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Abstract. In this paper, an accurate model of the spin-coating process is presented and investigated
from the analytical point of view. More precisely, the spin-coating process is being described as a
one-phase free boundary value problem for Newtonian fluids subject to surface tension and rotational
effects. It is proved that for T > 0 there exists a unique, strong solution to this problem in (0, T )
belonging to a certain regularity class provided the data and the speed of rotation are small enough in
suitable norms.

The strategy of the proof is based on a transformation of the free boundary value problem to a
quasilinear evolution equation on a fixed domain. The keypoint for solving the latter equation is the
so-called maximal regularity approach. In order to pursue in this direction one needs to determine the
precise regularity classes for the associated inhomogeneous linearized equations. This is being achieved
by applying the Newton polygon method to the boundary symbol.

1. Introduction

The spin-coating process may be roughly speaking described as follows: it is a method of placing a small
drop of coating material, in liquid form, on the center of a disc, which is then spun rapidly about its
axis. The drop is then driven by two competing forces: centrifugal forces cause the liquid to be thrown
radially outwards, whereas surface tension and viscous forces will work against this spreading. For large
centrifugal forces, the coating material film thins.

Of particular interest is the situation where the coating material is a polymer dissolved in a solvent.
As the film thins, the solvent evaporates and the solution viscosity increases, reducing the radial flow.
Eventually, the viscosity becomes so large that relative motion virtually ceases and the process is
completed by evaporating the residual solvent.

Spin-coating has many applications. The process is used, for example, in manufacturing micro-
electronic devices or magnetic storage discs. In all cases a uniform layer is required and essential.

It has to be stressed that complete mathematical models describing all the above effects do not seem
to exist. Various models describing certain aspects have been developed in the engineering sciences. For
details see e.g. [SR01], [BW96] and [MWD99].

In order to develop an accurate model and to investigate it rigorously from an analytical point of
view, we describe the spin-coating process as a one-phase free boundary value problem for a Newtonian
fluid subject to surface tension and rotational effects.

More precisely, let Γ0 be a surface which bounds a region Ω(0) filled with a viscous, incompressible
fluid. Denoting by Γ(t) the position of the boundary at time t, Γ(t) is then the interface separating the
fluid occupying the region Ω(t) and its complement. In the following, the normal on Γ(t) is denoted
by ν(t, ·), and V (t, ·) and κ(t, ·) denote the normal velocity and mean curvature of Γ(t), respectively.
Assume that the free surface may be described as the graph of a height function h shifted by a constant
δ > 0. Thus, the region Ω(t) occupied by the fluid may be represented as Ω(t) := {(x, y);x ∈ R2, y ∈
(0, h(t, x)+δ)}, where h = h(t, x) is the height function. The boundary of Ω(t) splits into the free surface
on the top part Γ+(t) = {(x, h(t, x) + δ) : x ∈ R2} and the bottom part Γ−(t) = {(x, 0) : x ∈ R2}, the
interface of the fluid with a solid phase. In the situation of spin-coating it is natural to consider the
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case where Γ+(0) is close to a plane, i.e. Γ+(0)− δ is a graph over R2 given by a function h0. Then the
motion of the fluid is governed for u = (v, w)T with v = (u1, u2)T by the following set of equations:

(1.1)



ρ(∂tu+ (u · ∇)u) = µ∆u−∇q − ρ[2ω × u+ ω × (ω × χR(x)(x, y))] in Ω(t),
div u = 0 in Ω(t),
−Tν = σκν on Γ+(t),
V = u · ν on Γ+(t),
v = c(h+ δ)α∂yv, on Γ−(t),
w = 0 on Γ−(t),

u(0) = u0 in Ω(0),
Γ+(0) = Γ+

0 in Γ+
0 .

The first equation represents the equation for momentum subject to Coriolis and centrifugal forces given
by 2ω×u and ω× (ω× (x, y)), respectively. Here ρ and µ denote the density and viscosity of the fluid, u
its velocity, q its pressure and ω the speed of rotation. Furthermore, since we are interested in modeling
spin-coating on a disc, we neglect centrifugal forces for large R > 0 by introducing a smooth cut-off
function χR. The second equation is the condition that the fluid is incompressible. The third equation
says that there is a jump of the stress tensor T given by

T = µ(∇u+ (∇u)T )− qI

in normal direction at the interface Γ which is determined by its mean curvature κ and by the surface
tension σ. Further, V denotes the velocity of the free surface Γ in normal direction. The fifth and
sixth equations above describe wetting phenomena at the bottom part Γ−(t) of Ω(t). Note that the
classical Dirichlet condition holds only for the third component w of the fluid velocity u. In the case,
where a contact line exists and the liquid on a solid substrate spreads and displaces the surrounding
fluid, say gas, it is well known that the classical homogeneous Dirichlet condition for u leads to a
nonintegrable singularity at the contact line, see [HS71] and [DD74]. The singularity can be relieved by
allowing relative motion, i.e. slip, between the liquid and the solid near the contact line. This means
that the condition of no penetration is retained and tangential relative motion is allowed. The Navier
slip condition on Γ− demands the velocity at the interface to be proportional to its normal derivative:

v = k(h)∂yv.

The function k(·) describes the slip parameter and depends on the height h. In the fifth equation above
we assume that k is of the form k(h) = c(h+ δ)α, where c and α are positive constants.

On the top part, our problem differs from known one- or two-phase flow models through Coriolis and
centrifugal force. Well-posedness results in the non-rotating setting for one-phase flows with surface
tension are due to Solonnikov [Sol87], [Sol92], [Sol99], [Sol03a], [Sol03b], [Sol04] and Shibata and Shimizu
[SS07], [SS08], [SS09] and Prüss and Simonett [PS09b]. In the setting of spin-coating it is natural to
consider infinite layer-like domains. Note that the results cited do not cover this situation. An additional
difficulty arising in infinite layers is the localization of the pressure term q. Our approach to circumvent
this difficulty is a localization technique for the reduced Stokes system on two half spaces. Estimates for
the solution of Laplace’s equation subject to various boundary conditions in Sobolev spaces of negative
order will play an important role.

The case of an ocean of infinite extend bounded below by a solid surface and bounded above by a
free surface was treated by Beale [Bea84], Tani [Tan96], Tani and Tanaka [TT95] and Abels [Abe03].

The two-phase problem without rotational effects was investigated by Denisova in [Den91] and
[Den94], by Tanaka in [Tan95] and by Prüss and Simonett in [PS09a] and [PS09b].

Wellposedness results for the spin-coating system on the other hand seem not to be known and are
the objectives of this paper. Our approach is based on a transformation of system (1.1) into a problem
on a fixed domain. Note that our transformation relies on the unknown height function h describing the
free boundary. The keypoint of our approach is to prove optimal regularity properties of the associated
linearized equations. They will be achieved by the so-called Newton polygon technique. Based on these
linear estimates we then solve the nonlinear problem by the contraction mapping principle.
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Our main result says that for any T > 0 the above set of equations admits a unique, strong solution
(u, q, h) in the space of maximal parabolic regularity provided the initial data u0, h0 and ω belong to
certain function spaces and are sufficiently small. Moreover, for large ω we show the existence of a
unique, local, strong solution (u, q, h) for small data. The precise regularity assertions will be given in
Theorem 2.1 in the following section.

We remark at this point that the approach used by Solonnikov [Sol87], [Sol92], [Sol03a],[Sol03b],
Denisova and Solonnikov [DS96], Tani [Tan95], [Tan96], Tanaka [TT95] and Shibata and Shimizu [SS07],
[SS08], [SS09] for the free bondary value problem for the Navier-Stokes equations relies on the formu-
lation of the system in Lagrangian coordinates. Like this one obtains a transformed problem on a
fixed domain, where the free boundary does not occur explicitely any more. Writing the velocity v in
Lagrangrian coordinates, the free boundary is then described as

Γ+(t) = {ξ +
∫ t

0

v(τ, ξ)dτ : τ ∈ Γ+
0 }.

One advantage of our approach is that we are obtaining precise regularity information about the
height function h similarly to the work of Prüss and Simonett [PS09b]; see Theorem 2.1 below. It seems
to be unclear whether the Lagrangian formulation of the problem also could yield this information,
since the regularity on Γ+(t) as described above seemes to be restricted by the regularity of Γ+

0 . Beale
considers in [Bea84] the ocean problem, i.e. Ω(t) = {(x, y) ∈ R2 × R : −b(x) < y < h(t, x)}, and shows
Ck-smoothness of Γ by a boot-trapping argument provided the size of the initial data is adjusted in
dependence of k ∈ N. His approach, as in our case, does not rely on Lagrangian coordinates.

Some comments on our notation and the function spaces used are in order. Let s ∈ R, 1 < p <∞, Ω
be a domain in R3 with smooth boundary ∂Ω = Γ andX be a Banach space. ThenHs

p(Ω, X) denotes the
Bessel potential space of order s. The Slobodeckij space W s

p (Ω, X) is defined as W s
p (Ω, X) := Hs

p(Ω, X)
for integer s and W s

p (Ω, X) := Bs
pp(Ω, X) for non-integer s, where Bs

pp(Ω, X) denotes the corresponding
Besov space. Moreover, for T ∈ (0,∞) set J := (0, T ). The homogeneous versions of the above spaces
will be denoted by Ĥs

p(Ω, X) and Ŵ s
p (Ω, X). Moreover, we set 0

Ĥ1
p (Ω,Γ) := {ϕ ∈ Ĥ1

p (Ω) : γϕ = 0 on Γ},
where γ denotes the trace operator u 7→ u|Γ. The trace operator γ depends of course on Ω,Γ and the
smoothness of the underlying space. However, in order to simplify our notation, we always denote the
trace operator by γ whenever no misunderstanding may occur.

For more information about the Navier-Stokes equations in fixed domains, we refer e.g. to [Gal94]
and [Ama00] and in the rotational setting e.g. to [CT07], [GHH06] and [HS10].
Acknowledgements. The authors gratefully acknowledge several valuable comments of the referee.

2. Main Result

In this section, we formulate our main result. It says that for T > 0 the free boundary value problem
describing the spin-coating process, i.e. the coupled problem of the Navier-Stokes equations with surface
tension in the rotational setting on the free surface and the Navier-Stokes equations with Navier’s
condition on the fixed bottom boundary is well posed, provided the data and the speed of rotation is
small enough in suitable norms. Also, the free boundary Γ(t) may be described as the graph of a height
function h(t) over R2. More precisely, we have the following result.

Theorem 2.1. Let p > 5, ρ, µ, σ, δ, c, α > 0 and for T > 0 set J = (0, T ). For h0 ∈ W
3−2/p
p (R2)

set Γ+
0 := {(x, h0(x) + δ) : x ∈ R2} and Ω(0) := {(x, y) : x ∈ R2, y ∈ (0, h0(x) + δ)}. Assume that

u0 = (v0, w0)T ∈W 2−2/p
p (Ω(0)) and h0 are satisfying the compatibility conditions

D(u0)ν0 = (−∇h0, 1)T (D(u0)ν0)3, div u0 = 0 on Ω(0), v0 = cδα−1(h0 + δ)∂yv0, w0 = 0 on R2,

with D(u0) := (∇u0 + (∇u0)T ).
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a) Then, for any T > 0 there exist ε > 0 such that there exists a unique solution (u, q, h) of equation
(1.1) within the regularity classes

u ∈ H1
p (J, Lp(Ω(t))3) ∩ Lp(J,H2

p (Ω(t))3),

q ∈ {π ∈ Lp(J, Ĥ1
p (Ω(t))) : γπ ∈W 1/2−1/2p

p (J, Lp(Γ+(t))) ∩ Lp(J,W 1−1/p
p (Γ+(t)))},

h ∈ W 2−1/2p
p (J, Lp(R2)) ∩H1

p (J,W 2−1/p
p (R2)) ∩ Lp(J,W 3−1/p

p (R2)),

provided the smallness condition

‖(u0, h0)‖W
2−2/p
p (Ω(0))×W

3−2/p
p (R2)

+ ω < ε.

is fulfilled.
b) For any ω > 0 there exist T, ε > 0 such that there exists a unique solution (u, q, h) of equation (1.1)
in J within the same regularity classes as in a) provided the smallness condition

‖(u0, h0)‖W
2−2/p
p (Ω(0))×W

3−2/p
p (R2)

+ ω < ε.

is fulfilled.
c) Let T > 0 and assume that the above compability and smallness conditions are satisfied. Then Γ+(t)
is the graph of the function h(t, ·) + δ over R2 for all t ∈ J .

