− and J = (0, T ). The function ρ appearing in

the boundary conditions describes the free interface, which is assumed to be given
as the graph of ρ. We also admit the possibility of two different (but constant)
diffusion coefficients c± in the two bulk phases. The parameters σ and δ are related
to surface tension and kinetic undercooling. The function ρE is an extension of ρ
chosen suitably for our purposes. Here it is always determined through





(∂t − c∆)ρE = 0 in J × Ṙ
n+1,

γρ±E = ρ on J × R
n,

ρE(0) = e−|y|(1−∆x)
1
2 ρ0 in Ṙ

n+1.

(1.2)

Using this notation, let [[c∂y(v− ρE)]] denote the jump of the normal derivatives
across Rn, that is,

[[c∂y(v − ρE)]] := c+γ∂y(v
+ − ρ+E)− c−γ∂y(v

− − ρ−E),
1
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where γ denotes the trace operator. The coefficient a is supposed to be a function
of δ and σ, that is, a± : [0,∞)2 → R, [(δ, σ) 7→ a±(δ, σ)]. It is further assumed to
satisfy the conditions

a± ∈ C([0,∞)2,R), a±(0, 0) > 0. (1.3)

Recall from [10] that the introduction of the additional term ’aρE ’ with a± > 0
in the situation of the classical Stefan problem is motivated by the following two
facts: for suitably chosen a (depending on the trace of the initial value and ∂yρE)
it can be guaranteed that a certain nonlinear term remains small for small times.
On the other hand, the additional term ’aρE ’ is exactly the device that renders
sufficient regularity for the linearized problem. Note that, concerning regularity,
this additional term is not required if surface tension or kinetic undercooling is
present. However, in order to obtain convergence in best possible regularity classes
for the limit σ, δ → 0, we keep the term ’aρE ’ in all appearing systems. Since
the data may (in general even must; see Remark 1.3) depend on σ and δ as well,
a is a function of these two parameters. The natural and necessary convergence
assumption (1.10) then implies that we can assume that a± ∈ C([0,∞)2,R). This
continuity will be important in deriving maximal regularity estimates for related
boundary operators; see the proof of Proposition 2.6.

The results of this paper on system (1.1) represent an essential step in the treat-
ment of singular limits for the nonlinear Stefan problem on general geometries.
This will be the topic of a forthcoming paper.

To formulate our main results, let W s
p (R

n), s ≥ 0, p ∈ (1,∞), denote the
Sobolev-Slobodeckij spaces, cf. [15] (see also Section 2). Depending on the presence
of surface tension and/or kinetic undercooling we obtain different regularity classes
for ρ, the function describing the evolution of the free interface. To formulate this
in a precise way we define for J = (0, T ) and δ, σ ≥ 0,

E
2
T (δ, σ) :=

{
ρ ∈ E

2
T (0, 0) : δ‖ρ‖E2

T (1,0) + σ‖ρ‖E2
T (0,1) < ∞

}
, (1.4)

equipped with the norm

‖ · ‖E2
T (δ,σ) := ‖ · ‖E2

T (0,0) + δ‖ · ‖E2
T (1,0) + σ‖ · ‖E2

T (0,1), (1.5)

and where

E
2
T (0, 0) := W 3/2−1/2p

p (J, Lp(R
n)) ∩W 1

p (J,W
1−1/p
p (Rn)) ∩ Lp(J,W

2−1/p
p (Rn)),

E
2
T (1, 0) := W 2−1/2p

p (J, Lp(R
n)) ∩W 1

p (J,W
2−1/p
p (Rn)),

E
2
T (0, 1) := W 3/2−1/2p

p (J, Lp(R
n)) ∩W 1−1/2p

p (J,W 2
p (R

n)) ∩ Lp(J,W
4−1/p
p (Rn)),

equipped with their canonical norms. For the different values of δ and σ (i.e.,
δ = σ = 0, or δ > 0 and σ = 0, or δ = 0 and σ > 0, or δ and σ > 0) we obtain four
different regularity classes for ρ. This leads to the following five types of singular
limits for problem (1.1):

(1) (δ, σ) → (0, 0), δ, σ > 0,

(2) (δ, σ) → (δ0, 0), for δ0 > 0 fixed,

(3) (δ, σ) → (0, σ0), for σ0 > 0 fixed,

(4) (δ, 0) → (0, 0),

(5) (0, σ) → (0, 0).
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Our main result, Theorem 1.2, covers convergence results for all these limits.

In the sequel

sg(t) :=





1, t > 0,
0, t = 0,

−1, t < 0,

will denote the sign function. Our first main result is on maximal regularity. Here
we refer to Section 2 for the definition of the space of data FT (δ, σ). The essential
difference to corresponding results in previous publications is the uniformness of
the estimates with respect to the parameters δ and σ.

Theorem 1.1. Let 3 < p < ∞, R, T > 0, 0 ≤ δ, σ ≤ R, and suppose that
a = a(δ, σ) is a function satisfying the conditions in (1.3). There exists a unique
solution

(v, ρ, ρE) = (v(δ,σ), ρ(δ,σ), ρ
(δ,σ)
E ) ∈ ET (δ, σ)

for (1.1)–(1.2) if and only if the data satisfy

(f, g, h, v0, ρ0) ∈ FT (δ, σ), (1.6)

γv±0 − σ∆xρ0 + δ
(
h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)

1/2

ρ0)]]
)
= g(0), (1.7)

and, if δ = 0, also that

σ(h(0)− [[cγ∂yv0]]) ∈ W 2−6/p
p (Rn). (1.8)

Furthermore, the solution satisfies the estimate

‖(v, ρ, ρE)‖ET (δ,σ) ≤ C
(
‖(f, g, h, v0, ρ0)‖FT (0,0) + (δ + σ)‖ρ0‖W 4−3/p

p (Rn)

+ σ‖h(0)− [[cγ∂yv0]]‖W 2−6/p
p (Rn)

)
, (1.9)

where the constant C > 0 is independent of (δ, σ) ∈ [0, R]2.

Our main result on convergence of singular limits is

Theorem 1.2. Let 3 < p < ∞, R, T > 0, 0 ≤ δ0 ≤ δ ≤ R, 0 ≤ σ0 ≤ σ ≤ R,
and a = a(δ, σ) be a function satisfying the conditions in (1.3). Set µ := (δ, σ),
µ0 := (δ0, σ0), and I0 := [δ0, R]× [σ0, R]. Suppose that

((fµ, gµ, hµ, vµ0 , ρ
µ
0 ))µ∈I0 ⊂ FT (µ)

and that the compatibility conditions (1.7) and (1.8) in Theorem 1.1 are satisfied
for each µ ∈ I0. Furthermore, denote by (vµ, ρµ, ρµE) the solution of (1.1)–(1.2)
given in Theorem 1.1 that corresponds to the parameter µ = (δ, σ) ∈ I0. Under the
convergence assumptions that

(fµ, gµ, hµ, vµ0 , ρ
µ
0 ) → (fµ0 , gµ0 , hµ0 , vµ0

0 , ρµ0

0 ) in FT (µ0), (1.10)

and, if δ0 = 0, that

σ (hµ(0)− [[cγ∂yv
µ
0 ]]) → σ0 (h(0)

µ0 − [[cγ∂yv
µ0

0 ]]) in W 2−6/p
p (Rn) (1.11)

and, if δ0 = σ0 = 0 and δ > 0, also that

(δ + σ)ρµ0 → 0 in W 4−3/p
p (Rn) (1.12)

on the data, we obtain strong convergence of the solution, i.e., we have that

(vµ, ρµ, ρµE) → (vµ0 , ρµ0 , ρµ0

E ) in ET (µ0). (1.13)
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Remark 1.3. (a) Note that for δ > 0 condition (1.8) follows automatically from
condition (1.7).

(b) Conditions (1.10) and (1.12) for the last component are obviously satisfied for

a fixed initial interface in W
4−3/p
p (Rn), i.e., if we assume ρµ0 = ρ0 ∈ W

4−3/p
p (Rn)

for all µ ∈ I0. But observe that, due to condition (1.7), it is not possible to fix v0
as well.

(c) In analogy to (a) note that for δ0 > 0 assumption (1.11) follows automatically
from (1.7) and (1.10). Also observe that in the case δ = δ0 = σ0 = 0 condition
(1.12) follows automatically from conditions (1.7) and (1.10).

(d) In the case δ0 = σ0 = 0 conditions (1.11) and (1.12) express that ‖ρµ0‖ and

‖h(0)µ− [γ∂yv
µ
0 ]‖ might blow up in W

4−3/p
p (Rn) and W

2−6/p
p (Rn) respectively, but

slower than σ and δ tend to zero. This seems to be natural in view of the fact that
we do not have ρ

(0,0)
0 = ρ(0,0)|t=0 ∈ W

4−3/p
p (Rn) and

h(0)µ0 − [cγ∂yv
(0,0)
0 ] = ∂tρ

(0,0)|t=0 ∈ W 2−6/p
p (Rn)

from the regularity of solutions in the situation of the classical Stefan problem.

The Stefan problem is a model for phase transitions in liquid-solid systems that
has attracted considerable attention over the last decades. We refer to the recent
publications [5, 10, 11, 12, 13] by the authors, and the references contained therein,
for more background information on the Stefan problem.

Previous results concerning singular limits for the Stefan problem with surface
tension and kinetic undercooling are contained in [1, 16]. Our work extends these
results in several directions: we obtain sharp regularity results (for the linear model
problems), we can handle all the possible combinations of singular limits, and we
obtain convergence in the best possible regularity classes.

Our approach relies on the powerful theory of maximal Lp-regularity, H∞-
functional calculus, and R-boundedness, see for instance [2, 8] for a systematic
introduction.

2. Maximal regularity

First let us introduce suitable function spaces. Let Ω ⊆ R
m be open and X be

an arbitrary Banach space. By Lp(Ω;X) and Hs
p(Ω;X), for 1 ≤ p ≤ ∞ and

s ∈ R, we denote the X-valued Lebegue and the Bessel potential space of order s,
respectively. We will also frequently make use of the fractional Sobolev-Slobodeckij
spaces W s

p (Ω;X), 1 ≤ p < ∞, s ∈ R \ Z, with norm

‖g‖W s
p (Ω;X) = ‖g‖

W
[s]
p (Ω;X)

+
∑

|α|=[s]

(∫

Ω

∫

Ω

‖∂αg(x)− ∂αg(y)‖pX
|x− y|n+(s−[s])p

dxdy

)1/p
, (2.1)

where [s] denotes the largest integer smaller than s. Let T ∈ (0,∞] and J = (0, T ).
We set

0W
s
p (J,X) :=





{u ∈ W s
p (J,X) : u(0) = u′(0) = . . . = u(k)(0) = 0},

if k + 1
p < s < k + 1 + 1

p , k ∈ N ∪ {0},

W s
p (J,X), if s < 1

p .
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The spaces 0H
s
p(J,X) are defined analogously. Here we remind that Hk

p = W k
p for

k ∈ Z and 1 < p < ∞, and that W s
p = Bs

pp for s ∈ R \ Z. We refer to [14, 15] for
more information.