Remarks 2.2. a) Note that u ∈ H1
p (J, Lp(Ω(t))3) ∩ Lp(J,H2

p (Ω(t))3) by definition if and only if

u ◦Θ−1 ∈ H1
p (J, Lp(R2 × (0, δ))3) ∩ Lp(J,H2

p (R2 × (0, δ))3),

where Θ is defined as in Section 3 by Θ(t, x, y) = (t, x, y(h(t, x) + δ)/δ) for t ∈ J , x ∈ R2 and y ∈ (0, δ).
b) The spaces for q are defined in a similar way.
c) Due to our assumption p > 5 we have

h ∈ C(J,BUC2(R2)) and ∂th ∈ C(J,BUC1(R2)).

This implies that the normal of Ω(t), the normal velocity V of Γ+(t) and its mean curvature are well
defined and continuous. In particular, the equations on the free boundaries given in (1.1) can be
understood pointwise. For u we have

u(t) ∈ BUC1(Ω(t)) and ∇u(t) ∈ BUC(Ω(t)), t ∈ J.

d) If in addition to surface tension also gravity acts on the fluid, the condition on the free boundary
needs to be replaced by

−Tν = σκν + gρyν on Γ+(t),

where g denotes the gravity constant and y the vertical component of a point on Γ+(t). We note that
our approach may be extended to this case yielding a solution within the same regularity class as above.

Remarks 2.3. Some comments on our approach how to prove the above result are in order.
a) First, by applying the Hanzawa transform to problem (1.1), we obtain a set of equations on a fixed
layer-like domain D := R2× (0, δ) of fixed height δ with top and bottom boundaries Γ+ = R2×{δ} and
Γ− = R2 × {0}. In section 3 we will verify that the set of equations for ρ = µ = 1 on the fixed domain
D are of the form

(2.1)



∂tu−∆u+ 2ω × u+∇q = χRω × (ωx) + F (u, q, h) in J ×D,
div u = Fd(u, h) in J ×D,

−γT (u, q)νD − σ∆xhνD = G+(u, q, h) on J × Γ+,
∂th− γw = H(u, h) on J × Γ+,

γv − γcδα∂yv = G−(u, h) on J × Γ−,
γw = 0 on J × Γ−,

u|t=0 = u0 in D,
h|t=0 = h0 in R2,
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for certain functions F, F2, G+, G− and H. Splitting the normal stress into its tangential and normal
component, the linearization of (2.1) leads to the following linear inhomogeneous problem

(2.2)



∂tu−∆u+ 2ω × u+∇q = f1 in J ×D,
div u = fd in J ×D,

γ∂yv + γ∇xw = gv on J × Γ+,
γ2∂yw − γq − σ∆xh = gw on J × Γ+,

∂th− γw = fh on J × Γ+,
γv − γcδα∂yv = g− on J × Γ−,

γw = 0 on J × Γ−,
u|t=0 = u0 in D,
h|t=0 = h0 on R2.

Secondly, we show maximal Lp-regularity for the linearized problem (2.2) in Section 4. To this end,
we split the original problem into two model problems defined on half spaces, use the equivalence of
the Stokes problem and the reduced Stokes problem explained in Appendix B as well as the Newton
polygon technique explained in Appendix C. Finally, a fixed-point argument yields the existence of a
unique solution (u, q, h) to equation (1.1) belonging to the regularity class described in Theorem 2.1.

b) A second comment about the regularity class seems also to be in order. First, note that the space
0W

s
p (J,X) are defined for s ≥ 0 with s− 1/p /∈ N0, by

0W
s
p (J,X) :=

{
{u ∈W s

p (J,X) : u(0) = . . . = u(k)(0) = 0}, if s ∈ (k + 1
p , k + 1 + 1

p ) for k ∈ N0,

W s
p (J,X), if 0 ≤ s < 1

p .

The spaces 0H
s
p(J,X) are defined in an analogous manner. We also set 0Ĥ

−1
p (Ω,Γ) :=

(
0
Ĥ1

p′(Ω,Γ)
)′

.
Assume now that the linear problem (2.2) admits a solution (u, q, h) satisfying

u ∈ H1
p (J, Lp(D)3) ∩ Lp(J,H2

p (D)3), q ∈ Lp(J, Ĥ1
p (D)).

Then the right hand sides f1 and fd need to satisfy f1 ∈ Lp(J ×D)3 and

fd ∈ H1
p (J, 0Ĥ−1

p (D)) ∩ Lp(J,H1
p (D)),

since the operator div maps Lp into Ĥ−1
p . By trace theory, u0 necessarily belongs to (W 2−2/p

p (D))3.
Moreover, the trace of u on Γ+ belongs to the class

Y0 := W 1−1/2p
p (J, Lp(Γ+)3) ∩ Lp(J,W 2−1/p

p (Γ+)3),

and that of ∇u to
Y1 := W 1/2−1/2p

p (J, Lp(Γ+)3×3) ∩ Lp(J,W 1−1/p
p (Γ+)3×3).

Thus gv ∈W 1/2−1/2p
p (J, Lp(Γ+)2) ∩ Lp(J,W

1−1/p
p (Γ+)2). The equation for h is defined on

W
1−1/2p
p (J, Lp(Γ+)) ∩ Lp(J,W

2−1/p
p (Γ+)); hence h should naturally belong to

W 2−1/2p
p (J, Lp(Γ+)) ∩H1

p (J,W 2−1/p
p (Γ+)).

The fourth equation above is defined in W
1/2−1/2p
p (J, Lp(Γ+)) ∩ Lp(J,W

1−1/p
p (Γ+)) and contains the

term ∆x. Thus h should also belong to Lp(J,W
3−1/p
p (Γ+)) and the natural space for h is

W 2−1/2p
p (J, Lp(Γ+)) ∩H1

p (J,W 2−1/p
p (Γ+)) ∩ Lp(J,W 3−1/p

p (Γ+)).

This also implies h0 ∈W 3−2/p
p (R2). If in addition γq ∈ Y2 := W

1/2−1/2p
p (J, Lp(Γ+))∩Lp(J,W

1−1/p
p (Γ+)),

then also gw ∈ Y2.

Having thus observed that the above regularity for h is necessary for u and q solving (2.2) and
belonging to the above regularity classes, our main result shows that under these assumptions the
nonlinear problem admits a unique solution in the above regularity classes.
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3. Hanzawa transformation

In this section we transform the problem (1.1) to a problem on the fixed domain D = R2 × (0, δ) for
δ > 0. The top and bottom boundary of D are given by Γ+ = R2×{δ} and Γ− = R2×{0}, respectively.
To this end, we define for J = (0, T )

Θ : J × R2 × (0, δ) →
⋃
t∈J

{t} × Ω(t), Θ(t, x, y) := (t, x,
y(h(t, x) + δ)

δ
)

as well as θ(t, x, y) := (x, y(h(t, x) + δ)/δ). Thus Θ(t, x, y) = (t, θ(t, x, y)) for all t ∈ J , x ∈ R2 and
y ∈ (0, δ). We then define the transformed variables by

(Θ∗u)(t, x, y) := u(Θ(t, x, y)),

v(t, x, y) :=
[

(Θ∗u1)(t, x, y)
(Θ∗u2)(t, x, y)

]
w(t, x, y) := (Θ∗u3)(t, x, y) := u3(Θ(t, x, y)),

π(t, x, y) := (Θ∗q)(t, x, y) := q(Θ(t, x, y)).

Then, the Jacobian of Θ and its inverse are of the form

DΘ =


1 0 0 0
0 1 0 0
0 0 1 0

y∂th/δ y∂1h/δ y∂2h/δ (h+ δ)/δ

 , DΘ−1 =


1 0 0 0
0 1 0 0
0 0 1 0

− y
h+δ∂th − y

h+δ∂1h − y
h+δ∂2h δ/(h+ δ)

 .

By means of this coordinate transformation we obtain for j = 1, 2:

Θ∗∂tu = ∂t

(
v

w

)
− y

h+ δ
∂y

(
v

w

)
∂th,

Θ∗∂ju = ∂j

(
v

w

)
− y

h+ δ
∂y

(
v

w

)
∂jh,

Θ∗∂2
j u = ∂2

j

(
v

w

)
− 2

y

h+ δ
∂j∂y

(
v

w

)
∂jh+

y2

(h+ δ)2
∂2

y

(
v

w

)
(∂jh)2 − y∂y

(
v

w

)(
(h+ δ)∂2

j h− 2(∂jh)2

(h+ δ)2

)
,

Θ∗∂yu =
δ

h+ δ
∂y

(
v

w

)
,

Θ∗∂2
yu =

δ2

(h+ δ)2
∂2

y

(
v

w

)
,

Θ∗∆u = [∆x +
δ2

(h+ δ)2
∂2

y ]
(
v

w

)
− 2

y

h+ δ
∇x∂y

(
v

w

)
∇xh+

y2

(h+ δ)2
|∇xh|2∂2

y

(
v

w

)
− y

h+ δ
∂y

(
v

w

)
∆xh

+ 2
y

(h+ δ)2
∂y

(
v

w

)
|∇xh|2,

Θ∗[(u · ∇)u] =
((v

w

)
·
(

∇x
δ

h+δ∂y

))(v
w

)
− y

h+ δ
∂y

(
v

w

)
(v · ∇x)h,

Θ∗∇π =
(

∇x
δ

h+δ∂y

)
π − y

h+ δ
(∂yπ)

(
∇xh

0

)
.

The fourth equation of (1.1) is transformed via the outer normal ν given by

ν :=
1√

1 + |∇xh|2

(
−∇xh

1

)
into

∂th = Θ∗Vν

√
1 + |∇xh|2 = Θ∗ν ·

(
v

w

)√
1 + |∇xh|2 = −∇xh · v + w.
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In order to compute the transformed stress tensor on Γ+, we note first that the outer normal ν at the
free surface and the outer normal νD = (0, 0, 1)T at Γ+ are related through

ν =
1√

1 + |∇xh|2
(
νD −

(
∇xh

0

))
.

¿From the calculations above we see that the transformed stress tensor on the upper boundary is given
by

Θ∗T (u, π) =
(

∇x
δ

h+δ∂y

)(
v

w

)
+
[( ∇x

δ
h+δ∂y

)(
v

w

)]T
− y

h+ δ

[
∂y

(
v

w

)(
(∇xh)T 0

)
+
(
∇xh

0

)(
∂y

(
v

w

))T ]
−Iπ.

Therefore, we obtain

Θ∗[T (u, π)ν] =
1√

1 + |∇xh|2

[(
∇x
δ

h+δ∂y

)(
v

w

)
+
[( ∇x

δ
h+δ∂y

)(
v

w

)]T
− Iπ

]
νD

+
1√

1 + |∇xh|2

[
−∇x

(
v

w

)
∇xh−

(( ∇x
δ

h+δ∂y

)
v
)T

∇xh+
y

h+ δ
∂y

(
v

w

)
|∇xh|2

+
y

h+ δ
(∇xh · ∂yv)

(
∇xh

0

)
− y

h+ δ
∂yw

(
∇xh

0

)
+ π

(
∇xh

0

)]
.

The mean curvature κ is given by

κ = −∇x ·

(
∇xh√

1 + |∇xh|2

)
= − ∆xh√

1 + |∇xh|2
+

2∑
j,k=1

∂jh∂kh

(1 + |∇xh|2)
3
2
∂j∂kh.

The transformed Navier-slip condition on the lower boundary reads as

v = Θ∗
(
u1

u2

)
= c(h+ δ)αΘ∗

(
u1

u2

)
= c(h+ δ)α δ

h+ δ
∂yv = cδ(h+ δ)α−1∂yv.