Before turning to the proofs of our main results, we add the following remarks
on the linear two-phase Stefan problem (1.1) and the particularly chosen extension
ρE determined by equation (1.2).

Remarks 2.1. (a) (1.1)–(1.2) constitutes a coupled system of equations, with the
functions (v, ρ, ρE) to be determined. We will in the sequel often just refer to a
solution (v, ρ) of (1.1) with the understanding that the function ρE also has to be
determined.

(b) Suppose ρ ∈ W
1−1/2p
p (J, Lp(R

n)) ∩ Lp(J,W
2−1/p
p (Rn)) and ρ0 ∈ W

2−3/p
p (Rn)

is given such that ρ(0) = ρ0. Then the diffusion equation (1.2) admits a unique
solution

ρE ∈ W 1
p (J, L

p(Ṙn+1)) ∩ Lp(J,W
2
p (Ṙ

n+1)).

This follows, for instance, from [5, Proposition 5.1], thanks to

e−|y|(1−∆x)
1
2 ρ0 ∈ W 2−2/p

p (Ṙn+1).

(c) The solution ρE(t, ·) of equation (1.2) provides an extension of ρ(t, ·) to Ṙ
n+1.

We should remark that there are many possibilities to define such an extension.
The chosen one is the most convenient for our purposes. We also remark that we
have great freedom for the extension of ρ0.

Let T ∈ (0,∞] and set J = (0, T ). By FT we always mean the space of given
data (f, g, h, v0, ρ0), i.e., FT is given by

FT = F
1
T × F

2
T × F

3
T × F

4
T × F

5
T (δ, σ),

where

F
1
T = Lp(J, Lp(Ṙ

n+1)),

F
2
T = W 1−1/2p

p (J, Lp(R
n)) ∩ Lp(J,W

2−1/p
p (Rn)),

F
3
T = W 1/2−1/2p

p (J, Lp(R
n)) ∩ Lp(J,W

1−1/p
p (Rn))

F
4
T = W 2−2/p

p (Ṙn+1)

F
5
T (δ, σ) = W 2−2/p+sg(δ+σ)(2−1/p)

p (Rn).

Analogously, we denote by ET the space of the solution (v, ρ, ρE). As was already
pointed out in the introduction, we have, depending on the values of δ and σ, four
different type of spaces. For this reason we set

ET (δ, σ) = E
1
T × E

2
T (δ, σ)× E

1
T (δ, σ ≥ 0),

with
E
1
T = W 1

p (J, L
p(Ṙn+1)) ∩ Lp(J,W

2
p (Ṙ

n+1)),

and with E
2
T (δ, σ) as defined in (1.4) and equipped with the parameter dependent

norm given in (1.5). Note that then the norm in ET (δ, σ) is given by

‖(v, ρ, ρE)‖ET (δ,σ) = ‖(v, ρ, ρE)‖ET (0,0) + δ‖ρ‖E2
T (1,0) + σ‖ρ‖E2

T (0,1)

for (v, ρ, ρE) ∈ ET (δ, σ). For fixed δ, σ > 0 by interpolation it can be shown that

E
2
T (δ, σ) = W 2−1/2p

p (J, Lp(R
n)) ∩ Lp(J,W

4−1/p
p (Rn))
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in the sense of isomorphisms. We remark that E2
T (δ, σ) is the correct regularity class

for the free surface if both, surface tension and kinetic undercooling are present.
The space E

2
T (0, σ) or E

2
T (δ, 0) is the proper class if just surface tension or just

kinetic undercooling, respesctively, is present. Finally, E2
T (0, 0) is the correct class

if both of them are missing, i.e., E2
T (0, 0) is the regularity class in the situation of

the classical Stefan problem.

The corresponding spaces with zero time trace at the origin are denoted by 0F
1
T ,

0E
1
T , 0E

2
T (δ, σ), and so on, that is,

0F
2
T = 0W

1−1/2p
p (J, Lp(R

n)) ∩ Lp(J,W
2−1/p
p (Rn)) or

0E
1
T = 0W

1
p (J, L

p(Ṙn+1)) ∩ Lp(J,W
2
p (Ṙ

n+1)),

for instance. Moreover, we set

0FT := F
1
T × 0F

2
T × 0F

3
T ,

0ET (δ, σ) := 0E
1
T × 0E

2
T (δ, σ)× 0E

1
T .

2.1. Zero time traces. We will first consider the special case that

(h(0), g(0), v0, ρ0) = (0, 0, 0, 0).

This allows us to derive an explicit representation for the solution of (1.1)–(1.2).

Theorem 2.2. Let p ∈ (3,∞), T,R > 0, 0 ≤ δ, σ ≤ R, and set J = (0, T ). Suppose
that

(f, g, h) ∈ 0FT

and that the function a = a(δ, σ) satisfies the conditions in (1.3). Then there is a
unique solution

(v, ρ, ρE) = (vµ, ρµ, ρµE) ∈ 0ET (δ, σ)

of (1.1)–(1.2) satisfying

‖(v, ρ, ρE)‖0ET (δ,σ) ≤ C‖(f, g, h)‖
0FT

(2.2)

with C > 0 independent of the data, the parameters (δ, σ) ∈ [0, R]2, and T ∈ (0, T0]
for fixed T0 > 0.

Proof. (i) In order to be able to apply the Laplace transform in t, we consider the
modified set of equations





(∂t + κ− c∆)u = f in (0,∞)× Ṙ
n+1,

γu± − σ∆xη + δ(∂t + κ)η = g on (0,∞)× R
n,

(∂t + κ)η + [[cγ∂y(u− aηE)]] = h on (0,∞)× R
n,

u(0) = 0 in Ṙ
n+1,

η(0) = 0 in R
n,

(2.3)

and 



(∂t + κ− c∆)ηE = 0 in (0,∞)× Ṙ
n+1

γη±E = η on (0,∞)× R
n,

ηE(0) = 0 in Ṙ
n+1,

(2.4)
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for the unknown functions (u, η, ηE) and for a fixed number κ ≥ 1 to be chosen
later. We claim that system (2.3)–(2.4) admits for each (f, g, h) ∈ 0F∞ a unique
solution

(u, η, ηE) ∈ 0E∞(δ, σ)

satisfying inequality (2.2) in the corresponding norms for T = ∞.

(ii) In the following, the symbol ˆ denotes the Laplace transform w.r.t. t combined
with the Fourier transform w.r.t. the tangential space variable x. Applying the two
transforms to equation (2.4) yields

{
(ω2 − c∂2

y)η̂E(y) = 0, y ∈ Ṙ,

η̂E
±
(0) = η̂,

(2.5)

where we set

ω = ω(λ, |ξ|, y) =
√
λ+ κ+ c(y)|ξ|2,

ω± = ω±(λ, |ξ|) =
√

λ+ κ+ c±|ξ|2.
with c(y) = c± for (±y) > 0. Equation (2.5) can readily be solved to the result

η̂E(y) = e
− ω√

c
|y|
η̂. (2.6)

Next, applying the transforms to (2.3) we obtain




(ω2 − c∂2
y)û(y) = f̂(y), y ∈ Ṙ,

û±(0) + σ|ξ|2η̂ + δ(λ+ κ)η̂ = ĝ,

(λ+ κ)η̂ + [[c∂y(û− aη̂E)(0)]] = ĥ.

(2.7)

By employing the fundamental solution

k±(y, s) :=
1

2ω±
√
c±

(e−ω±|y−s|/√c± − e−ω±(y+s)/
√
c±), y, s > 0

of the operator (ω2
± − c±∂2

y), we make for û± the ansatz

û+(y) =

∫ ∞

0

k+(y, s)f̂
+(s)ds− eω+y/

√
c+(σ|ξ|2η̂ + δ(λ+ κ)η̂ − ĝ), y > 0,

û−(y) =

∫ ∞

0

k−(−y, s)f̂−(−s)ds− eω−y/
√
c−(σ|ξ|2η̂ + δ(λ+ κ)η̂ − ĝ), y < 0.

(2.8)

A simple computation shows that

∂yû
+(0) =

1

c+

∫ ∞

0

e−ω+s/
√
c+ f̂+(s)ds+

ω+√
c+

(σ|ξ|2η̂ + δ(λ+ κ)η̂ − ĝ) and

∂yû
−(0) = − 1

c−

∫ ∞

0

e−ω−s/
√
c− f̂−(−s)ds− ω−√

c−
(σ|ξ|2η̂ + δ(λ+ κ)η̂ − ĝ).

Inserting this and the fact that ∂y η̂E
±
(0) = ∓ ω±√

c±
η̂ in the third line of (2.7) yields

η̂ =
1

m

(
ĥ−

∫ ∞

0

e−ω+s/
√
c+ f̂+(s)ds−

∫ ∞

0

e−ω−s/
√
c− f̂−(−s)ds

+
√
c+ω+ĝ +

√
c−ω−ĝ

)
,

(2.9)
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with

m(λ, |ξ|) = λ+ κ+ (σ|ξ|2 + δ(λ+ κ))
(√

c+ω+(λ, |ξ|) +
√
c−ω−(λ, |ξ|)

)

+ a+
√
c+ω+(λ, |ξ|) + a−

√
c−ω−(λ, |ξ|) . (2.10)

(iii) In order to show the claimed regularity for the Laplace Fourier inverse of the
representation (û, η̂) we first show regularity properties of the symbols involved. To
this end let us introduce the operators that correspond to the time derivative and
the Laplacian in tangential direction. Let r, s ≥ 0 and

F ,K ∈ {H,W}.

Then by Ks
p we either mean the space Hs

p or the space W s
p . On the space

0Fr
p(R+,Ks

p(R
n)) we define

Gu = ∂tu, u ∈ D(G) = 0Fr+1
p (R+,Ks

p(R
n)), (2.11)

and

Dnu = −∆u u ∈ D(Dn) = 0Fr
p(R+,Ks+2

p (Rn)),

that is, Dn denotes the canonical extension to 0Fr
p(R+,Ks

p(R
n)) of −∆ in Ks

p(R
n).

Note that

G ∈ RH∞(0Fr
p(R+,Ks

p(R
n))) with φR,∞

G = π/2 (2.12)

and

Dn ∈ RH∞(0Fr
p(R+,Ks

p(R
n))) with φR,∞

Dn
= 0, (2.13)

i.e. both, G and Dn admit an R-bounded H∞-calculus with RH∞-angle φR,∞
G =

π/2 and φR,∞
Dn

= 0, respectively. Recall that an operator A admits an R-bounded

H∞-calculus with RH∞-angle φR,∞
A , if it admits a bounded H∞-calculus and if

R
({

h(A) : h ∈ H∞(Σφ), ‖h‖∞ ≤ 1
})

< ∞

for each φ > φR,∞
A , where R(T ) denotes the R-bound of an operator family T ⊂

L(X) for a Banach space X, see [2, 8] for additional information.

The inverse transform of the occuring symbols can formally be regarded as func-
tions of G and Dn. We first consider the symbol ω±. The corresponding operator
is formally given by

F± = (G+ κ+ c±Dn)
1/2. (2.14)

Lemma 2.3. Let 1 < p < ∞ and r, s ≥ 0. Then we have that

F± : D(F±) → 0Fr
p(R+,Ks

p(R
n))

with

D(F±) = 0Fr+1/2
p (R+,Ks

p(R
n)) ∩ 0Fr

p(R+,Ks+1
p (Rn)),

is closed and invertible, where we set F = H in case 2r ∈ N.

Proof. The assertion follows from [9, Proposition 2.9 and Lemma 3.1]. �
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Next we show closedness and invertibility of the operator

L := G+κ+(σDn+δ(G+κ))
(√

c+F+ +
√
c−F−

)
+a+

√
c+F++a−

√
c−F− , (2.15)

associated with the symbol m introduced in (2.10), in the space 0Fr
p(R+,Ks

p(R
n)).

We will prove invertibility of L and derive uniform estimates with respect to the
parameters (δ, σ) in various adapted norms. In view of (2.12), (2.13), and by the
Theorem of Kalton and Weis [7, Theorem 4.4] it essentially remains to show the
holomorphy and the boundedness of the symbols regarded as functions of λ and
|ξ|2 on certain complex sectors.

In order to obtain these estimates, the following simple lemma will be useful.

Lemma 2.4. Let G ⊆ C
n be a domain. Let f1, f2 : G → C be functions such that

f1(z) 6= 0 for z ∈ G. Then the following statements are equivalent:

(i) −1 6∈ f2
f1

(G).

(ii) There exists a c0 > 0 such that

|f1(z) + f2(z)| ≥ c0(|f1(z)|+ |f2(z)|), z ∈ G.

Proof. We set

g : G → R, g(z) :=
|f1(z) + f2(z)|
|f1(z)|+ |f2(z)|

, z ∈ G,

which is a well defined function. Observe that (ii) is equivalent to saying that

0 6∈ g(G). By contradiction arguments it is not difficult to show that this relation
is equivalent to condition (i). �

Remark 2.5. The assumption f1(z) 6= 0 for z ∈ G is just for technical reasons and
can be removed.

Now we prove closedness and invertibility of L.

Proposition 2.6. Let 1 < p < ∞, r, s ≥ 0, R > 0, (δ, σ) ∈ [0, R]2, and F ,K ∈
{H,W}. Suppose that a is a function satisfying condition (1.3). Then there is a
number κ ≥ 1 such that

D(L) = 0Fr+1+sg(δ)/2
p (R+,Ks

p(R
n)) ∩ 0Fr+1

p (R+,Ks+sg(δ)
p (Rn))

∩ 0Fr+1/2
p (R+,Ks+2sg(σ)

p (Rn)) ∩ 0Fr
p(R+,Ks+1+2sg(σ)

p (Rn))

and L : D(L) → 0Fr
p(R+,Ks

p(R
n)) is invertible. Furthermore,

σ‖Dn(G+ 1)1/2L−1‖0 + σ‖D3/2
n L−1‖0

+ δ‖(G+ 1)3/2L−1‖0 + δ‖D1/2
n (G+ 1)L−1‖0 + ‖L−1‖1 ≤ C

with C > 0 independent of (δ, σ) ∈ [0, R]2, where ‖ · ‖0 denotes the norm in

L
(
0Fr

p(R+,Ks
p(R

n))
)
,

and ‖ · ‖1 the norm in

L
(
0Fr

p(R+,Ks
p(R

n)), 0Fr+1
p (R+,Ks

p(R
n)) ∩ 0Fr

p(R+,Ks+1
p (Rn))

)
.
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Proof. Let ϕ0 ∈ (0, π/2) and ϕ ∈ (0, ϕ0). By a compactness and homogeneity
argument it easily follows that

|ω±(λ, z)| = |
√

λ+ κ+ c±z|
≥ c0

(√
|λ|+

√
κ+ c±

√
|z|
)

(2.16)

for all (λ, z, κ) ∈ Σπ−ϕ0
× Σϕ × [1,∞) and some c0 > 0.

In the following we let ϕ0 ∈ (π/3, π/2) and ϕ ∈ (0, ϕ0 − π/3). Note that by
condition (1.3) on a there exist δ∗, σ∗ > 0 and M, c0 > 0 such that

a±(δ, σ) ≥ c0 ((δ, σ) ∈ [0, δ∗]× [0, σ∗]) (2.17)

and

|a±(δ, σ)| ≤ M ((δ, σ) ∈ [0, R]× [0, R]). (2.18)

First assume that (2.17) is satisfied, i.e., that (δ, σ) ∈ [0, δ∗]× [0, σ∗]. Let m be
as given in (2.10). We consider the function

f : Σπ−ϕ0
× Σϕ × [0, δ∗]× [0, σ∗]× [1,∞) → C,

(λ, z, δ, σ, κ) 7→ f(λ, z, δ, σ, κ) := m(λ, z) := f1(λ, z, δ, σ, κ) + f2(λ, z, δ, σ, κ),

with

f1(λ, z, σ, δ, κ) := (λ+ κ)
[
δ(
√
c+ω+(λ, z) +

√
c−ω−(λ, z)) + 1

]
,

f2(λ, z, σ, δ, κ) := m(λ, z)− f1(λ, z, σ, δ, κ)

= σz
(√

c+ω+(λ, z) +
√
c−ω−(λ, z)

)

+ a+(δ, σ)
√
c+ω+(λ, z) + a−(δ, σ)

√
c−ω−(λ, z).

Note that by our choice of the angle ϕ for (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
× Σϕ × [0, δ∗] ×

[0, σ∗]× [1,∞) with arg λ ≥ 0 there exists an ε > 0 such that

π − ϕ0 ≥ π − ϕ0

2
+ ϕ ≥ arg σz

√
λ+ κ+ c±z ≥ −3ϕ

2
≥ −3ϕ0

2
+

π

2
+ ε,

if σ > 0, and that
π − ϕ0

2
≥ arg

√
λ+ κ+ c±z ≥ −ϕ

2
.

By these two estimates we see that in any case we obtain

3(π − ϕ0)

2
≥ arg f1(λ, z, δ, σ, κ) ≥ −ϕ

2
.

and

π − ϕ0 ≥ f2(λ, z, δ, σ, κ) ≥ −3ϕ

2
≥ −3ϕ0

2
+

π

2
+ ε.

Consequently,

2π

3
≥ π − ϕ0 +

ϕ

2
≥ arg

f2(λ, z, δ, σ, κ)

f1(λ, z, δ, σ, κ)
≥ −3ϕ0

2
+

π

2
+ ε− 3(π − ϕ0)

2
= −π + ε.

A similar argument holds for the case that (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
× Σϕ × [0, δ∗] ×

[0, σ∗]× [1,∞) with arg λ ≤ 0. Here we obtain

−2π

3
≤ arg

f2(λ, z, δ, σ, κ)

f1(λ, z, δ, σ, κ)
≤ π − ε.
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This implies that

−1 6∈ Σπ−ε ⊇
f2
f1

(Σπ−ϕ0
× Σϕ × [0, δ∗]× [0, σ∗]× [1,∞))

Lemma 2.4 now yields the existence of a c1 > 0 such that

|f1(λ, z, δ, σ, κ) + f2(λ, z, δ, σ, κ)| ≥ c1(|f1(λ, z, δ, σ, κ)|+ |f2(λ, z, δ, σ, κ)|)

for all (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
×Σϕ× [0, δ∗]× [0, σ∗]× [1,∞). An iterative application

of Lemma 2.4 on the summands of f1 and f2 and an application of inequality (2.16)
then result in

|f(λ, z, σ, δ, κ)|
≥ c2

{
|λ|+ κ+ σ|z|

(√
|λ|+

√
κ+

√
c+|z|+

√
c−|z|

)

+ δ(|λ|+ κ)
(√

|λ|+
√
κ+

√
c+|z|+

√
c−|z|

)

+ a+

(√
|λ|+

√
κ+

√
c+|z|

)
+ a−

(√
|λ|+

√
κ+

√
c−|z|

)}
,

for all (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
× Σϕ × [0, δ∗]× [0, σ∗]× [1,∞). This implies that the

functions

m0 :=
1

f
, m1 :=

λ+ κ

f
, m2 :=

√
z

f
, m3 :=

σz
√
λ+ κ

f
,

m4 :=
σz3/2

f
, m5 :=

δ(λ+ κ)3/2

f
, m6 :=

δ(λ+ κ)
√
z

f

are uniformly bounded on Σπ−ϕ0
× Σϕ × [0, δ∗]× [0, σ∗]× [1,∞).

Now consider the cases R ≥ δ ≥ δ∗ > 0 or R ≥ σ ≥ σ∗ > 0. We set

g(λ, z, δ, σ, κ) := f(λ, z, δ, σ, κ)− a+(δ, σ)
√
c+ω+(λ, z)− a−(δ, σ)

√
c−ω−(λ, z).

The argumentation above shows that

1

g
,

λ+ κ

g
,

σz
√
λ+ κ

g
,

σz3/2

g
,

δ(λ+ κ)3/2

g
,

δ(λ+ κ)
√
z

g

are still uniformly bounded functions and this even on Σπ−ϕ0
×Σϕ×[0, R]2×[1,∞).