Summarizing, the equations (1.1) read in transformed coordinates for % = µ = 1 as

(3.1)



∂tu−∆u+ 2ω × u+∇π = χRω × (ω × (x, y)) + F1(u, π, h) in J ×D,
div u = Fd(u, h) in J ×D,

γT (u, π)νD − σ∆xhνD = G+(u, π, h) on J × Γ+,
∂th− γw = H(u, h) on J × Γ+,

γv − γcδα∂yv = G−(v, h) on J × Γ−,
γw = 0 on J × Γ−,

u|t=0 = u0 in D,
h|t=0 = h0 in R2,

where the functions on the right hand side above are given by
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F1(u, π, h) :=
y

h+ δ
(∂yu)∂th+ (δ2/(h+ δ)2 − 1)∂2

yu− 2
y

h+ δ
∇x∂yu∇xh+

y2

(h+ δ)2
|∇xh|2∂2

yu

− y

h+ δ
(∂yu)∆xh+ 2

y

(h+ δ)2
(∂yu)|∇xh|2 +

y

h+ δ
(∂yπ)(∇xh, 0)T − (u · (∇x,

δ

h+ δ
∂y)T )u

+
y

h+ δ
(∂yu)v · ∇xh+ (1− δ/(h+ δ))(0, 0, ∂yπ)T ,

Fd(u, h) := (1− δ/(h+ δ))∂yw +
y

h+ δ
∂yv · ∇xh,

G+(u, π, h) := (1− δ/(h+ δ))∂y

(
v

2w

)
+ σ

( 1√
1 + |∇xh|2

− 1
)
∆xh · νD − σ

2∑
j,k=1

∂jh∂kh

(1 + |∇xh|2)3/2
∂j∂kh · νD

− σ√
1 + |∇xh|2

(
∆xh−

2∑
j,k=1

∂jh∂kh

1 + |∇xh|2
∂j∂kh

)(∇xh

0

)
−

[
−∇xu∇xh+

y

h+ δ
|∇xh|2∂yu

−
(( ∇x

δ
h+δ∂y

)
v
)T

∇xh−
y

h+ δ
∂yw

(
∇xh

0

)
+

y

h+ δ
(∇xh · ∂yv)

(
∇xh

0

)
+ π

(
∇xh

0

)]
,

H(u, h) := −∇xh · v,
G−(v, h) := cδ[(h+ δ)α−1 − δα−1]∂yv.

4. Maximal regularity for the linearized problem

It is the aim of this section to prove maximal regularity estimates for the linearized problem (2.2). To
this end, we introduce the function space F associated with the right hand side of (2.2) as

F(J,D) := F1(J,D)× Fd(J,D,Γ+)×G+(J,Γ+)×H(J,Γ+)×G−(J,Γ−)× I1(D)× I2(Γ+),

where

F1(J,D) := Lp(J, Lp(D)3),

Fd(J,D,Γ+) := H1
p (J, 0Ĥ−1

p (D,Γ+)) ∩H1/2
p (J, Lp(D)) ∩ Lp(J,H1

p (D)),

G+(J,Γ+) := W 1/2−1/2p
p (J, Lp(Γ+)3) ∩ Lp(J,W 1−1/p

p (Γ+)3),

H(J,Γ+) := W 1−1/2p
p (J, Lp(Γ+)) ∩ Lp(J,W 2−1/p

p (Γ+)),

G−(J,Γ−) := W 1/2−1/2p
p (J, Lp((Γ−)2) ∩ Lp(J,W 1−1/p

p (Γ−)2),

I1(D) := W 2−2/p
p (D)3,

I2(Γ−) := W 3−2/p
p (Γ−),

as well as the solution space

E(J,D) := E1(J,D)× E2(J,D,Γ+)× E3(J,Γ+),

with

E1(J,D) := H1
p (J, Lp(D)3) ∩ Lp(J,H2

p (D)3),

E2(J,D,Γ+) := {π ∈ Lp(J, Ĥ1
p (D)) : γπ ∈W 1/2−1/2p

p (J, Lp(Γ+)) ∩ Lp(J,W 1−1/p
p (Γ+))},

E3(J,Γ+) := W 2−1/2p
p (J, Lp(Γ+)) ∩H1

p (J,W 2−1/p
p (Γ+)) ∩ Lp(J,W 3−1/p

p (Γ+)).
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Theorem 4.1. Let T > 0, J := (0, T ), p ∈ (1,∞) with p 6= 3/2, 3. Then there exists a unique solution
(u, π, h) ∈ E(J,D) of the problem

(4.1)



∂tu−∆u+ 2ω × u+∇π = f1 in J ×D,
div u = fd in J ×D,

γ∂yv + γ∇xw = gv on J × Γ+,
2γ∂yw − γp− σ∆xh = gw on J × Γ+,

∂th− γw = fh on J × Γ+,
γv − cδαγ∂yv = g− on J × Γ−,

γw = 0 on J × Γ−,
u(0) = u0 in D,
h(0) = h0 on Γ−,

if and only if (f1, fd, g = (gv, gw), fh, g−, u0, h0) belong to F(J,D) and satisfy the compatibility conditions

gv(0) = γ∂yv0 + γ∇xw0 on Γ+ and g−(0) = γv0 − cδαγ∂yv0 on Γ−, p > 3 and

γw0 = 0 on Γ− and fd(0) = div u0 in D, p > 3/2.

In order to prove Theorem 4.1, we consider first the problem

(4.2)



∂tu−∆u+∇π = f1 in J ×D,
div u = fd in J ×D,

γ∂yv + γ∇xw = 0 on J × Γ+,
2γ∂yw − γπ − γσ∆xh = 0 on J × Γ+,

∂th− γw = 0 on J × Γ+,
γv − cδαγ∂yv = 0 on J × Γ−,

γw = 0 on J × Γ−,
u|t=0 = 0 in D,
h|t=0 = 0 on Γ−

Then the following result holds.

Lemma 4.2. Let p ∈ (1,∞), p 6= 3/2, 3 and for τ > 0 set Jτ = [0, τ ]. Let f1 ∈ F1(J,D) and
fd ∈ Fd(J,D,Γ+) satisfying fd|t=0 = 0 if p > 3/2. Then there exist τ > 0 and a unique solution
(u, π, h) ∈ E(Jτ , D) of (4.2) in Jτ satisfying

‖(u, π, h)‖E(Jτ ,D) ≤ C
(
‖f1‖F1(Jτ ,D) + ‖fd‖Fd(Jτ ,D,Γ+)

)
.

In order to prove Lemma 4.2 it suffices, thanks to Proposition B.1, to consider the reduced Stokes
problem defined by

(4.3)



∂tu−∆u+∇T2(u, h) = f1 in J ×D,
γ∂yv + γ∇xw = 0 on J × Γ+,

γdiv u = gr in J × Γ+,
∂th− γw = 0 on J × Γ+,

γv − cδαγ∂yv = 0 on J × Γ−,
γw = 0 on J × Γ−,

u|t=0 = 0 in D,
h|t=0 = 0 on R2,

where f1 ∈ F1(J,D), gr ∈ G+(J,Γ+) satisfying gr(0) = 0 if p > 3. Here

G+(J,Γ+) := W 1/2−1/2p
p (J, Lp(Γ+)) ∩ Lp(J,W 1−1/p

p (Γ+)),
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and T2(u, h) is defined by T2(u, h) := p2, where p2 ∈ H1
p (D) is the unique solution of

(4.4)


∆p = 0 in D,

γ∂yp = γν(∆u−∇div u) on Γ−,

γp = 2γ∂yw − σ∆xh on Γ+,

which is guaranteed by Proposition A.5 provided (u, h) ∈ E1 × E3. Here γνu := γν · u.
In order to construct a solution for equation (4.3), we employ a localization procedure to transfer the

reduced Stokes problem to two problems in a half-space. More precisely, consider in D− := R3
+ the set

of equations

(4.5)


∂tu−∆u+∇T−2 (u) = f− in J ×D−,

γv − cδαγ∂yv = 0 on J × Γ−,
γw = 0 on J × Γ−,
u(0) = 0 in D−,

where T−2 (u) is defined by T−2 (u) := p−2 , where p−2 ∈ Ĥ1
p (D−) is the unique solution of the equation{

∆p = 0 in D−,
γ∂yp = γ∂ν(∆u−∇div u) on Γ−.(4.6)

Note that by Proposition A.1 and Proposition A.4, T−2 is well-defined due to the assumption on u.
The following lemma is a consequence of Lemma 5.1 and Proposition B.2(2).

Lemma 4.3. Let p ∈ (1,∞), p 6= 3/2, 3. Then there exists C > 0 such that for f− ∈ F1(J,D−) there
exists a unique solution u− ∈ E1(J,D−) of equation (4.5) satisfying

‖u−‖E1(J,D−) ≤ C‖f−‖F1(J,D−).

Similarly as above, we consider the reduced system also in D+ := R2 × (−∞, δ). It reads as

∂tu−∆u+∇T+
2 (u, h) = f+ in J ×D+,

γ∂yv + γ∇xw = 0 on J × Γ+,
γdiv u = gr on J × Γ+,

∂th− γw = 0 in J × Γ+,
u(0) = 0 in D+,
h(0) = 0 in Γ+,

(4.7)

where T+
2 (u, h) is defined as T+

2 (u, h) := p+
2 , where p+

2 ∈ Ĥ1
p (D+) is the unique solution of{

∆p = 0 in D+,
γp = 2γ∂yw − σ∆xh on Γ+.

(4.8)

By Proposition A.1 and Proposition A.4, T+
2 is well-defined. Finally, Theorem 5.2 and Proposition B.1

imply the following result.

Lemma 4.4. Let p ∈ (1,∞), p 6= 3/2, 3. Then there exists a constant C > 0 such that for f+ ∈
F1(J,D+) and gr ∈ G+(J,Γ+) satisfying g(0) = 0 in the case p > 3, there exists a unique solution
(u+, h) ∈ E1(J,D+)× E3(J,Γ+) of equation (4.7) satisfying

‖u+‖E1(J,D+) + ‖h‖E3(J,Γ+) ≤ C
(
‖f+‖F1(J,D+) + ‖gr‖G+(J,Γ+)

)
.

Proof of Lemma 4.2. Let χ− ∈ C∞(R) be a cut-off function satisfying 0 ≤ χ− ≤ 1 such that

χ−(y) =
{

1 for y ≤ δ/3,
0 for y ≥ 2δ/3,
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holds. Moreover, set χ+ := 1 − χ−. It follows from Lemma 4.4 and Lemma 4.3 that for f ∈ F1(J,D)
and g ∈ G+(J,Γ+) there exist unique solutions (u+, h) of equation (4.7) and u− of (4.5), respectively.
Inserting u = χ+u+ + χ−u− in (4.3), we obtain

∂tu−∆u+∇T2(u, h) = f + S(f, g) in J ×D,
γ∂yv + γ∇xw = 0 on J × Γ+,

∂th− γw = 0 in J × Γ+,
γdiv u = g on J × Γ+,

γv − cδαγ∂yv = 0 on J × Γ−,
γw = 0 on J × Γ−,
u(0) = 0 in D,
h(0) = 0 in R2,

where S(f, g) is given by

S(f, g) :=∇T2(u, h)− χ+∇T+
2 (u+, h)− χ−∇T−2 (u−)− (∆χ+)u+ − (∆χ−)u−

− 2(∇χ−)(∇u−)− 2(∇χ+)(∇u+)

=
[
∇
(
T2(u, h)− χ+T

+
2 (u+, h)− χ−T

−
2 (u−)

) ]
+
[
− (∆χ+)u+ − (∆χ−)u− − 2(∇χ−)(∇u−)− 2(∇χ+)(∇u+)

]
+
[
(∇χ+)T+

2 (u+, h) + (∇χ−)T−2 (u−)
]

=:S1(f, g) + S2(f, g) + S3(f, g).

By Hölder’s inequality and Sobolev’s embedding theorem, for T0 > 0 there exist β > 0 and C > 0,
independent of T < T0, such that

‖S2(f, g)‖F1(0,T,D) ≤ C
(
‖u−‖Lp(0,T ;H1

p(D)) + ‖u+‖Lp(0,T ;H1
p(D))

)
≤ CT β

(
‖u+‖E1(0,T,D) + ‖u−‖E1(0,T,D)

)
.