The aim now is to show that the term a+(δ, σ)
√
c+ω+(λ, z) + a−(δ, σ)

√
c−ω−(λ, z)

can be regarded as a perturbation of g, if κ is assumed to be large enough. Indeed,
if δ ≥ δ∗ > 0, by using (2.18) we can estimate

∣∣∣∣
a±(δ, σ)

√
c±ω±

g

∣∣∣∣ ≤ CM

δ∗|λ+ κ|

∣∣∣∣
δ(λ+ κ)ω±

g

∣∣∣∣

≤ C

|λ|+ κ
≤ C

κ
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for (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
× Σϕ × [δ∗, R] × [0, R] × [1,∞). On the other hand, if

σ ≥ σ∗ > 0, we deduce by virtue of (2.16) that
∣∣∣∣
a±(δ, σ)

√
c±ω±

g

∣∣∣∣ ≤ CM

|ω±|

∣∣∣∣
λ+ κ+ c±z

g

∣∣∣∣

≤ C√
κ

(∣∣∣∣
λ+ κ

g

∣∣∣∣+
1

σ∗|
√
λ+ κ|

∣∣∣∣
σz

√
λ+ κ

g

∣∣∣∣
)

≤ C√
κ

for (λ, z, δ, σ, κ) ∈ Σπ−ϕ0
×Σϕ × [0, R]× [σ∗, R]× [1,∞). Hence, for fixed κ chosen

large enough we see that we can achieve
∣∣∣∣
a+(δ, σ)

√
c+ω+ + a−(δ, σ)

√
c−ω−

g

∣∣∣∣ ≤
1

2

to be valid for (λ, z, δ, σ) ∈ Σπ−ϕ0
× Σϕ × [δ∗, R] × [0, R] or (λ, z, δ, σ) ∈ Σπ−ϕ0

×
Σϕ × [0, R]× [σ∗, R]. Thus, we may represent 1/f as

1

f
=

1

g

(
1 +

a+(δ, σ)
√
c+ω+ + a−(δ, σ)

√
c−ω−

g

)−1

,

and therefore the functions m0, . . . ,m6 are uniformly bounded for all (λ, z, δ, σ) ∈
Σπ−ϕ0

× Σϕ × [0, R]2.

The remaining argumentation is now analogous to the proof of Lemma 2.3. Em-
ploying (2.13) we obtain

R
({

‖mj(λ,Dn, δ, σ)‖L (0Fr
p(R+,Ks

p(R
n))) : (λ, δ, σ) ∈ Σπ−ϕ0

× [0, R]2
})

≤ C,

for j = 0, 1, . . . , 6. Consequently,

‖mj(G,Dn, δ, σ)‖L (0Fr
p(R+,Ks

p(R
n))) ≤ C ((δ, σ) ∈ [0, R]2),

by virtue of (2.12) and [7, Theorem 4.4]. The invertibility of the operators

(G+ 1)1/2 : 0Fr+1/2
p (R+,Ks

p(R
n)) → 0Fr

p(R+,Ks
p(R

n)),

D1/2
n + 1 : 0Fr

p(R+,Ks+1
p (Rn)) → 0Fr

p(R+,Ks
p(R

n)),

(see for instance Proposition 2.9 and Lemma 3.1 in [9]) then yields the assertion,
since L−1 = m0(G,Dn, σ, δ), and by employing the fact that h 7→ h(G) is an algebra
homomorphism from H∞(Σπ−ϕ0

,KG(X)) into L (X) for X = 0Fr
p(R+,Ks

p(R
n))

and where

KG(X) := {B ∈ L (X) : B(µ−G)−1 = (µ−G)−1B, µ ∈ ρ(G)}.
�

(iv) We turn to the proof of the corresponding regularity assertions in Theorem 2.2
for (u, η, ηE). According to the results in [5, pages 15–16],

∫ ∞

0

e−F+s/
√
c+f+(s)ds ∈ 0F

3
∞ ⇐⇒ f+ ∈ Lp(R+, Lp(R

n+1
+ )). (2.19)
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By the same arguments we also have
∫ ∞

0

e−F−s/
√
c−f−(−s)ds ∈ 0F

3
∞ ⇐⇒ f− ∈ Lp(R+, Lp(R

n+1
− )). (2.20)

Next, note that by Lemma 2.3 we have that

F± ∈ Isom(0F
2
∞, 0F

3
∞). (2.21)

Indeed, we obtain

F−1
± (0F

3
∞) = 0W

1−1/2p
p (R+, Lp(R

n)) ∩ 0W
1/2−1/2p
p (R+,W

1
p (R

n))

∩ 0H
1/2
p (R+,W

1−1/p
p (Rn)) ∩ Lp(R+,W

2−1/p
p (Rn))

= 0F
2
∞,

by virtue of the embedding

0F
2
∞ →֒ 0W

1/2−1/2p
p (R+,W

1
p (R

n)) ∩ 0H
1/2
p (R+,W

1−1/p
p (Rn)),

which is a consequence of the mixed derivative theorem. Thus all the terms inside
the brackets on the right hand side of (2.9) belong to the space 0F

3
∞. In the same

way as we clarified the invertibility of F± : 0F
2
∞ → 0F

3
∞ by applying Lemma 2.3, we

can see that L : 0E
2
∞(δ, σ) → 0F

3
∞ is invertible by an application of Proposition 2.6.

For instance, if δ, σ > 0, this follows from the embedding

0E
2
∞(δ, σ) →֒ 0H

3/2
p (R+,W

1−1/p
p (Rn)) ∩ 0W

1−1/2p
p (R+,W

3
p (R

n)),

which is again a consequence of the mixed derivative theorem. Furthermore, Propo-
sition 2.6 implies the estimate

‖L−1‖L (0F3
∞,0E2

∞(0,0)) + δ‖L−1‖L (0F3
∞,0E2

∞(1,0)) + σ‖L−1‖L (0F3
∞,0E2

∞(0,1)) ≤ C

for 0 ≤ δ, σ ≤ R. Altogether this gives us

‖η‖
0E

2
∞(δ,σ) ≤ C

(
‖f‖F1

∞ + ‖g‖
0F

2
∞ + ‖h‖

0F
3
∞

)
(2.22)

for (δ, σ) ∈ [0, R]2, which yields the desired regularity for η. Observe that u now
can be regarded as the solution of the diffusion equation





(∂t + κ− c∆)u = f in (0,∞)× Ṙ
n+1

γu± = g + σ∆xη − δ(∂t + κ)η on (0,∞)× R
n,

u(0) = 0 in Ṙ
n+1.

A trivial but important observation now is that this equation itself does not depend
on δ and σ, but only the data. Therefore also the corresponding solution operator
is independent of δ and σ. By well-known results (see e.g. [5, Proposition 5.1]) and
in view of (2.22) we obtain

‖u‖
0E

1
∞ ≤ C

(
‖f‖F1

∞ + ‖g‖
0F

2
∞ + δ‖η‖

0E
2
∞(1,0) + σ‖η‖

0E
2
∞(0,1)

)

≤ C‖(f, g, h)‖
0F∞ (0 ≤ δ, σ ≤ R).

Similarly we can proceed for ηE . Since it satisfies equation (2.4), we deduce

‖ηE‖0E
1
∞ ≤ C‖η‖

0F
2
∞ .

By virtue of 0E
2
∞(0, 0) →֒ 0F

2
∞ and again (2.22) we conclude that

‖ηE‖0E
1
∞ ≤ C‖(f, g, h)‖

0F∞ (0 ≤ δ, σ ≤ R).
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(v) Let T0 > 0 be fixed, and let J := (0, T ) with T ≤ T0. We set

Rc
J : 0FT → 0F∞,

(f, g, h) 7→ (e−κt(EJf), e−κt(EJg), e−κt(EJh)),
(2.23)

where EJ is defined as

EJu(t) := EJ,ru(t) :=





u(t) if 0 ≤ t ≤ T,
u(2T − t) if T ≤ t ≤ 2T,
0 if 2T ≤ t.

It follows from [10, Proposition 6.1] and the fact

‖(e−κt(EJf), (e−κt(EJg), e−κt(EJh))‖0F∞ ≤ ‖e−κt‖BUC1(R+)‖(EJf, EJg, EJh)‖0F∞

that there exists a positive constant c0 = c0(T0) such that

‖Rc
J (f, g, h)‖0F∞ ≤ c0‖(f, g, h)‖0FT

((f, g, h) ∈ 0FT ) (2.24)

for any interval J = (0, T ) with T ≤ T0.

Let (u, η, ηE) ∈ 0E∞(δ, σ) be the solution of (2.3)–(2.4), with (f, g, h) replaced by
(Rc

J(f, g, h)), whose existence has been established in steps (i)–(iv) of the proof.
We note that

‖(u, η, ηE)‖0E∞(δ,σ) ≤ K‖Rc
J (f, g, h)‖0F∞

≤ Kc0‖(f, g, h)‖0FT

for any (f, g, h) ∈ 0FT , 0 ≤ δ, σ ≤ R, and any interval J = (0, T ) with T ≤ T0,
where K is a universal constant. Now, let

(v, ρ, ρE) := (RJ (e
κtu),RJ (e

κtη),RJ (e
κtηE))

where RJ denotes the restriction operator, defined by RJw := w|J for w : R+ → X.
Then it is easy to verify that

(v, ρ, ρE) ∈ 0ET (δ, σ), (v, ρ, ρE) solves (1.1)–(1.2) (2.25)

and that there is a constant M = M(T0) such that

‖(v, ρ, ρE)‖0ET (δ,σ) ≤ M‖(f, g, h)‖0FT

for 0 ≤ δ, σ ≤ R, and T ≤ T0. Finally, uniqueness follows by a direct calculation
which is straight forward and therefore omitted here. This completes the proof. �

We proceed with convergence results for the case of zero time traces. To indicate
the dependence on the parameters δ and σ we label from now on the corresponding
functions and operators by µ, as e.g. Lµ, v

µ, where µ = (δ, σ).