Hence, by Lemma 4.4 and Lemma 4.3, we obtain

‖S2(f, g)‖F1(0,T,D) ≤ CT β
(
‖f‖F1(0,T,D) + ‖g‖G+(0,T,Γ+))

)
.

In order to estimate S1(f, g), note that ϕ defined by ϕ := T2(u, h) − χ+T
+
2 (u+, h) − χ−T

−
2 (u−) solves

the equation  ∆ϕ = −div∇(χ+T2(u+, h) + χ−T
−
2 (u−)) in D,

γ∂yϕ = 0 on Γ−,
γϕ = 0 on Γ+.

It follows from Proposition A.5 that

‖ϕ‖Lp(0,T ;H1
p(D)) ≤ C‖ − div∇(χ+T2(u+, h) + χ−T

−
2 (u−))‖Lp(0,T ;0H−1

p (D,Γ+)).

For a test function ψ ∈ 0
Ĥ1

p′(D,Γ
+) we estimate the above right-hand side further as

|〈div∇ (χ+T2(u+, h) + χ−T2(u−)) , ψ〉|
= |〈(∆χ+)T2(u+, h) + 2(∇χ+)(∇T2(u+, h)), ψ〉+ 〈(∆χ−)T2(u−) + 2(∇χ−)(∇T2(u−), ψ〉|

≤ C
(
‖T+

2 (u+, h)‖Lp(0,T ;H1
p(R2×(δ/3,2δ/3))) + ‖T−2 (u−)‖Lp(0,T ; bH1

p(R2×(δ/3,2δ/3)))

)
‖ψ‖Lp′ (D).

Consider the solutions of (4.6) and (4.8). Their Fourier transforms are given by

p̂−(ξ, y) =
(
i
ξ

|ξ|
∂y v̂−(ξ, 0) + |ξ|ŵ−(ξ, 0)

)
e−|ξ|y,

p̂+(ξ, y) =
(
2∂yŵ+(ξ, δ) + σ|ξ|2ĥ(ξ)

)
e−|ξ|(δ−y) 1

|ξ|
.
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By Mikhlin’s multiplier theorem there exists a constant C > 0, independent of u+, u− and h such that

‖T−2 (u−)‖Lp(0,T ; bH1
p(R2×(δ/3,2δ/3))) ≤ C

(
‖γ∂yu−‖Lp(0,T ;Lp(R2)) + ‖γu−‖Lp(0,T ;Lp(R2))

)
,

‖T+
2 (u+, h)‖Lp(0,T ;H1

p(R2×(δ/3,2δ/3))) ≤ C
(
‖γ∂yu+‖Lp(0,T ;Lp(∂D+)) + ‖∆xh‖Lp(0,T ;Lp(R2))

)
.

Hence,

‖w‖Lp(0,T ;H1
p(D)) ≤C

(
‖γ∂yu+‖Lp(0,T ;Lp(∂D+)) + ‖γu−‖Lp(0,T ;Lp(R2))

+ ‖γ∂yu−‖Lp(0,T ;Lp(R2)) + ‖∆xh‖Lp(0,T ;Lp(R2))

)
.

By similar arguments as above we obtain

‖S1(f, g)‖F1(0,T ;D) ≤ CT β
(
‖f‖F1(0,T,D) + ‖g‖G+(0,T,Γ+)

)
,

‖S3(f, g)‖F1(0,T,D) ≤ CT β
(
‖f‖F1(0,T,D) + ‖g‖G+(0,T,Γ+).

)
.

Summarizing, it follows that

‖S(f, g)‖F1(0,T,D) ≤
1
2
‖f‖F1(0,T,D) + ‖g‖G+(0,T,Γ+))

provided T is small enough. The assertion thus follows by a Neumann series argument. �

Proof of Theorem 4.1. Step 1: The case ω = 0.
Suppose that the data f1, fd, gv, gw, fh, g−, u0, h0 satisfies the assumptions given in Theorem 4.1. In
a first step we show the existence of a triple (ũ, π̃, h̃) ∈ E(J,D) satisfying the last seven equations of
(4.1). Keeping the notation introduced in the proof of Lemma 4.2, we define further cut-off functions
χ1, χ2 ∈ C∞(R) satisfying

χ1(y) =

{
1 for y ≥ 1

3δ,

0 for y ≤ 1
6δ.

and χ2(y) =

{
1 for y ≤ 2

3δ,

0 for y ≥ 5
6δ,

By [DPZ08, Theorem 2.1] (see also [DPZ08, Example 3.7]), there exists (w+, h̃) ∈ E1 × E3 satisfying
∂tw+ −∆w+ = 0 in J ×D+,

∂th̃− w+ = fh on J × Γ+,

2γ∂yw+ − σ∆xh̃ = e∆x·(γ∂yw0 − σ∆xh̃0) on J × Γ+,
w+(0) = χ1w0 in D+,

h̃(0) = h0 on Γ+.

Here e∆x· refers to the time variable t. We further set

π+(t, x, y) = e−
√
−∆x(δ−y)

(
gw − e∆x·(γ∂yw0 − σ∆xh̃0)

)
(t, x).

Then (w+, π+, h̃) is a solution of the equation
∂th̃− w+ = fh on J × Γ+,

2γ∂yw+ − γπ+ − σ∆xh̃ = gw on J × Γ+,
w+(0) = χ1w0 in D+,

h̃(0) = h0 on Γ+.

Furthermore, denote by v+ the solution of the equation

∂tv+ −∆v+ = 0 in J ×D+,
γ∂yv+ = gv − γ∇xw+ on J × Γ+,
v+(0) = χ1v0 in D+.
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Note that here we needed the compatibility condition gv(0) = γ∂yv0 + γ∇xw0 on Γ+. Hence, by
construction the triple (u+ = (v+, w+), π+, h̃) satisfies the equation

∂th̃− w+ = fh on J × Γ+,
γ∂yv+ + γ∇xw+ = gv on J × Γ+,

2γ∂yw+ − γπ+ − σ∆xh̃ = gw on J × Γ+,
u+(0) = χ1u0 in D+,

h̃(0) = h̃0 on Γ+.

Furthermore, by [DHP07, Theorem 2.1] there exists a function u− satisfying

∂tu− −∆u− = 0 in J ×D−,
γv− − cδαγ∂yv− = g− on J × Γ−,

γw− = 0 on J × Γ−,
u−(0) = χ2u0 in D−,

provided γw0 = 0 on Γ− if p > 3/2 and γv0 − cδαγ∂yv0 = g−(0) on Γ− if p > 3.
Setting ũ := χ+u+ +χ−u− and π̃ := χ+π+ and choosing h̃ as above, we see that the triple (ũ, π̃, h̃) ∈

E(J,D+) satisfies the last seven equations of (4.1). Moreover, given f1, fd as in Theorem 4.1, it follows
from Lemma 4.2 that there exists a solution of (4.2) in some small time interval Jτ = (0, τ). By
repeating these arguments, we obtain a solution of (4.1) on an arbitrary time interval J .

Finally, the uniqueness of the solution to (4.1) follows by the following duality argument. To this
end, assume that (u, π, h) satisfies

(4.9)



∂tu−∆u+∇π = 0 in J ×D,
div u = 0 in J ×D,

γ∂yv + γ∇xw = 0 on J × Γ+,
2γ∂yw − γπ − σ∆xh = 0 on J × Γ+,

∂th− γw = 0 on J × Γ+,
γv − cδαγ∂yv = 0 on J × Γ−,

γw = 0 on J × Γ−,
u(0) = 0 in D,
h(0) = 0 on Γ+

and for f̃ ∈ F′1 let (ũ, π̃, h̃) be the solution of the dual backward problem

(4.10)



−∂tũ−∆ũ+∇π̃ = f̃ in J ×D,
div ũ = 0 in J ×D,

γ∂y ṽ + γ∇xw̃ = 0 on J × Γ+,

2γ∂yw̃ − γπ̃ − σ∆xh̃ = 0 on J × Γ+,

−∂th̃− γw̃ = 0 on J × Γ+,
γṽ − cδαγ∂y ṽ = 0 on J × Γ−,

γw̃ = 0 on J × Γ−,
ũ(T ) = 0 in D,
h̃(T ) = 0 on Γ+

Integration by parts yields

0 =〈∂tu−∆u+∇π, ũ〉J×D = 〈u,−∂tũ−∆ũ〉J×D + 〈u(s), ũ(s)〉D|T0 − 〈γ∂yu, γũ〉J×Γ+

− 〈γu, γũ〉J×Γ− + 〈γu, γ∂yũ〉J×Γ+ + 〈γu, γ∂yũ〉J×Γ− + 〈γπ, γw̃〉J×Γ+ + 〈γπ, γw̃〉J×Γ−

= : I1 + . . .+ I8.

Since u(0) = ũ(T ) = 0, we have I2 = 0. The two equations on Γ− imply I4 + I6 + I8 = 0. Moreover,
the equations describing the tangential stresses on Γ+, integration by parts, and the divergence free
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conditions yield

I5 + I3 =〈γv, γ∂y ṽ〉J×Γ+ − 〈γ∂yv, γṽ〉J×Γ+ + 〈γw, γ∂yw̃〉J×Γ+ − 〈γ∂yw, γw̃〉J×Γ+

=〈γv,−γ∇xw̃〉J×Γ+ + 〈γ∇xw, γṽ〉J×Γ+ + 〈γw, γ∂yw̃〉J×Γ+ − 〈γ∂yw, γw̃〉J×Γ+

=〈γ∇xv, γw̃〉J×Γ+ − 〈γw, γ∇xṽ〉J×Γ+ + 〈γw, γ∂yw̃〉J×Γ+ − 〈γ∂yw, γw̃〉J×Γ+

=− 〈γ∂yw, γw̃〉J×Γ+ + 〈γw, γ∂yw̃〉J×Γ+ + 〈γw, γ∂yw̃〉J×Γ+ − 〈γ∂yw, γw̃〉J×Γ+

=〈γw, 2γ∂yw̃〉J×Γ+ − 〈2γ∂yw, γw̃〉J×Γ+ .

The equations for the normal stress on Γ+, the equations for the normal velocity of Γ+ as well as
integration by parts yield

I5 + I3 =〈γw, γπ̃ + σ∆′h̃〉J×Γ+ − 〈γπ + σ∆′h, γw̃〉J×Γ+

=〈γw, γπ̃〉J×Γ+ − 〈γπ, γw̃〉J×Γ+ + 〈∂th, σ∆xh̃〉J×Γ+ + 〈σ∆xh, ∂th̃〉J×Γ+

=〈γw, γπ̃〉J×Γ+ − 〈γπ, γw̃〉J×Γ+ − 〈∂t∇xh, σ∇xh̃〉J×Γ+ + 〈σ∇x∂th,∇h̃〉J×Γ+

=〈γw, γπ̃〉J×Γ+ − 〈γπ, γw̃〉J×Γ+ .

Summarizing, we obtain

0 =〈u,−∂tũ−∆ũ〉J×D + 〈γw, γπ̃〉J×Γ+ = 〈u,−∂tũ−∆ũ+∇π̃〉J×D = 〈u, f̃〉J×D, f̃ ∈ F′1,

which implies that u ≡ 0. Now, it is not difficult to show that h = 0 and π = 0.

Step 2: The case ω 6= 0.
Let T0 > T , p ∈ (1,∞) with p 6= 3

2 , 3 and let Lω ∈ L(E(0, T0, D),Fcomp(0, T0, D)) be the linear operator
represented by the left hand side of (4.1), where Fcomp(0, T0, D) denotes the subset of F(0, T0, D)
satisfying the compatibility conditions given in Theorem 4.1.

By perturbation theory for the maximal regularity for the Dirichlet Laplacian in Lp(D), for (0, 0, 0, 0, u0, 0) ∈
Fcomp(0, T0, D) there exists (u, 0, 0) ∈ E(0, T0, D) satisfying ∂tu−∆u+ 2ω × u = 0 in (0, T0)×D,

γu = 0 on (0, T0)× Γ,
u(0) = u0 in D.

Hence, it suffices to show that Lω ∈ Isom(Ẽ(0, T0, D), F̃comp(0, T0, D)), where

Ẽ(0, T0, D) := {(u, π, h) ∈ E(0, T0, D) : u(0) = 0},

F̃comp(0, T0, D) := {(f1, fd, g, fh, g−, u0, h0) ∈ Fcomp(0, T0;D) : u0 = 0}.

In order to do so, we write Lω = L0(Id + L−1
0 Bω), where Bω(u, π, h) := (2ω × u, 0, 0, 0, 0, 0). Then, by

Step 1 and Sobolev’s embedding, we obtain

‖L−1
0 Bω(u, π, h)‖Ẽ(0,T,D) ≤ C‖Bω(u, π, h)‖F̃(0,T,D) ≤ C‖u‖Lp(0,T,Lp(D)) ≤ CT

1
p ‖u‖L∞(0,T,Lp(D))

≤ CT
1
p ‖(u, π, h)‖Ẽ(0,T0,D), (u, π, h) ∈ Ẽ(0, T,D), T ∈ (0, T0).

Note that thanks to u(0) = 0 for (u, π, h) ∈ Ẽ(0, T,D), the embedding constant is independent of
T ∈ (0, T0). Now, the theorem follows by a Neumann series argument. �

5. Analysis of model problems in the half-space

We start this section with the model problem related to the bottom boundary. Similarly as above, by
Proposition B.2, the reduced Stokes problem (4.5) is uniquely solvable if and only if the problem

∂tu−∆u+∇π = f1 in J ×D−,
div u = fd in J ×D−,

γv − cδαγ∂yv = 0 on J × Γ−,
γw = 0 on J × Γ−,

u|t=0 = 0 in D−,

(5.1)
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is uniquely solvable. It was shown in [Shi07, Theorem 5.1] that, given β > 0 and (f1, f3) ∈ F1(J,D−)×
G−(J,Γ−) with f3(0) = 0 if p > 3, the system

∂tu−∆u+∇π = f1 in J ×D−,
div u = 0 in J ×D−,

βγv − γ∂yv = f3 on J × Γ−,
γw = 0 on J × Γ−,

u|t=0 = 0 in D−,

(5.2)

admits a unique solution (u, π) ∈ E1(J,D−) × Lp(J, Ĥ1
p (D−)) satisfying (5.2) and a constant C > 0

such that

(5.3) ‖u‖E1 + ‖π‖Lp( bH1
p) ≤ C(‖f1‖F1 + ‖f3‖G−).

To be precise, in [Shi07, Theorem 5.1] only the case β = 0 was considered. However, by a perturbation
argument similar to the one employed in the proof of Proposition 4.2, the result cited above extends to
the case β ≥ 0.

Consider now (f1, fd) ∈ F1(J,D−) × Fd(J,D−, ∅) with fd(0) = 0 if p > 3/2. It is well known that
there exists a unique solution (u1, π1) to the half space problem with pure Dirichlet boundary conditions

∂tu−∆u+∇π = f1 in J ×D−,
div u = fd in J ×D−,
γu = 0 on J × Γ−,

u|t=0 = 0 in D−,

(5.4)

satisfying

(5.5) ‖u‖E1 + ‖π‖Lp( bH1
p) ≤ C(‖f1‖F1 + ‖fd‖Fd

).

for some C > 0. Furthermore, let (u2, π2) be the unique solution to (5.2) with right hand sides f1 = 0,
f3 = γ∂yu1, and with β = 1

cδα . Then (u, π) := (u1, π1) + (u2, π2) solves the system (5.1). Summarizing,
we have the following result

Lemma 5.1. For every (f1, fd) ∈ F1(J,D−) × Fd(J,D−, ∅) with fd(0) = 0 if p > 3/2, there exist a
unique soltion (u, π) ∈ E1(J,D−)× Lp(J, Ĥ1

p (D−)) to equation (5.1) satisfying (5.5) for some C > 0.

In the following, we consider the model problem related to the top boundary. More precisely, we aim
to give a proof of Lemma 4.4. By Proposition B.2, it suffices to show that for every f1 ∈ F1(J,D+)
and fd ∈ Fd(J,D+,Γ+) satisfying the compatibility condition fd(0) = 0 if p > 3

2 , there exists a unique
solution (u, π, h) ∈ E1(J,D+)× E2(J,D+,Γ+)× E3(J,Γ+) of the equations

∂tu−∆u+∇π = f1 in R+ ×D+,
div u = fd in R+ ×D+,

γ∂yv + γ∇xw = 0 on R+ × Γ+,
2γ∂yw − γπ − σ∆xh = 0 on R+ × Γ+,

∂th+ γw = 0 on R+ × Γ+,
u(0) = 0 in D+,
h(0) = 0 on Γ+.

(5.6)

The transformation y 7→ δ − y, w 7→ −w yields the following boundary value problem in the half-space
R3

+ 

∂tu−∆u+∇π = f1 in R+ × R3
+,

div u = fd in R+ × R3
+,

γ∂yv + γ∇xw = 0 on R+ × R2

2γ∂yw − γπ − σ∆xh = 0 on R+ × R2,
∂th− γw = 0 on R+ × R2,

u(0) = 0 in R3
+,

h(0) = 0 on R2.

(5.7)
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In order to formulate the main result of this section, we introduce the spaces 0F1(J,R3
+), 0Fd(J,R3

+,R2),
0Ej(J,R3

+) for j = 1, 2, 3, 0G+(J,R2), 0G−(J,R2) and 0H(J,R2) of zero time traces at the origin and
set

0F(J,R3
+) :=0 F1(J,R3

+)× 0Fd(J,R
3
+,R2)× 0G+(J,R2)× 0H(J,R2)× 0G−(J,R2)× {0} × {0}

as well as
0E(J,R3

+) := 0E1(J,R3
+)× E2(J,R3

+,Γ
+)× 0E3(J,Γ

+).

Then the following result holds true.

Proposition 5.2. Let 1 < p <∞ and p 6= 3/2, 3. Then, for every (f1, fd) ∈ F1(J,R3
+)×0Fd(J,R3

+,R2),
equation (5.7) has a unique solution (u, π, h) ∈ 0E(J,R3

+) satisfying

‖(u, π, h)‖E(J,R3
+) ≤ C (‖f1‖F1 + ‖fd‖Fd

) .

for some C > 0.

By classical results, for every (f1, fd) ∈ F1(J,R3
+) × 0Fd(J,R3

+,R2), there exists a unique solution
(ū, π̄) ∈ E1(J,R3

+)× E2(J,R3
+,R2) of the classical Stokes problem

∂tu−∆u+∇π = f1 in J × R3
+,

div u = fd in J × R3
+,

γ∂yv + γ∇xw = 0 on J × R2,
2γ∂yw − γπ = 0 on J × R2,

u|t=0 = 0 in R3
+.

Note here that γw ∈ 0H(J,R2). Considering u − ū and π − π̄, we see that (5.7) is uniquely solvable if
and only if

(5.8)



∂tu−∆u+∇π = 0 in J × R3
+,

div u = 0 in J × R3
+,

∂th+ γw = fh on J × R2,
γ∂yv + γ∇xw = 0 on J × R2,

2γ∂yw − γπ − σ∆xh = 0 on J × R2,
u(0) = 0 in R3

+,
h(0) = 0 on R2

has a unique solution. Therefore, Proposition 5.2 is a consequence of the following result.

Proposition 5.3. For every fh ∈ 0H(J,R2), equation (5.8) has a unique solution (u, π, h) ∈ 0E(J,R3
+).

We subdivide the proof in several steps.
(i) Symbols of the solution operators.
Applying Laplace transform in t and partial Fourier transform in x ∈ R2, we obtain the following system
of ordinary differential equations in y for the transformed functions û, p̂ and ĥ.

ω2û− ∂2
y û+ (iξ, ∂y)T π̂ = 0, y > 0,

iξ · v̂ + ∂yŵ = 0, y > 0,

λĥ+ γŵ = f̂h,(5.9)
γ∂y v̂ + iξγŵ = 0,

2γ∂yŵ − γπ̂ + σ|ξ|2ĥ = 0.

Here we have set ω := ω(|ξ|, λ) :=
√
λ+ |ξ|2. Multiplying the first equation with (iξ, ∂y) and combing

it with the second one yields (−|ξ|2 + ∂2
y)π̂ = 0 for y > 0. The only stable solution of this equation is

given by
π̂(ξ, y) = p̂1(ξ)e−|ξ|y, ξ ∈ R2, y > 0.
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To solve the above system we employ the ansatz

v̂(ξ, y) = −
∫ ∞

0

k−(ξ, y, s)iξπ̂(ξ, s)ds+ φ̂v(ξ)e−ωy, ξ ∈ R2, y > 0,(5.10)

ŵ(ξ, y) = −
∫ ∞

0

k+(ξ, y, s)∂yπ̂(ξ, s)ds+ φ̂w(ξ)e−ωy, ξ ∈ R2, y > 0,(5.11)

with
k±(ξ, y, s) :=

1
2ω

(
e−ω|y−s| ± e−ω(y+s)

)
.

Here the initial values p̂1(ξ) and φ̂(ξ) = (φ̂u(ξ), φ̂w(ξ))T still have to be determined. It then follows that

(5.12) γ∂yŵ = −ωφ̂w on R2 and iξ · γv̂ = iξ · φ̂v(ξ) on R2.

Formula (5.11) for ŵ implies

ŵ|y=0 = −
∫ ∞

0

k+(ξ, 0, s)∂yp̂(s)ds+ φ̂w =
|ξ|
ω
p̂1

∫ ∞

0

e−ωse−|ξ|sds+ φ̂w =
|ξ|

ω(ω + |ξ|)
p̂1 + φ̂w.(5.13)

In view of ∂yk−(ξ, 0, s) = e−ωs we see that

(5.14) γ∂y v̂|y=0 = −ωφ̂v −
iξ

ω + |ξ|
p̂1.

Inserting (5.12)–(5.14) into the last four equations of (5.9), we obtain

iξ · φ̂v − ωφ̂w = 0,(5.15)

λĥ+
|ξ|

ω(ω + |ξ|)
p̂1 + φ̂w = f̂h(5.16)

−ωφ̂v − iξ
ω − |ξ|

ω(ω + |ξ|)
p̂1 + iξφ̂w = 0(5.17)

−2ωφ̂w − p̂1 + σ|ξ|2ĥ = 0.(5.18)

Multiplying (5.17) by iξ from the left and inserting the product into (5.15), we obtain

(ω2 + |ξ|2)φ̂w =
|ξ|2(ω − |ξ|)
ω(ω + |ξ|)

p̂1.

Inserting this expression into (5.16) and (5.18) yields

λĥ+ c1(ξ, λ)p̂1 = f̂h,

σ|ξ|2ĥ− c2(ξ, λ)p̂1 = 0,

where c1 and c2 are defined as

c1(λ, ξ) :=
|ξ|

ω(ω + |ξ|)
+

|ξ|2(ω − |ξ|)
ω(ω + |ξ|)(ω2 + |ξ|2)

=
|ξ|

λ+ 2|ξ|2
,

c2(λ, ξ) :=
2|ξ|2(ω − |ξ|)

(ω + |ξ|)(ω2 + |ξ|2)
+ 1 =

ω3 + λ|ξ|+ 3ω|ξ|2

(ω + |ξ|)(λ+ 2|ξ|2)
.

Hence, we obtain the following representation formulas for ĥ, p̂1 and φ̂w

ĥ =
c2(λ, ξ)

λc2(λ, ξ) + σ|ξ|2c1(λ, ξ)
f̂h =

ω3 + λ|ξ|+ 3ω|ξ|2

λ(ω3 + λ|ξ|+ 3ω|ξ|2) + σ|ξ|3(ω + |ξ|)
f̂h =:

m1(λ, |ξ|)
m2(λ, |ξ|)

f̂h,(5.19)

p̂1 =
(ω + |ξ|)(ω2 + |ξ|2)σ|ξ|2

m1(λ, |ξ|)
ĥ,(5.20)

φ̂w =
|ξ|2(ω − |ξ|)σ|ξ|2

ωm1(λ, |ξ|)
ĥ.
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(ii) Maximal regularity for the related solution operators.
In the following, we show maximal regularity for the solution operators defined above. Our strategy
to do this relies on the joint H∞-calculus for the Laplacian and the time derivative, see e.g. [KW01],
[DHP03]. As the symbols m1(λ, |ξ|) and m2(λ, |ξ|) are not quasi-homogeneous with respect to λ and ξ,
we will apply the theory of the Newton polygon which, for the convenience of the reader, is summarized
in Appendix C.