Corollary 2.7. Let 1 < p < ∞, R > 0, 0 ≤ δ0 ≤ δ ≤ R, and 0 ≤ σ0 ≤ σ ≤ R.
Suppose that a is a function satisfying the conditions in (1.3), and let Lµ be the
operator defined in (2.15) corresponding to the parameter µ := (δ, σ). Then we have

(δ − δ0)L
−1
µ → 0 stronly in L (0F

3
∞, 0E

2
∞(1, 0)), (2.26)

(σ − σ0)L
−1
µ → 0 stronly in L (0F

3
∞, 0E

2
∞(0, 1)), (2.27)

and

L−1
µ → L−1

µ0
stronly in L (0F

3
∞, 0E

2
∞(µ0)), (2.28)

as µ → µ0, where µ0 = (δ0, σ0).
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Proof. As pointed out in part (iv) of the proof of Theorem 2.2 the domain of the
operator F+ in 0F

3
∞ is 0F

2
∞. This implies that

D(F 3
+) →֒ 0W

2−1/2p
p (R+, Lp(R

n)) ∩ Lp(R+,W
4−1/p
p (Rn)) = 0E

2
∞(1, 1).

Now pick f ∈ D(F 3
+). From Proposition 2.6 we infer that

‖L−1
µ ‖L (0F3

∞,0E2
∞(0,0)) ≤ C (µ ∈ [0, R]2). (2.29)

This yields

‖(δ − δ0)L
−1
µ f‖

0E
2
∞(1,0) ≤ C(δ − δ0)

(
‖(G+ κ)3/2L−1

µ f‖
W

1/2−1/2p
p (R+,Lp(Rn))

+ ‖(G+ κ)L−1
µ f‖

Lp(R+,W
2−1/p
p (Rn))

)

≤ C(δ − δ0)‖f‖0E
2
∞(1,1)

→ 0 (µ → µ0).

Since D(F 3
+) is dense in 0F

3
∞, the uniform boundedness of ‖L−1

µ ‖L (0F3
∞,0E2

∞(µ)) in

µ ∈ [0, R]2 (which yields uniform boundedness of (δ − δ0)‖L−1
µ ‖L (0F3

∞,0E2
∞(1,0)) for

δ ∈ [δ0, R], σ ∈ [0, R]) implies (2.26). In a very similar way (2.27) can be proved.
In order to see (2.28) we write

L−1
µ0

− L−1
µ = L−1

µ0
(Lµ − Lµ0

)L−1
µ

= L−1
µ0

{
((δ − δ0)(G+ κ) + (σ − σ0)Dn)

(√
c+F+ +

√
c−F−

)}
L−1
µ

+ L−1
µ0

{
(a+(µ)− a+(µ0))

√
c+F+ + (a−(µ)− a−(µ0))

√
c−F−

}
L−1
µ .

In view of L−1
µ0

∈ L (0F
3
∞, 0E

2
∞(µ0)) this representation shows that (2.28) is ob-

tained as a consequence of (2.26)-(2.27), and (2.29) in conjunction with the conti-
nuity of a±. �

Based on this result we will now prove convergence of solutions of problem (1.1)-
(1.2).

Theorem 2.8. Let 3 < p < ∞, R, T > 0, 0 ≤ δ0 ≤ δ ≤ R, and 0 ≤ σ0 ≤ σ ≤ R.
Suppose that a is a function satisfying the conditions in (1.3) and that

((fµ, gµ, hµ))µ∈[δ0,R]×[σ0,R] ⊆ 0FT .

Furthermore, denote by (vµ, ρµ, ρµE) the unique solution of (1.1)-(1.2) whose exis-
tence is established in Theorem 2.2 and that corresponds to the parameter µ = (δ, σ).
Then, if

(fµ, gµ, hµ) → (fµ0 , gµ0 , hµ0) in 0FT (µ → µ0), (2.30)

we have that

(vµ, ρµ, ρµE) → (vµ0 , ρµ0 , ρµ0

E ) in 0ET (µ0) (µ → µ0), (2.31)

where µ0 = (δ0, σ0). In particular, if

S−1
µ : (f, g, h) 7→ (vµ, ρµ, ρµE)

denotes the solution operator to system (1.1), we have that

S−1
µ → S−1

µ0
strongly in L (0FT , 0E

1
T × 0E

2
T (µ0)× 0E

1
T ) (µ → µ0). (2.32)



16 J. PRÜSS, J. SAAL, AND G. SIMONETT

Proof. In view of the arguments in part (v) of the proof of Theorem 2.2 the
solution (vµ, ρµ, ρµE) can be represented by

(vµ, ρµ, ρµE) := (RJ(e
κtuµ),RJ (e

κtηµ),RJ (e
κtηµE)), (2.33)

where RJ denotes the restriction operator and (uµ, ηµ, ηµE) is the solution of (2.3)–
(2.4) with right hand side (Rc

J(f
µ, gµ, hµ)) and Rc

J as defined in (2.23). Hence we
see that it suffices to prove convergence for the vector (uµ, ηµ, ηµE). Clearly, (2.30)
implies that

(Rc
J (f

µ, gµ, hµ)) → (Rc
J(f

µ0 , gµ0 , hµ0)) in 0F∞ (µ → µ0).

Therefore, and for simplicity, we simlpy write (fµ, gµ, hµ) for the data instead of
(Rc

J(f
µ, gµ, hµ)) in the remaining part of the proof.

Next, recall from (2.9) that ηµ is given by

ηµ = L−1
µ ℓµ (µ ∈ [δ0,∞)× [σ0,∞))

with

ℓµ =hµ −
∫ ∞

0

e−F+s/
√
c+(fµ)+(s)ds−

∫ ∞

0

e−F−s/
√
c−(fµ)−(−s)ds

+
√
c+F+g

µ +
√
c−F−g

µ.

According to (2.21) we know that F± ∈ Isom(0F
2
∞, 0F

3
∞). This fact and relations

(2.19) and (2.20) then imply, by virtue of assumption (2.30), that

‖ℓµ − ℓµ0‖
0F

3
∞ ≤ C

(
‖fµ − fµ0‖F1

T
+ ‖gµ − gµ0‖

0F
2
T
+ ‖hµ − hµ0‖

0F
3
T

)

→ 0 (µ → µ0).

By the uniform boundedness of ‖L−1
µ ‖L (0F3

T ,0E2
T (µ)) in µ ∈ [δ0, R] × [σ0, R] (see

Proposition 2.6) and because (δ − δ0)L
−1
µ → 0 strongly in L (0F

3
T , 0E

2
T (1, 0)) and

(σ − σ0)L
−1
µ → 0 strongly in L (0F

3
T , 0E

2
T (0, 1)) (see Corollary 2.7) this results in

(δ − δ0)η
µ → 0 in 0E

2
∞(1, 0) (2.34)

and

(σ − σ0)η
µ → 0 in 0E

2
∞(0, 1). (2.35)

Now, denote by

Uµ : (uµ, ηµ) 7→ (fµ, gµ, hµ)

the operator that maps the solution to the data corresponding to system (2.3).
From part (iv) of the proof of Theorem 2.2 we infer that

Uµ ∈ Isom(0E
1
∞ × 0E

2
∞(µ), 0F∞) (µ ∈ [δ0, R]× [σ0, R]). (2.36)

Furthermore, observe that we have

(uµ, ηµ)− (uµ0 , ηµ0)

= U−1
µ (fµ, gµ, hµ)− U−1

µ0
(fµ0 , gµ0 , hµ0)

= U−1
µ0




fµ − fµ0

gµ − gµ0 + (σ − σ0)∆xη
µ − (δ − δ0)(∂t + κ)ηµ

hµ − hµ0 + [[cγ∂y(a(µ)− a(µ0))η
µ
E ]]




T

.
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Relation (2.36) applied for µ = µ0 then yields

‖(uµ, ηµ)− (uµ0 , ηµ0)‖
0E

1
∞×0E

2
∞(µ0)

≤ C

(
‖(fµ, gµ, hµ)− (fµ0 , gµ0 , hµ0)‖

0F∞ + (δ − δ0)‖ηµ‖0E
2
∞(1,0)

+ (σ − σ0)‖ηµ‖0E
2
∞(0,1) + |a(µ)− a(µ0)|‖ηµE‖0E

1
T

)
.

From Theorem 2.2 we know that ‖ηµE‖0E
1
T
is uniformly bounded in µ ∈ I0. Thus,

by (1.3), (2.34), (2.35), and assumption (2.30) we conclude that

(uµ, ηµ) → (uµ0 , ηµ0) in 0E
1
∞ × 0E

2
∞(µ0) (µ → µ0).

The convergence of ηµE is easily obtained as a consequence of the convergence of
ηµ. Recall that ηµE is the solution of (1.2) with ρ replaced by ηµ. Denote by T
the solution operator of this diffusion equation which is obviously independent of
µ. Then by [5, Proposition 5.1] we obtain

‖ηµE − ρµ0

E ‖
0E

1
∞ = ‖T (0, ηµ − ηµ0 , 0)‖

0E
1
∞

≤ C‖ηµ − ηµ0‖
0F

2
∞

≤ C‖ηµ − ηµ0‖
0E

2
∞(0,0)

→ 0 (µ → µ0), (2.37)

by the just established convergence of ηµ. Representation (2.33) then implies (2.31).

Obviously (2.31) is still true for fixed data, i.e., if

(fµ, gµ, hµ) = (f, g, h) ∈ 0FT (µ ∈ [δ0, R]× [σ0, R]).

Hence (2.32) readily follows from (2.31). �

2.2. Inhomogeneous time traces. Next we consider the fully inhomogeneous
system (1.1)–(1.2) and we will prove Theorem 1.1. By introducing appropriate
auxiliary functions, we will reduce this problem to the situation of Theorem 2.2.

Proof. (of Theorem 1.1.) If δ = σ = 0 this result is proved in [10, Theorem 3.4]1.

So, we may assume that δ > 0 or σ > 0 which implies that ρ0 ∈ W
4−3/p
p (Rn).

Furthermore, it follows from the trace results in [3] that the conditions listed in
(1.6)–(1.8) are necessary.

Suppose we had a solution (v, ρ, ρE) of (1.1)–(1.2) as claimed in the statement
of Theorem 1.1. Let v1 be the solution of the two-phase diffusion equation





(∂t − c∆)v1 = f in J × Ṙ
n+1,

γv±1 = g + e−(1−∆x)tζ on J × R
n,

v1(0) = v0 in Ṙ
n+1,

(2.38)

with

ζ := γv0 − g(0). (2.39)

1Actually with g = 0. But by obvious changes in the proof one can obtain the result also for

0 6= g ∈ F2

T
.
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Observe that by compatibility assumption (1.7) we have

ζ = (σ∆xρ− δ∂tρ)|t=0. (2.40)

Next let ρ1 be an extension function so that

(ρ1(0), ∂tρ1(0)) :=
(
ρ0, h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)

1/2

ρ0)]]
)
, (2.41)

as constructed in Lemma 3.2, and let ρ1,E be the solution of (1.2), with ρ replaced
by ρ1. For the solvability of (2.38) and the existence of ρ1 we have to check the
required regularity and compatibility conditions for the data. By construction we
have that g(0)+ ζ = γv0 and by the regularity assumptions on g and v0 we deduce

ζ = γv0 − g(0) ∈ W 2−3/p
p (Rn),

hence that

e−(1−∆x)tζ ∈ F
2
T . (2.42)

Then it follows from [5, Proposition 5.1] that there is a unique solution v1 ∈ E
1
T of

(2.38). Furthermore, if δ > 0, we may use compatibility condition (1.7) to obtain
that

h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)
1/2

ρ0)]] =
1

δ
(g(0)− γv0 + σ∆xρ0) ∈ W 2−3/p

p (Rn).