First, we collect some basics on the weighted space F r
p,ρ(J,X), which will be used frequently in the

sequel. These spaces are defined for r ∈ N0 and ρ ≥ 0 by

Fr
p,ρ(J,X) :=

{
u ∈ D′(J,X) : Ψρ(

d

dt
)ku ∈ Lp(J,X) (0 ≤ k ≤ r)

}
equipped with its canonical norm ‖u‖Fr

p,ρ(J,X) defined by

‖u‖p
Fr

p,ρ(J,X) :=
r∑

k=0

‖Ψρ(
d

dt
)ku‖p

Lp(J,X).

Here the operator Ψρ is defined by multiplication with e−ρt, that is,

(5.21) Ψρu(t) := e−ρtu(t), t ∈ J.
For r ∈ R+ \ N the spaces Fr

p,ρ(J,X) are defined by complex or real interpolation, respectively. More
precisely, if F = H we set

(5.22) Fr
p,ρ(J,X) = Hr

p,ρ(J,X) :=
[
H [r]

p,ρ(J,X),H [r]+1
p,ρ (J,X)

]
r−[r]

and, if F = W , we set

(5.23) Fr
p,ρ(J,X) = W r

p,ρ(J,X) :=
(
H [r]

p,ρ(J,X),H [r]+1
p,ρ (J,X)

)
r−[r],p

,

where [r] := max{k ∈ N0 : k ≤ r}. Moreover, we set Lp,ρ(J,X) := H0
p,ρ(J,X). The assertions of the

following lemma may be verified easily.

Lemma 5.4. Let 1 < p <∞, r, ρ, ω ≥ 0, and X be a Banach space. Further, let T ∈ (0,∞), J = (0, T ),
and F ∈ {H,W}. Then the following holds:

(i) ‖ · ‖Lp,ρ(J,X) ≤ ‖ · ‖Lp,ω(J,X) ≤ e(ρ−ω)T ‖ · ‖Lp,ρ(J,X) (T > 0, 0 ≤ ω ≤ ρ).
(ii) Ψρ ∈ Isom(Fr

p,ρ((0, T0), X),Fr
p ((0, T0), X)) for each T0 ∈ (0,∞]. Furthermore, the norms

‖ · ‖W r
p,ρ((0,T0),X), ‖Ψρ · ‖W r

p ((0,T0),X), and ‖ · ‖
H

[r]
p,ρ((0,T0),X)

+ 〈〈Ψρ(d/dt)[r]u〉〉r−[r],p,X

are equivalent, where

〈〈g〉〉r−[r],p,X :=
∑
|α|=[r]

(∫
Ω

∫
Ω

‖∂αg(x)− ∂αg(y)‖p
X

|x− y|n+(r−[r])p
dxdy

)1/p

.

(iii) Fr
p,ρ(J,X) = Fr

p (J,X) for T <∞ with equivalent norms.
(iv) Fr

p,ω(R+, X) ↪→ Fr
p,ρ(R+, X) for 0 ≤ ω ≤ ρ.

(v) there exists an extension operator

E : Fr
p,ρ(J,X) → Fr

p,ω(R+, X).

(vi) The assertions (i) to (v) remain valid if F is replaced by 0F .
(vii) For reflexive X statements (i) to (v) remain valid for F−r

p,ω(R+, X) := (Fr
p′,ω(R+, X

′))′, r > 0.

In the following we often use the equivalence stated in (iii) without further notice. We further define
related operators on the space 0Fr

p,ρ(Ks
p) := 0Fr

p,ρ(R+,Ks
p(Rn)) for 1 < p <∞ and r, s ∈ R. Here

F ,K ∈ {H,W},
i.e., by Ks

p we mean either the space Hs
p or the space W s

p . We define

Gu := ∂tu, u ∈ D(G) := 0Fr+1
p,ρ (Ks

p)
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and
Dnu := (−∆)1/2u, u ∈ D(Dn) := 0Fr

p,ρ(Ks+1
p ).

We recall from [DHP01], [DHP03], [KW01] or [DSS08] that

G,Dn ∈ RH∞(0F r
p,ρ(Ks

p)), φR,∞
G = π/2, φR,∞

Dn
= 0,

i.e., G and Dn admit an R-bounded H∞-calculus on 0F
r
p,ρ(Ks

p) with RH∞-angle φR,∞
G = π/2 and

φR,∞
Dn

= 0, respectively.
The following lemma is crucial for the proof of Proposition 5.3. It establishes closedness and invert-

ibility of the operators that correspond to the symbols ω,m1,m2 on their natural domains.

Lemma 5.5. Let 1 < p < ∞ and r, s ≥ 0. There exists ρ0 ≥ 0 such that for all ρ ≥ ρ0 the following
assertions hold.

(i) ω(Dn, G) ∈ Isom
(
D(ω(Dn, G)), 0Fr

p,ρ(Ks
p)
)
, where

D(ω(Dn, G)) = 0Fr+1/2
p,ρ (Ks

p) ∩ 0Fr
p,ρ(Ks+1

p ),

(ii) m1(Dn, G) ∈ Isom
(
D(m1(Dn, G)), 0Fr

p,ρ(Ks
p)
)
), where

D(ω(Dn, G)) = 0Fr+3/2
p,ρ (Ks

p) ∩ 0Fr
p,ρ(Ks+3

p ),

(iii) m2(Dn, G) ∈ Isom
(
D(m2(Dn, G)), 0Fr

p,ρ(Ks
p)
)
), where

D(ω(Dn, G)) = 0Fr+5/2
p,ρ (Ks

p) ∩ 0Fr+1
p,ρ (Ks+3

p ) ∩ 0Fr
p,ρ(Ks+4

p ).

Proof. We intend to apply Corollary C.3. To this end, let ϕ0 ∈ (π/3, π/2), ϕ ∈ (0, π), and set

Σϕ,ϕ0 :=
(
Σϕ \ {0}

)
×
(
Σπ−ϕ0 \ {0}

)
.

Adopting the notation of Appendix C, we need to show that

(5.24) P j
R(z, λ) 6= 0 ((z, λ) ∈ Σϕ,ϕ0 , R > 0, j = 1, 2, 3) ,

where P j
R(z, λ) = limσ→∞ σ−dR(P j)P j(σRλ, σz) and where P 1 := ω, P 2 := m1, P 3 := m2, and dR(P j)

is defined as in (C.2).
(i) In this case I = {(0, 0, 1)}, i.e., N(P 1) = conv{(0, 0), (0, 1/2), (1, 0)}. This implies that

dR(P 1) =
{

1, 0 < R ≤ 2,
R/2, R > 2.

From this we easily calculate that

P 1
R(z, λ) =


z, 0 < R < 2,√

λ+ z2, R = 2,√
λ, R > 2.

It is also obvious that for ϕ ∈ (0, ϕ0/2) we deduce√
λ+ z2 6= 0 ((z, λ) ∈ Σϕ,ϕ0) .

Thus, condition (5.24) is satisfied for P 1. Corollary C.3 then implies (i).
(ii) Also here the related Newton polygon is still a triangle. We have I = {(2, 0, 1), (1, 1, 0), (0, 0, 3)},
i.e.,

N(P 2) = conv {(0, 0), (2, 1/2), (3, 0), (1, 1), (0, 3/2)} = conv {(0, 0), (0, 3/2), (3, 0)} ,
since (2, 1/2) and (1, 1) lie on the line connecting (0, 3/2) and (3, 0). This gives us

P 2
R(z, λ) =


z3, 0 < R < 2,

m1(z, λ), R = 2,
λ3/2, R > 2.
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Obviously condition (5.24) is fulfilled for P 2
R and R 6= 2. We denote the three summands of P 2

2 by P 2,k
2 ,

k = 1, 2, 3, and pick (z, λ) ∈ Σϕ,ϕ0 such that arg λ ≥ 0. Then,

−ϕ ≤ arg
√
λ+ z2 ≤ π − ϕ0

2
<
π

3
,

and hence

−3ϕ ≤ argP 2,k
2 (z, λ) ≤ 3(π − ϕ0)

2
< π (k = 1, 2, 3).

Choosing ϕ sufficiently small, say ϕ < 3ϕ0−π
6 , yields that

−3ϕ ≤ argP 2
2 (z, λ) ≤ 3(π − ϕ0)

2
< π

as well. This implies P 2
2 (z, λ) 6= 0 for all (z, λ) ∈ Σϕ,ϕ0 satisfying arg λ ≥ 0. If (z, λ) ∈ Σϕ,ϕ0 such that

arg λ ≤ 0, we obtain completely analogous that

3ϕ ≥ argP 2
2 (z, λ) ≥ −3(π − ϕ0)

2
> −π,

which yields P 2
2 (z, λ) 6= 0 also in this case. Thus, condition (5.24) is satisfied for P 2

R and Corollary C.3
yields (ii).

At this point we remark that ω and m1 are homogeneous symbols, i.e. the Newton polygon is a
triangle. Therefore the proof of assertions (i) and (ii) can also be based on a compactness argument.
This is no longer possible for m2, since there the related Newton polygon has four (real) vertices.
(iii) Similar geometric observations as above show that here

N(P 3) = conv {(0, 0), (0, 5/2), (3, 1), (4, 0)} ,
since (2, 1/2) and (1, 1) lie on the line connecting (0, 3/2) and (3, 0). This gives us

P 3
R(z, λ) =


2σz4, 0 < R < 1,

3λz3 + 2σz4, R = 1,
3λz3, 1 < R < 2,

λm2(z, λ), R = 2,
λ5/2, R > 2.

If ϕ is chosen as in (ii), we already know that

P 3
R(z, λ) 6= 0 ((z, λ) ∈ Σϕ,ϕ0)

for R = 2. Observe that all other cases are obvious except the case R = 1. For R = 1 again pick
(z, λ) ∈ Σϕ,ϕ0 such that arg λ ≥ 0. Then,

−4ϕ ≤ arg(3λz3 + 2σz4) ≤ π − ϕ0 + 3ϕ < π.

Consequently, choosing ϕ < min{(3ϕ0 − π)/6, ϕ0/7} we obtain P 3
1 (z, λ) 6= 0. Arguing in the same way

for (z, λ) ∈ Σϕ,ϕ0 satisfying arg λ ≤ 0 finally results in

P 3
1 (z, λ) 6= 0 ((z, λ) ∈ Σϕ,ϕ0) .

Thus, the assertion follows from Corollary C.3.
�

The mapping properties derived in Lemma 5.5 allow us to finish the proof of Proposition 5.3. For the
remaining proof we denote by 0Ej,ρ and 0Fj,ρ the weighted versions of the spaces of solutions and right
hand sides, respectively.

Proof of Proposition 5.3. Let ρ0 as in Lemma 5.5 and choose ρ > ρ0. Applying Lemma 5.5(iii) for
n = 2, we obtain

m2(Dn, G)−1fh ∈ 0W
7/2−1/2p
p,ρ (R+, Lp(Rn)) ∩ 0W

2−1/2p
p,ρ (R+,H

3
p (Rn)) ∩ 0W

1−1/p
p,ρ (R+,H

4
p (Rn))

∩ 0H
5/2
p,ρ (R+,W

2−1/p
p (Rn)) ∩ 0H

1
p,ρ(R+,W

5−1/p
p (Rn)) ∩ Lp,ρ(R+,W

6−1/p
p (Rn)).(5.25)
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Next, Lemma 4.3 of [DSS08] implies

0W
5/2
p,ρ (R+,W

2−1/p
p (Rn))∩Lp,ρ(R+,W

6−1/p
p (Rn)) ↪→ 0H

2
p,ρ(R+,W

2−1/p
p (Rn))∩0H

3/2
p,ρ (R+,W

3−1/p
p (Rn)).

By virtue of Lemma 5.5(ii) these two embeddings yield

m1(Dn, G)m2(Dn, G)−1fh ∈ 0E3,ρ(R+,R2).

By representation (5.19) we see that h ∈ 0E3,ρ(R+,R2). Next, by virtue of (5.19) and (5.20) we obtain

p1 = σ (ω(Dn, G) +Dn)
(
ω(Dn, G)2 +D2

n

)
D2

nm1(Dn, G)−1g1.

Analogously, from (5.25) and by the fact that (see again [DSS08, Lemma 4.3])

0H
1
p,ρ(R+,W

2−1/p
p (Rn))∩Lp,ρ(R+,W

3−1/p
p (Rn)) ↪→ 0W

1−1/2p
p,ρ (R+,H

2
p (Rn))∩0W

1/2−1/2p
p,ρ (R+,H

2(Rn))

it follows that
p1 ∈ G+

ρ (R+,R2).

Given fh, ∂th ∈ 0Hρ(R+,R2), let (u, p) ∈ 0E1,ρ(R+,R3
+)× 0E2,ρ(R+,R3

+,R2) the solution of the Stokes
equations with Neumann boundary conditions

(5.26)


∂tu−∆u+∇p = 0 in R+ × R3

+,
∇ · u = 0 in R+ × R3

+,
γw = fh − ∂th on R+ × R2,

γ0∂yv + γ∇w̄ = 0 on R+ × R2,
u(0) = 0 in R3

+.

For a finite time interval J = (0, T ) and fh ∈ 0Hρ(J,R2) we know in view of Lemma 5.4(v) and (vi) that
there exists an extension f̃h ∈ 0Hρ(R+,R2). Let (u, π, h) denote the restriction of the solution (ũ, π̃, h̃)
to f̃h to the interval J . Then, we obviously have (u, π, h) ∈ 0Eρ(J,R3

+) and (u, π, h) solves (5.8) on J .
Moreover, (u, π, h) depends continuously on fh, since the extension operator given in Lemma 5.4(v) is
continuous. This proves the result for ρ > ρ0. On the other hand, by Lemma 5.4 (iii),(vi) the norms
on the weighted spaces 0Ej,ρ(J,D), j = 1, 2, 3, and 0Fj,ρ(J,D), j = 1, . . . , 5, are equivalent for different
weights e−pρt, ρ ≥ 0. Thus, the assertion of Proposition 5.3 is true for all ρ ≥ 0, hence in particular for
ρ = 0.

Finally, the uniqueness assertion can be proved by similar arguments as in the proof of Theorem 4.1.
�

6. The nonlinear problem

In this section we construct a unique, strong solution to the spin-coating system described in (3.1) by
an application of the contraction mapping principle. To this end, we rewrite this system as

(6.1) LΦ = ((N(Φ) + f), 0, u0, h0)

where Φ = (u, π, h), f = (f1, 0, 0, 0, 0) with f1 ∈ F1(J,D) and L is the linear operator representing the
left hand side of (3.1). The nonlinear operator N is given by

N(Φ) = (F1(Φ), Fd(u, h), G+(Φ),H(u, h), G−(u, h)),

where the functions F1, Fd, G
+,H and G− are defined as in (3.1).

Applying L−1 to equation (6.1) with initial data satisfying suitable compability conditions (described
precisely in (6.4)), our problem (6.1) is transformed into a fixed point problem in a suitable subspace
of E(J,D). In order to solve this latter equation by the contraction mapping principle, we first derive
suitable estimates for the nonlinearity N . For doing this, the following embedding properties will be
helpful.

Lemma 6.1. Let p > 5 and J = (0, T ) for some T > 0. Then the following assertions hold.

(i) E1(J,D) ↪→ H
1/2
p (J,H1

p (D)).

(ii) E1(J,D) ↪→ BUC(J,W 2−2/p
p (D)) ↪→ BUC(J,BUC1(D)).
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(iii) E3(J,Γ+) ↪→ BUC(J,W 3−2/p
p (R2)) ↪→ BUC(J,BUC2(R2)).

(iv) H(J,Γ+) ↪→ BUC(J,W 2−3/p
p (R2)).

(v) G+(J,Γ+) ↪→ BUC(J,W 1−3/p
p (R2)) ↪→ BUC(J × R2).

(vi) The space G := W
1/2−1/2p
p (J, Lp(R2)) ∩ Lp(J,W

1−1/p
p (R2)) is an algebra with respect to the

scalar multiplication of functions. In particular,∥∥∥∥ g

1 + h

∥∥∥∥
G
≤ C (‖g‖G + ‖h‖G)

for any g ∈ G and any h ∈ G satisfying ‖h‖L∞(J×R2) ≤ 1/2.
(vii) The assertions of (v) also hold for the space H(J,Γ+).
(viii) The space H1/2

p (J, Lp(D)) ∩ Lp(J,H1
p (D)) is an algebra with respect to the multiplication of

scalar functions.

Proof. The first assertion follows by the mixed derivative theorem (see e.g. [DHP07, Prop.3.2]), whereas
embedding (ii) follows from [Ama95, Theorem III.4.10.2] and Sobolev’s embedding due to our assump-
tion p > 5. The assertions (iii) and (iv) and the first embedding in (v) follow from a general trace
results, see e.g. [DSS08, Lemma 4.4]. The second embedding in (v) is then a consequence of the
Sobolev embedding and our assumption p > 5. Relation (vi) is proved in [PSS07, Lemma 6.6]. Us-
ing the fact that H(J,Γ+) ↪→ G ↪→ BUC(J × R2), we may copy the proof of (vi) given in [PSS07,
Lemma 6.6] verbatim to obtain (vii). Since H1/2

p (J, Lp(D)) ∩ Lp(J,H1
p (D)) embedds continuously into

W
1/2−ε
p (J, Lp(D)) ∩ Lp(J,W 1−ε

p (D)) for small enough ε > 0, assertion (viii) follows by the same argu-
ment as described in (vii). �

Next, we establish the desired mapping properties of the nonlinearity. To this end, set

FN (J,D) := F1(J,D)× Fd(J,D,Γ+)×G+(J,Γ+)×H(J,Γ+)×G−(J,Γ−).

Lemma 6.2. Let T > 0, J = (0, T ), p > 5 and B%(J,D) := {Φ ∈ E(J,D) : γw = 0 on J ×
Γ−, ‖Φ‖E(J,D) ≤ %}. Then there exists r > 0 such that

N(Br(J,D)) ↪→ FN (J,D).

Moreover, N ∈ C1(Br(J,D),FN (J,D)) and

N(0) = 0, DN(0) = 0,

where DN : Br(J,D) → L (E(J,D),FN (J,D)) denotes the Fréchet derivative of N .

Proof. Observe first that by Lemma 6.1(iii) and by Sobolev’s embedding we obtain ‖h‖∞ ≤ C‖h‖E3 ≤
Cr. Choosing r > 0 such that Cr ≤ δ/2 yields

(6.2) ‖h+ δ‖∞ ≥ |δ − ‖h‖∞| ≥ δ/2.

In a first step we show that F1(Br(J,D)) ↪→ F1(J,D). To this end, by (6.2) and Lemma 6.1(ii), the first
term of F1 can be estimated as

‖ y

h+ δ
(∂yu)∂th‖Lp(J,Lp(D)) ≤ C‖u‖L∞(J,W 1

∞(Rn))‖h‖E3 ≤ C‖Φ‖2E.

Similarly, by writing δ2

(δ+h)2 − 1 = −h2+2δh
(δ+h)2 , we obtain for the second term of F1

‖( δ2

(δ + h)2
− 1)∂2

yu‖Lp(J,Lp(D)) ≤ C‖u‖E1

(
‖h‖2∞ + ‖h‖∞

)
≤ C‖Φ‖2E,

where we assumed that r ≤ 1. All the other terms of F1 may be estimated in a similar way, which
proves that F1(Br(J,D)) ↪→ F1(J,D).

In order to show that H(Br(J,D)) ↪→ H(J,Γ+) note that

‖v · ∇xh‖H ≤ C‖∇xh‖H‖v‖H ≤ C‖h‖E3‖u‖E1 ≤ C‖Φ‖2E
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follows by the fact that H(J,Γ+) is an algebra thanks to Lemma 6.1(vii).
Next, we consider the embedding G+(Br(J,D)) ↪→ G+(J,Γ+). Writing the first term of G+ as

(1− δ

δ + h
)∂y(v, 2w)T =

h

δ + h
∂y(v, 2w)T

we obtain by Lemma 6.1(vi)

‖(1− δ

δ + h
)∂y(v, 2w)T ‖G+ ≤ C‖ h

1 + h/δ
‖G+‖∂yu‖G+ ≤ C‖h‖G‖∂yu‖G+ ≤ C‖Φ‖2E.

In order to estimate the terms of G+ involving the square root
√

1 + |∇xh|2, we employ the Taylor
expansion

√
1 + s = 1 + g(s) with g(s) =

∑∞
k=1

(
1/2
k

)
sk. The above series converges absolutely for

|s| < 1. Hence,

‖g(|∇xh|2)‖G+ ≤
∞∑

k=1

‖∇xh‖2k
G+

≤
‖∇xh‖2G+

1− r2
,

‖g(|∇xh|2)‖∞ ≤ ‖g(|∇xh|2)‖G+ ≤ C
r2

1− r2
≤ 1

2
,

provided r is small enough. Writing 1√
1+|∇xh|2

− 1 = 1
1+g − 1 = −g

1+g , we obtain for the second term of

G+ that
‖σ g

1 + g
∆xhνD‖G+ ≤ C‖ g

1 + g
‖G+‖∆xh‖G+ ≤ C‖g‖G+‖h‖E3 ≤ C‖Φ‖3E.

Analogously, we estimate the third term as∥∥∥∥∥∥σ
2∑

j,k=1

∂jh∂kh

(1 + |∇xh|2)3/2
∂j∂khνD

∥∥∥∥∥∥
G+

≤ C

2∑
j,k=1

∥∥∥∥∥ ∂jh√
1 + |∇xh|2

∥∥∥∥∥
G+

∥∥∥∥ ∂kh

1 + |∇xh|2

∥∥∥∥
G+

‖∂j∂kh‖G+

≤ C

2∑
j,k=1

(
‖∂jh‖G+ + ‖g‖G+

) (
‖∂kh‖G+ + ‖∇xh‖2G+

)
‖h‖E3

≤ C‖Φ‖3E.

The remaining terms of G+ may be estimated in a similar way, where for the last term we use the fact
that π ∈ E2(J,D,Γ+) implies that π|Γ+ ∈ G+(J,D).

Recalling that ‖h‖G− ≤ ‖h‖E3 ≤ r ≤ δ/2 we may write

(h+ δ)α−1 − δα−1 = δα−1
∞∑

k=1

(
α− 1
k

)(
h

δ

)k

.

This yields

‖c[(h+ δ)α−1 − δα−1]∂yu‖G− ≤ C

∞∑
k=1

‖h
δ
‖k

G−‖∂yu‖G− ≤ C‖h‖G−‖u‖E1 ≤ C‖Φ‖2E.

In the following step, we consider the corresponding embedding relations for the function Fd, i.e.
Fd(Br(J,D)) ↪→ Fd(J,D,Γ+).

Consider first the space H1(J, 0H−1
p (D)). In view of 0H

1
p′

d
↪→ Lp′ we have Lp ↪→ 0H

−1
p . This implies

Fd(u, h) ∈ Lp(J, Lp) ↪→ Lp(J, 0H−1
p (D)),

by using the fact that 1− δ/(δ + h) as well y
h+δ∇xh belong to L∞(J × R2). In order to treat the time

derivative of the first term of Fd, we write

(6.3) ∂t

(
1− δ

δ + h

)
∂yw =

∂th

δ + h
∂yw +

h

δ + h
∂y∂tw − h∂yw

∂th

(δ + h)2
.
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By similar arguments as above we see that the first and the third term of the right hand side of (6.3)
belong to Lp(J, Lp), and hence to Lp(J, 0H−1

p ). For the second term on the right hand side of (6.3),
pick ϕ ∈ 0H

1
p′ . Integration by parts in y yields∫

D

(
h

δ + h
∂y∂tw

)
ϕdx = −

∫
D

h

δ + h
∂tw∂yϕdx,

where we used the fact that w|y=0 = 0. This yields

‖ h(t)
δ + h(t)

∂y∂tw(t)‖
0H−1

p (D) = sup
‖ϕ‖0H1

p′ (D)=1

∣∣∣∣∫
D

h(t)
δ + h(t)

∂tw(t)∂yϕdx
∣∣∣∣ ≤ C

∥∥∥∥ h(t)
δ + h(t)

∥∥∥∥
∞
‖∂tu(t)‖Lp

,

and hence ‖ h
δ+h∂y∂tw‖Lp(J,0H−1

p ) ≤ C‖Φ‖2E. The H1
p (J, 0H−1

p )-norm of the second term of Fd can be
estimated similarly. In fact, the first and the second term of the time derivative

∂t

(
y

h+ δ
∂yv · ∇xh

)
=

y

h+ δ
∂yv · ∇x∂th−

y

(h+ δ)2
∂th∂yv · ∇xh+

y

h+ δ
(∂y∂tv) · ∇xh

belong to Lp(J, Lp) and hence to Lp(J, 0H−1
p ). For the third term we again employ integration by parts,

which yields ∫
D

y

h+ δ
(∂y∂tv) · ∇xhϕdx = −

∫
D

∂tv

h+ δ
· ∇xh(ϕ+ y∂yϕ)dx.