If δ = 0, we may impose σ > 0 which gives

cγ∂yae
−|y|(1−∆x)

1/2

ρ0 = ∓ca(1−∆x)
1/2ρ0 ∈ W 3−3/p

p (Rn) →֒ W 2−6/p
p (Rn)

in view of ρ0 ∈ W
4−3/p
p (Rn). Assumption (1.8) then implies that

h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)
1/2

ρ0)]] ∈ W 2−6/p
p (Rn).

Thus, in any case we can satisfy the assumptions of Lemma 3.2 which yields the
existence of ρ1 ∈ E

2
T (δ, σ) as claimed, and of ρ1,E ∈ E

1
T by virtue of Remark 2.1(b).

Now we set

(v2, ρ2, ρ2,E) = (v, ρ, ρE)− (v1, ρ1, ρ1,E).

It is clear that ρ2,E is the extension of ρ2 given by (1.2) with ρ replaced by ρ2.
Thus, (v2, ρ2, ρ2,E) satisfies




(∂t − c∆)v2 = 0 in J × Ṙ
n+1,

γv±2 − σ∆xρ2 + δ∂tρ2 = σ∆xρ1 − δ∂tρ1 − e−(1−∆x)tζ on J × R
n,

∂tρ2 + [[cγ∂y(v2 − aρ2,E)]] = h− ∂tρ1 − [[cγ∂y(v1 − aρ1,E)]] on J × R
n,

v2(0) = 0 in Ṙ
n+1,

ρ2(0) = 0 in R
n,

(2.43)
and 




(∂t − c∆)ρ2,E = 0 in J × Ṙ
n+1,

γρ±2,E = ρ2 on J × R
n,

ρ2,E(0) = 0 in Ṙ
n+1.

(2.44)

By construction, ρ1 ∈ E
2
T (δ, σ), and by (2.42) one may readily check that

σ∆xρ1 − δ∂tρ1 − e−(1−∆x)tζ ∈ 0F
2
T

and that

h− ∂tρ1 − [[cγ∂y(v1 − aρ1,E)]] ∈ 0F
3
T .
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Thus, by Theorem 2.2 the reduced system (2.43)–(2.44) is uniquely solvable. This
allows us to reverse the argument. In fact, since the solution v1 of (2.38) and the
extension ρ1 depend on the data only, the right hand side of (2.43)–(2.44) so does
as well. Theorem 2.2 now yields a unique solution (v2, ρ2, ρ2,E) ∈ 0ET (δ, σ) and

(v, ρ, ρE) := (v2, ρ2, ρ2,E) + (v1, ρ1, ρ1,E) (2.45)

then solves the original system (1.1)–(1.2) in the reguarity classes required. It
remains to verify estimate (1.9). Observe that by Theorem 2.2 we know that

‖(v2, ρ2, ρ2,E)‖0ET (δ,σ)

≤ C
(
‖σ∆xρ1 − δ∂tρ1 − e−(1−∆x)tζ‖

0F
2
T
+ ‖h− ∂tρ1 − [[cγ∂y(v1 − aρ1,E)]]‖0F

3
T

)

with C > 0 independent of δ, σ. By |a(µ)| ≤ C for µ ∈ [0, R]2 and the facts pointed
out above we can continue this calculation to the result

‖(v2, ρ2, ρ2,E)‖0ET (δ,σ)

≤ C
(
σ‖∆xρ1‖F2

T
+ δ‖∂tρ1‖F2

T
+ ‖ζ‖

W
2−3/p
p (Rn)

+ ‖h‖F3
T

+ ‖∂tρ1‖F3
T
+ ‖v1 − aρ1,E‖E1

T

)

≤ C
(
‖(v1, ρ1, ρ1,E)‖ET (δ,σ) + ‖(0, g, h, v0, 0)‖FT (0,0)

)
. (2.46)

Hence we see that it remains to derive suitable estimates for (v1, ρ1, ρ1,E). Observe
that equation (2.38) does not depend on δ, σ. By [5, Proposition 5.1] we deduce

‖v1‖0E
1
T

≤ C
(
‖f‖F1

T
+ ‖g + e−(1−∆x)tζ‖F2

T
+ ‖v0‖F4

T

)

≤ C
(
‖f‖F1

T
+ ‖g‖F2

T
+ ‖v0‖F4

T

)
(0 ≤ δ, σ ≤ R). (2.47)

By the same argument we also have

‖ρ1,E‖0E
1
T

≤ C
(
‖ρ1‖F2

T
+ ‖e−|y|(1−∆x)

1/2

ρ0‖W 2−2/p
p (Ṙn+1)

)

≤ C
(
‖ρ1‖E2

T (0,0) + ‖ρ0‖W 2−2/p
p (Rn)

)
(0 ≤ δ, σ ≤ R), (2.48)

where we used Remark 2.1(b) and the embeddings W
2−2/p
p (Rn) →֒ W

2−3/p
p (Rn)

and E
2
T (0, 0) →֒ F

2
T . Lemma 3.2 implies for ρ1,

‖ρ1‖0E
2
T (0,0)

≤ C
(
‖ρ0‖W 2−2/p

p (Rn)
+ ‖h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)

1/2

ρ0]]‖W 1−3/p
p (Rn)

)

≤ C
(
‖ρ0‖W 2−2/p

p (Rn)
+ ‖h‖F3

T
+ ‖v0‖F4

T
+ ‖(1−∆x)

1/2ρ0]‖W 1−3/p
p (Rn)

)

≤ C
(
‖ρ0‖W 2−2/p

p (Rn)
+ ‖h‖F3

T
+ ‖v0‖F4

T

)
(2.49)

and

σ‖ρ1‖0E
2
T (0,1)

≤ C
(
σ‖ρ0‖W 4−3/p

p (Rn)
+ σ‖h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)

1/2

ρ0)]]‖W 2−6/p
p (Rn)

)

≤ C
(
σ‖ρ0‖W 4−3/p

p (Rn)
+ σ‖h(0)− [[cγ∂yv0]]‖W 2−6/p

p (Rn)

)
(2.50)
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as well as

δ‖ρ1‖0E
2
T (1,0)

≤ C
(
δ‖ρ0‖W 4−3/p

p (Rn)
+ δ‖h(0)− [[cγ∂y(v0 − ae−|y|(1−∆x)

1/2

ρ0)]]‖W 2−3/p
p (Rn)

)

≤ C
(
δ‖ρ0‖W 4−3/p

p (Rn)
+ ‖g‖F2

T
+ ‖v0‖F4

T
+ σ‖ρ0‖W 4−3/p

p (Rn)

)
, (2.51)

for 0 ≤ δ, σ ≤ R, where we used in (2.51) once again compatibility condition (1.7).
Inserting (2.49) into (2.48) we obtain by (2.47)–(2.51) that

‖(v1, ρ1, ρ1,E)‖ET (δ,σ) ≤ C
(
‖(f, g, h, v0, ρ0)‖FT (0,0) + (δ + σ)‖ρ0‖W 4−3/p

p (Rn)

+ σ‖h(0)− [[cγ∂yv0]]‖W 2−6/p
p (Rn)

)
(2.52)

for 0 ≤ δ, σ ≤ R. Inserting (2.52) into (2.46) we can derive exactly the same esti-
mate for (v2, ρ2, ρ2,E). Combining the estimates for (v1, ρ1, ρ1,E) and (v2, ρ2, ρ2,E)
we finally arrive at (1.9) and the proof is complete. �

Next we prove convergence for the solutions of problem (1.1)–(1.2), that is,
Theorem 1.2.

Proof. (of Theorem 1.2.)
We employ the decomposition

ρµ = ρµ1 + ρµ2

as given in (2.45). We have to show that

(i) (vµ1 , ρ
µ
1 , ρ

µ
1,E) → (vµ0

1 , ρµ0

1 , ρµ0

1,E) in ET (µ0),

(ii) (vµ2 , ρ
µ
2 , ρ

µ
2,E) → (vµ0

2 , ρµ0

2 , ρµ0

2,E) in ET (µ0).

(i) We start with proving convergence of ρµ1 . This function is according to (2.41)
an extension of the traces

(ρµ1 (0), ∂tρ
µ
1 (0)) := (ρµ0 , q

µ
0 ) ,

where we set

qµ0 := hµ(0)− [[cγ∂y(v
µ
0 − ae−|y|(1−∆x)

1/2

ρµ0 )]]. (2.53)

Since the extension operator in Lemma 3.2 is linear and independent of µ we can
estimate for all µ ∈ I0,

‖ρµ1 − ρµ0

1 ‖E2
T (µ0) ≤ C

(
‖ρµ0 − ρµ0

0 ‖F5
T (µ0) + ‖qµ0 − qµ0

0 ‖F6
T (µ0)

)
, (2.54)

where

F
6
T (µ0) := W 1−3/p

p (Rn) ∩W sg(σ0)(2−6/p)
p (Rn) ∩W sg(δ0)(2−3/p)

p (Rn).

It is clear by (1.10) that the first term on the right hand side of (2.54) tends to
zero. In order to see the convergence of the second term we distinguish the three
cases δ0 = σ0 = 0, and δ0 > 0, σ0 ≥ 0, and δ0 = 0, σ0 > 0.
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The case δ0 = σ0 = 0: Here we have F
6
T (µ0) = W

1−3/p
p (Rn) and we obtain by a

direct estimate and (1.10) that

‖qµ0 − qµ0

0 ‖
W

1−3/p
p (Rn)

≤ C
(
‖hµ − hµ0‖F3

T
+ ‖vµ0 − vµ0

0 ‖F4
T
+ ‖ρµ0 − ρµ0

0 ‖
W

2−3/p
p (Rn)

)

→ 0 (µ → µ0).

The case δ0 > 0, σ0 ≥ 0: Then F
6
T (µ0) = W

2−3/p
p (Rn). In this case we can employ

compatibility condition (1.7) in Theorem 1.1 which results in

‖qµ0 − qµ0

0 ‖
W

2−3/p
p (Rn)

=

∥∥∥∥
1

δ
(gµ(0)− γvµ0 + σ∆xρ

µ
0 )−

1

δ0
(gµ0(0)− γvµ0

0 + σ∆xρ
µ0

0 )

∥∥∥∥
W

2−3/p
p (Rn)

≤ C

(∥∥∥∥
1

δ
gµ − 1

δ0
gµ0

∥∥∥∥
F
2
T

+

∥∥∥∥
1

δ
vµ0 − 1

δ0
vµ0

0

∥∥∥∥
F
4
T

+

∥∥∥∥
σ

δ
ρµ0 − σ0

δ0
ρµ0

0

∥∥∥∥
F
5
T (µ0)

)
.(2.55)

In view of δ0 > 0 observe that ρµ0 → ρµ0

0 in F
5
T (µ0) = W

4−3/p
p (Rn) by (1.10). This

yields
∥∥∥∥
σ

δ
ρµ0 − σ0

δ0
ρµ0

0

∥∥∥∥
F
5
T (µ0)

≤ σ

δ
‖ρµ0 − ρµ0

0 ‖F5
T (µ0) +

(
σ

δ
− σ0

δ0

)
‖ρµ0

0 ‖F5
T (µ0).

→ 0 (µ → µ0).

In the same way we see that the first and the second term on the right hand side
of (2.55) vanish for µ → µ0.

The case δ0 = 0, σ0 > 0: Since δ → 0, here we cannot apply compatibility condition
(1.7). This leads to condition (1.11) in the statement of the theorem. In fact, here
we obtain

‖qµ0 − qµ0

0 ‖
W

2−6/p
p (Rn)

≤C
(
‖hµ(0)− [[cγ∂yv

µ
0 ]]− hµ0(0) + [[cγ∂yv

µ0

0 ]]‖
W

2−6/p
p (Rn)

+ ‖ρµ0 − ρµ0

0 ‖
W

3−3/p
p (Rn)

)
.

It is clear that for σ0 > 0 condition (1.11) implies that the first term on the right
hand side vanishes, whereas the second term tends to zero again by (1.10).

Also here the convergence of ρµ1,E follows by the convergence of ρµ1 in view of the

fact that ρµ1,E is the solution of (1.2) with ρ replaced by ρµ1 . If T denotes again the

solution operator of this diffusion equation, by [5, Proposition 5.1] we obtain

‖ρµ1,E − ρµ0

1,E‖E1
T

= ‖T (0, ρµ1 − ρµ0

1 , e−|y|(1−∆x)
−1/2

(ρµ0 − ρµ0

0 ))‖E1
T

≤ C
(
‖ρµ1 − ρµ0

1 ‖F2
T
+ ‖e−|y|(1−∆x)

−1/2

(ρµ0 − ρµ0

0 )‖F4
T

)

≤ C
(
‖ρµ1 − ρµ0

1 ‖E2
T (0,0) + ‖ρµ0 − ρµ0

0 ‖
W

2−3/p
p (Rn)

)

→ 0 (µ → µ0), (2.56)

by the just proved convergence of ρµ1 and (1.10).

Observe that vµ1 is, according to (2.38), the solution of the same diffusion equa-

tion with right hand side (fµ, gµ+e−(1−∆x)t(γvµ0 −gµ(0)), vµ0 ) for µ ∈ I0. Moreover,
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we have that

‖e−(1−∆x)t(γvµ0 − gµ(0)− γvµ0

0 + gµ0(0))‖F2
T

≤ C‖γvµ0 − gµ(0)− γvµ0

0 + gµ0(0)‖
W

2−3/p
p (Rn)

≤ C
(
‖vµ0 − vµ0

0 ‖F4
T
+ ‖gµ − gµ0‖F2

T

)
.

Hence we obtain

‖vµ1 − vµ0

1 ‖E1
T

≤ C
(
‖fµ − fµ0‖F1

T
+ ‖vµ0 − vµ0

0 ‖F4
T
+ ‖gµ − gµ0‖F2

T

)

→ 0 (µ → µ0)

by (1.10), and (i) is proved.

(ii) Note that (vµ2 , ρ
µ
2 , ρ

µ
2,E) is the solution of (2.43)–(2.44). According to Theo-

rem 2.8 it therefore suffices to prove convergence for the corresponding data. To be
precise, it remains to show that

g̃µ → g̃µ0 in 0F
2
T (µ → µ0), (2.57)

where

g̃µ = σ∆xρ
µ
1 − δ∂tρ

µ
1 − e−(1−∆x)tζµ,

and that

h̃µ → h̃µ0 in 0F
3
T (µ → µ0), (2.58)

where

h̃µ = hµ − ∂tρ
µ
1 − [[cγ∂y(v

µ
1 − a(µ)ρµ1,E)]].

First we estimate

‖h̃µ − h̃µ0‖F3
T

≤ C
(
‖hµ − hµ0‖F3

T
+ ‖vµ1 − vµ0

1 ‖E1
T

+ ‖a(µ)ρµ1,E − a(µ0)ρ
µ0

1,E‖E1
T
+ ‖ρµ1 − ρµ0

1 ‖E2
T (0,0)

)
,

and we see that (2.58) follows from (i), (1.3), and (1.10). For g̃µ we have

‖g̃µ − g̃µ0‖F2
T

≤ C
(
‖δρµ1 − δ0ρ

µ0

1 ‖E2
T (1,0) + ‖σρµ1 − σ0ρ

µ0

1 ‖E2
T (0,1)

+ ‖ζµ − ζµ0‖
W

2−3/p
p (Rn)

)
. (2.59)

By employing the convergence assumptions also here we will prove that each single
term on the right hand side of (2.59) tends to zero for µ → µ0. In view of (2.39)
and (1.10) the convergence of the third term in (2.59) is clear. The first two terms
are more involved. In fact, this is the point where assumption (1.12) enters. In
analogy to (i) we again distinguish the three cases δ0 = σ0 = 0, and δ0 > 0, σ0 ≥ 0,
and δ0 = 0, σ0 > 0.

The case δ0 = σ0 = 0: Note that in this case condition (1.7) for µ0 turns into

γvµ0

0 − gµ0(0) = 0. (2.60)
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By using this fact, Lemma 3.2, (1.7) for µ, and recalling that qµ0 still denotes the
function defined in (2.53) we obtain

‖δρµ1‖E2
T (1,0)

≤ C
(
δ‖ρµ0‖W 4−3/p

p (Rn)
+ δ‖qµ0 ‖W 2−3/p

p (Rn)

)

≤ C
(
δ‖ρµ0‖W 4−3/p

p (Rn)
+ ‖gµ(0)− γvµ0 − gµ0(0) + γvµ0

0 + σ∆xρ
µ
0‖W 2−3/p

p (Rn)

)

≤ C
(
(δ + σ)‖ρµ0‖W 4−3/p

p (Rn)
+ ‖gµ − gµ0‖F2

T
+ ‖vµ0 − vµ0

0 ‖F4
T

)
.

In view of (1.10) and (1.12) we conclude that

‖δρµ1‖E2
T (1,0) → 0 (µ → µ0).

For the second term in (2.59) Lemma 3.2 yields

‖σρµ1‖E2
T (0,1) ≤ C

(
σ‖ρµ0‖W 4−3/p

p (Rn)
+ σ‖qµ0 ‖W 2−6/p

p (Rn)

)

≤ C
(
σ‖ρµ0‖W 4−3/p

p (Rn)
+ σ‖hµ(0)− [[cγ∂yv

µ
0 ]]‖W 2−6/p

p (Rn)

)
.

Hence, if δ > 0, it follows

‖σρµ1‖E2
T (0,1) → 0 (µ → µ0) (2.61)

by (1.11) and (1.12). If δ = 0, we have σ∆xρ
µ
0 = γvµ0 − gµ(0). This yields

‖σρµ0‖W 4−3/p
p (Rn)

≤ C
(
σ‖ρµ0‖W 2−2/p

p (Rn)
+ ‖σ∆xρ

µ
0‖W 2−3/p

p (Rn)

)

≤ C
(
σ‖ρµ0‖W 2−2/p

p (Rn)
+ ‖gµ − gµ0‖F2

T
+ ‖vµ0 − vµ0

0 ‖F4
T

)
,

where we used again (2.60). Observe that ‖ρµ0‖W 2−2/p
p (Rn)

is uniformly bounded in

µ ∈ I0 by assumption (1.10). Thus, in this case (2.61) is obtained as a consequence
of (1.7), (1.10), and (1.11).

The case δ0 = 0, σ0 > 0: Here we have

γvµ0

0 − σ∆xρ
µ0

0 = gµ0(0). (2.62)

In a similar way as in the previous case we deduce, if δ > 0, that

‖δρµ1‖E2
T (1,0) ≤C

(
δ‖ρµ0‖W 4−3/p

p (Rn)
+ ‖σρµ0 − σ0ρ

µ0

0 ‖
W

4−3/p
p (Rn)

+ ‖gµ − gµ0‖F2
T
+ ‖vµ0 − vµ0

0 ‖F4
T

)
.

(2.63)

Note that in the case σ0 > 0 we also have that

ρµ0 → ρµ0

0 in F
5
T (µ0) = W 4−3/p

p (Rn) (µ → µ0).

By this fact it is easy to see that the first two terms in (2.63) vanish for (µ → µ0),
whereas the convergence of the last two terms follows again by (1.10). That the
second term in (2.59) tends to zero here follows easily from the inequality

‖σρµ1 − σ0ρ
µ0

1 ‖E2
T (0,1) ≤

σ

σ0
‖ρµ1 − ρµ0

1 ‖E2
T (0,σ0) +

σ − σ0

σ0
‖ρµ0

1 ‖E2
T (0,σ0)

and the convergence of ρµ1 in E
2
T (µ0) = E

2
T (0, σ0) proved in (i). Observe that the

last argument also implies convergence for the case δ = 0, since then the first term
in (2.59) vanishes completely.
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The case δ0 > 0, σ0 ≥ 0: Here the convergence of the first term in (2.59) follows
completely analogous to the convergence of the second term in the previous case. If
we suppose that also σ0 > 0 the convergence of the second term in (2.59) follows by
the same argument. In the case that σ0 = 0 also here an application of Lemma 3.2
implies

‖σρµ1‖E2
T (0,1) ≤ C

(
σ‖ρµ0‖W 4−3/p

p (Rn)
+ σ‖qµ0 ‖W 2−6/p

p (Rn)

)

Moreover, we still have F5
T (µ0) = W

4−3/p
p (Rn), which implies σ‖ρµ0‖W 4−3/p

p (Rn)
→ 0

for µ → µ0 by (1.10). For the second term on the right hand side of the above
inequality note that from the case δ0 > 0, σ ≥ 0 in (i) we know that qµ0 → qµ0

0 in

W
2−3/p
p (Rn). This implies that this term vanishes as well for µ → µ0. Hence also

in this case we have that

σ‖ρµ1‖E2
T (0,1) → 0 (µ → µ0).

The three cases together show that

(0, g̃µ, h̃µ) → (0, g̃µ0 , h̃µ0) in 0FT (µ → µ0),

and therefore Theorem 2.8 implies (ii). �

3. Appendix

The reduction of problem (1.1)-(1.2) to the case of vanishing traces in the proof
of Theorem 1.1 was based on the following two results. Observe that the asser-
tions in Lemma 3.1 follow directly from the general trace result [4, Theorem 4.5].
However, for the sake of completeness and for a better understanding of the proof
of subsequent Lemma 3.2 we give its proof here. In the following we adopt the
notation of Section 2.2.

Lemma 3.1. Let 1 < p < ∞, T ∈ (0,∞], and J = (0, T ).

(i) For each η0 ∈ W
4−3/p
p (Rn) there exists an extension

η ∈ E
2
T (1, 1)

such that η1(0) = σ0 and, if p > 3, also that ∂tη1(0) = 0.

(ii) Suppose p > 3/2. Then for each η0 ∈ W
4−3/p
p (Rn) and η1 ∈ W

2−3/p
p (Rn)

there exists an extension η ∈ E
2
T (1, 1) satisfying η(0) = η0, ∂tη(0) = η1 and

the estimate

‖η‖E2
T (1,1) ≤ C

(
‖η0‖W 4−3/p

p (Rn)
+ ‖η1‖W 2−3/p

p (Rn)

)
.

(iii) Suppose p > 3. Then for each η0 ∈ W
4−3/p
p (Rn) and η1 ∈ W

2−6/p
p (Rn)

there exists an extension η ∈ E
2
T (0, 1) satisfying η(0) = η0, ∂tη(0) = η1 and

the estimate

‖η‖E2
T (0,1) ≤ C

(
‖η0‖W 4−3/p

p (Rn)
+ ‖η1‖W 2−6/p

p (Rn)

)
.
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Proof. (i) Let 1 < p < ∞. We claim that

η(t) := (2e−t(1−∆x) − e−2t(1−∆x))η0 (3.1)

satisfies the properties asserted in (i). We have

e−kt(1−∆x)η0 ∈ W 1
p (J,W

2−1/p
p (Rn)) ∩ Lp(J,W

4−1/p
p (Rn))

for k = 1, 2. It is a consequence of the mixed derivative theorem that the latter

space is continuously embedded in W
1−1/2p
p (J,W 2

p (R
n)). This implies that

∂te
−kt(1−∆x)η0 = −k(1−∆x)e

−kt(1−∆x)η0 ∈ W 1−1/2p
p (J, Lp(R

n)).

Consequently,

η ∈ W 2−1/2p
p (J, Lp(R

n))

and we have that

‖η‖
W

2−1/2p
p (J,Lp(Rn))

≤ C‖η‖
W 1

p (J,W
2−1/p
p (Rn))∩Lp(J,W

4−1/p
p (Rn))

.

The maximal regularity of (1−∆x) on W
2−1/p
p (Rn) and the embedding

E
2
T (1, 1) →֒ W 1

p (J,W
2−1/p
p (Rn))

then yields

‖η‖E2
T (1,1) ≤ C‖η0‖W 4−3/p

p (Rn)
.

Obviously η(0) = η0. If p > 3, the time trace of ∂tη is well defined and we also
have ∂tη(0) = 0. This proves (i).

(ii) Now suppose p > 3/2. Here we first set

η̃(t) := (e−t(1−∆x) − e−2t(1−∆x))(1−∆x)
−1η1, (3.2)

Then for η1 ∈ W
2−3/p
p (Rn) we have that

e−kt(1−∆x)(1−∆x)
−1η1 ∈ W 1

p (J,W
2−1/p
p (Rn)) ∩ Lp(J,W

4−1/p
p (Rn))

for k = 1, 2. By virtue of the embedding

W 1
p (J,W

2−1/p
p (Rn)) ∩ Lp(J,W

4−1/p
p (Rn)) →֒ W 1−1/2p

p (J,W 2
p (R

n))

we obtain

∂te
−kt(1−∆x)(1−∆x)

−1η1 ∈ W 1−1/2p
p (J, Lp(R

n)),

hence that

e−kt(1−∆x)(1−∆x)
−1η1 ∈ W 2−1/2p

p (J, Lp(R
n)).

By the same arguments as in (i) we obtain the estimate

‖η̃‖E2
T (1,1) ≤ C‖η1‖W 2−3/p

p (Rn)
.

If η̄ denotes the extension constructed in (i), then

η := η̄ + η̃

satisfies the regularity assertions in (ii). That η(0) = η0 and ∂tη(0) = η1 is obvious.

(iii) Now we set

η̃(t) := (e−t(1−∆x)
2 − e−2t(1−∆x)

2

)(1−∆x)
−2η1. (3.3)
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We have to check that e−kt(1−∆x)
2

(1 − ∆x)
−2η1 ∈ E

2
T (0, 1). In view of η1 ∈

W
2−6/p
p (Rn) we have that

e−kt(1−∆x)
2

(1−∆x)
−2η1 ∈ W 1

p (J,W
2−2/p
p (Rn)) ∩ Lp(J,W

6−2/p
p (Rn)).

From the embedding

W 1
p (J,W

2−2/p
p (Rn)) ∩ Lp(J,W

6−2/p
p (Rn)) →֒ W 1/2−1/2p

p (J,W 4
p (R

n))

we infer
∂te

−kt(1−∆x)
2

(1−∆x)
−2η1 ∈ W 1/2−1/2p

p (J, Lp(R
n)),

and therefore that

e−kt(1−∆x)(1−∆x)
−2η1 ∈ W 3/2−1/2p

p (J, Lp(R
n)).

Then η := η̄ + η̃ satisfies all the assertions claimed in (iii), where η̄ denotes again
the extension obtained in (i). �

Lemma 3.1 in conbination with [10, Lemma 6.4] yields the following result which
provides a simultaneous extension for different regularity assumptions on the traces.

Lemma 3.2. Let 3 < p < ∞, T ∈ (0,∞], and J = (0, T ). For η0 and η1 there
exists an (simultaneous) extension function η such that η(0) = η0, ∂tη(0) = η1, and

‖η‖E2
T (0,0) ≤ C

(
‖η0‖W 2−2/p

p (Rn)
+ ‖η1‖W 1−3/p

p (Rn)

)
,

if (η0, η1) ∈ W
2−2/p
p (Rn)×W

1−3/p
p (Rn),

‖η‖E2
T (0,1) ≤ C

(
‖η0‖W 4−3/p

p (Rn)
+ ‖η1‖W 2−6/p

p (Rn)

)
,

if (η0, η1) ∈ W
4−3/p
p (Rn)×W

2−6/p
p (Rn), and

‖η‖E2
T (1,1) ≤ C

(
‖η0‖W 4−3/p

p (Rn)
+ ‖η1‖W 2−3/p

p (Rn)

)
,

if (η0, η1) ∈ W
4−3/p
p (Rn)×W

2−3/p
p (Rn), with C > 0 independent of η0 and η1.

Proof. The idea for obtaining a simultaneous extension function as stated in the
lemma is to employ a combination of the extension operators we used in Lemma 3.1.
More precisely, we claim that

η(t) :=
(
2e−t(1−∆x)

1/2 − e−2t(1−∆x)
1/2
)(

2e−t(1−∆x) − e−2t(1−∆x)
)
η0

+ e−t(1−∆x)
(
e−t(1−∆x)

2 − e−2t(1−∆x)
2
)
(1−∆x)

−2η1

satisfies all the properties asserted. Observe that (e−βt(1−∆x)
α

)t≥0 is a bounded
C0-semigroup and (1−∆x)

−α is a bounded operator on W r
p (R

n) for all r, α, β ≥ 0
and 1 < p < ∞. Hence,

e−βt(1−∆x)
α

, (1−∆x)
−α ∈ L (W s

p (J,W
r
p (R

n)))

for all s, r, α, β ≥ 0 and 1 < p < ∞. If (η0, η1) ∈ W
2−2/p
p (Rn) ×W

1−3/p
p (Rn), we

therfore may estimate

‖η‖E2
T (0,0) ≤ C

(
‖(2e−t(1−∆x)

1/2 − e−2t(1−∆x)
1/2

)η0‖E2
T (0,0)

+ ‖e−t(1−∆x)η1‖E2
T (0,0)

)
.
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By [10, Lemma 6.4] the remaining extension operators are known to lift the traces
into the class E2

T (0, 0), which implies

‖η‖E2
T (0,0) ≤ C

(
‖η0‖W 2−2/p

p (Rn)
+ ‖η1‖W 1−3/p

p (Rn)

)
.

Hence the first estimate is proved. If (η0, η1) ∈ W
4−3/p
p (Rn) × W

2−6/p
p (Rn), we

interchange the roles of the semigroups in the definition of η. In fact here we
obtain as in Lemma 3.1 (iii),

‖η‖E2
T (0,1) ≤ C

(
‖2e−t(1−∆x) − e−2t(1−∆x))η0‖E2

T (0, 1)

+ ‖(e−t(1−∆x)
2 − e−2t(1−∆x)

2

)(1−∆x)
−2η1‖E2

T (0, 1)
)

≤ C
(
‖η0‖W 4−3/p

p (Rn)
+ ‖η1‖W 2−6/p

p (Rn)

)
.

Analogously we proceed in the third case. Here we treat the terms of type

e−βt(1−∆x)
1/2

in front of η0 and the terms e−βt(1−∆x)
2

and (1 − ∆x)
−1 in front

of η1 as bounded operators and gain the desired regularity by the remaining opera-
tors as in Lemma 3.1 (ii). A straight forward calculation also shows that η(0) = η0
and ∂tη(0) = η1. �
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