The fact that ∂tv ∈ Lp(J, Lp), ∇xh/(h+ δ) ∈ L∞(J × Rn), and ϕ+ y∂yϕ ∈ Lp′(J, Lp′) then results in

‖ y

h+ δ
(∂y∂tv) · ∇xh‖Lp(J,0H−1

p ) ≤ C‖Φ‖2E.

Summarizing, we obtain
‖Fd(Φ)‖Lp(J,0H−1

p ) ≤ C‖Φ‖2E.

In order to obtain the same estimate for the E = H
1/2
p (J, Lp(D)) ∩ Lp(J,H1

p (D)-norm, note that by
Lemma 6.1(viii) also this space is an algebra. Furthermore, since h/(δ + h) does not depend on y, we
deduce for this term that ∥∥∥∥ h

δ + h

∥∥∥∥
E

≤ C

∥∥∥∥ h/δ

1 + h/δ

∥∥∥∥
H
≤ C‖h‖E3 ≤ C‖Φ‖E

in virtue of Lemma 6.1(vii). This implies for the first term of Fd

‖(1− δ

h+ δ
)∂yw‖E ≤ C

∥∥∥∥ h

δ + h

∥∥∥∥
E

‖∂yu‖E ≤ C‖Φ‖2E,

by Lemma 6.1(viii). Similarly ‖y∇xh/h‖E ≤ C‖Φ‖E and thus also the second term of Fd belongs to E.
Summarizing, we arrive at

Fd(Br(J,D)) ↪→ Fd(J,D,Γ+).
Finally, the additional assertions for N follow immediately from the structure of N . In particular,
DN(0) = 0 follows from the fact that N contains only nonlinear terms of second or higher order. The
proof is complete. �

The above Lemma 6.2 allows us to to prove the following existence and uniqueness result for the system
(3.1). For t > 0 and (x, y) ∈ D, we set

f1(t, (x, y)) := χR ω × (ω × (x, y)).

Moreover, for (u0, h0) ∈ I set

π0 := −G+
w(u0, h0)− σ∆h0 + 2∂yw0

and define the compability conditions for the initial data (u0, h0) as

(6.4) ∂yv0 +∇xw0 = G+
v (u0, π0, h0), v0 = cδ(h0 + δ)α−1∂yv0, w0 = 0, div u0 = Fd(u0, h0),

where G+
v and G+

w denote the two first and the last compenent of G+, respectively.
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Theorem 6.3. Let p > 5 and for T ∈ (0,∞) set J = (0, T ). Then there exists an ε > 0 such that for
each (f1, u0, h0) ∈ F1(J,D)× I1 × I2 satisfying the compability conditions (6.4) as well as the smallness
condition

‖(f1, u0, h0)‖F1×I1×I2 < ε,

there exists a unique solution (u, π, h) ∈ E(J,D) of system (3.1).

Proof. For (u0, h0) ∈ I satisfying (6.4) with π0 defined as above, we define

X(J,D) := {Φ ∈ E(J,D) : Φ = (u, π, h), u(0) = u0, π(0) = π0, h(0) = h0, γw = 0 on J × Γ−}.
Then L is a continous mapping from X(J,D) into the space Fcomp(J,D) consisting of all (f, 0, u0, h0) ∈
FN (J,D) × {0} × I1(D) × I2(Γ+) satisfying the four compability conditions of Theorem 4.1. By The-
orem 4.1, the operator L : X(J,D) → Fcomp(J,D) is invertible and thus, applying L−1 to (6.1) yields
the fixed point problem

Φ = L−1(N(Φ) + f, 0, u0, h0) =: K(Φ)
in the space Xr(J,D) defined by Xr(J,D) := {Φ ∈ X(J,D) : ||Φ||E(J,D) ≤ r} for some r > 0 defined
in Lemma 6.2. Note that due to (6.4), (N(Φ) + f, 0, u0, h0) ∈ Fcomp(J,D) for Φ ∈ X(J,D). Setting
‖L−1‖ := ‖L−1‖L (Fcomp(J,D),X(J,D)), we now choose r > 0 small enough such that

sup
v∈Br(J,D)

‖DN [v]‖L (E,FN ) ≤
1

2‖L−1‖
,

which is possible since DN ∈ C(Br(J,D),L (E(J,D),FN (J,D))) and DN(0) = 0. Proposition 6.2 and
the mean value theorem then imply

‖K(Φ)‖E ≤ ‖L−1‖
(
‖(N(Φ)−N(0)‖FN

+ ‖(f1, u0, h0)‖F1×I

)
≤ ‖L−1‖

(
sup

v∈Br(J,D)

‖DN [v]‖L (E,FN )‖Φ‖E + ‖(f1, u0, h0)‖F1×I

)
≤ r

2
+ ‖L−1‖ε, Φ ∈ Xr.

By choosing ε ≤ r/2‖L−1‖, we conclude that K(Xr) ⊂ Xr. To see that K is contractive, observe that

‖K(Φ1)−K(Φ2)‖E ≤ ‖L−1‖‖N(Φ1)−N(Φ2)‖F

≤ ‖L−1‖ sup
Ψ∈Br(J,D)

‖DN [Ψ]‖L (E,FN )‖Φ1 − Φ2‖E

≤ 1
2
‖Φ1 − Φ2‖E, Φ1,Φ2 ∈ Xr.

Consequently, K is a contraction on Xr and the assertion follows by the contraction mapping principle.
�

Remark 6.4. Note that our assumptions ensures that f1 is small either by choosing T or ω sufficiently
small.

Proof of Theorem 2.1. First, it is clear that the above regularity and mapping properties proved above
for the case ρ = µ = 1 carry over to the general case ρ, µ > 0. We notice then that the compability
conditions of Theorem 2.1 are satisfied if and only if (6.4) is satisfied. The mapping Θh0 defined by
Θh0(x, y) := (x, y(h0(x) + δ)/δ) defines for h0 ∈ I2 a C2-diffeomorphism from D onto Ω(0) with inverse
Θ−1

h0
= (x, yδ/(h0 + δ)). Thus, there exists a constant C(h0) such that

C(h0)−1||u0||W 2−2/p
p (Ω(0))

≤ ||u0|||W 2−2/p
p (D)

≤ C(h0)||u0||W 2−2/p
p (Ω(0))

.

Hence, the smallness condition in Theorem 2.1 implies the smallness condition in Theorem 6.3. This
theorem then yields a unique solution (u, π, h) ∈ E(J,D). Finally, applying Θ−1

h0
to (u, π, h), the assertion

follows and the proof is complete.
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�

Appendix A. The Laplace-equation and the heat-equation in negative Sobolev spaces

In this first section of the appendix we present regularity estimates for the Laplace and the heat equation
in Sobolev spaces of negative order. They will be useful in the treatment of the reduced Stokes equation
in Appendix B. Many of the results given below are well-known in the elliptic case. For the parabolic
case, this is less true. Hence, for the convenience of the reader, we give a sketch of the corresponding
proofs.

Proposition A.1. Let Ω = R3
+, D

+, or D−.

(a) For f ∈ Ĥ−1
p (Ω) there exists a unique solution u ∈ Ĥ1

p,0(Ω) of

−∆u = f in Ω,
u = 0 on ∂Ω,(A.1)

i.e. 〈∇u,∇ϕ〉Ω = 〈f, ϕ〉Ω, ϕ ∈ Ĥ1
p′,0(Ω). Moreover, there exists C > 0, independent of f , such

that

‖u‖ bH1
p(Ω) ≤ C‖f‖ bH−1

p (Ω).

(b) For f ∈ Ĥ−1
p,0(Ω) := (Ĥ1

p′(Ω))′ there exists a unique solution u ∈ Ĥ1
p (Ω) of

−∆u = f in Ω,
∂νu = 0 on ∂Ω,(A.2)

i.e. 〈∇u,∇ϕ〉Ω = 〈f, ϕ〉Ω, ϕ ∈ Ĥ1
p′(Ω). Moreover, there exists C > 0, independent of f , such

that

‖u‖ bH1
p(Ω) ≤ C‖f‖ bH−1

p,0(Ω).

(c) For f ∈ Lp(Ω)3 there exists a unique solution u ∈ Ĥ1
p (Ω) of

−∆u = div f in Ω,
∂νu = f · ν on ∂Ω,(A.3)

i.e. 〈∇u,∇ϕ〉Ω = 〈f,∇ϕ〉Ω, ϕ ∈ Ĥ1
p′(Ω). Moreover, there exists C > 0, independent of f , such

that

‖u‖ bH1
p(Ω) ≤ C‖f‖Lp(Ω)3 .

Proof. Without loss of generality we may assume Ω = R3
+. By the theory of singular integrals, it is easy

to see that for f̃ ∈ Ĥ−1
p (R3) there exists a solution ũ ∈ Ĥ1

p (R3) of

−∆ũ = f̃ in R3.

Since C∞c,0(Ω) = {g ∈ C∞c (Ω) :
∫
Ω
g = 0} is dense in Ĥ−1

p (Ω) and Ĥ−1
p,0(Ω), it suffices to consider

f ∈ C∞c,0(Ω). In that case, the existence of a solution of (A.1) or (A.2) follows by extending f odd to R3

or even to R3, respectively. The uniqueness follows from a standard argument for harmonic functions.
Finally, (c) follows easily from (b) since 〈f,∇ϕ〉Ω ≤ ‖f‖Lp(Ω)3‖ϕ‖ bH1

p′ (Ω).

�

The crucial part in the proof of the proposition above is that the odd extension to R3 of some f ∈
Ĥ−1

p (R3
+) is always contained in Ĥ−1

p (R3). Note, however, that the even extension of some f ∈ Ĥ−1
p (R3

+)
is not contained in Ĥ−1

p (R3), in general, whereas the even extension of some f ∈ Ĥ−1
p,0(R3

+) is contained
in Ĥ−1

p (R3). By the equation 〈∇u,∇ϕ〉Ω = 〈f, ϕ〉Ω, ϕ ∈ Ĥ1
p′(Ω), we also see that f ∈ Ĥ−1

p,0(R3
+) is a

necessary condition in the latter case.
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Some remarks about the trace in (A.3) are in order. Multiplying (A.3) by ϕ ∈ Ĥ1
p′(Ω) and integrating

by parts, we end up with

〈∇u,∇ϕ〉Ω − 〈f,∇ϕ〉Ω = 〈∂νu− f · ν, ϕ〉∂Ω.

If u is a solution of (A.3), we thus have

〈∂νu− f · ν, ϕ〉∂Ω = 0, ϕ ∈ Ĥ1
p′(Ω).

Hence the trace in (A.3) is well-defined. However, note that this procedure does neither allow to define
∂νu nor f · ν but ∂νu− f · ν only.

In the following Lp,ρ, H1
0,ρ, etc., denote the weighted Sobolev spaces as introduced in Section 5.

Proposition A.2. Let ρ > 0 and Ω = R3
+, D

+, or D−.

(a) For f ∈ Lp,ρ(R+, Ĥ
−1
p (Ω)) there exists a unique solution u ∈ Lp,ρ(R+,H

1
p,0(Ω))∩H1

p,ρ(R+, Ĥ
−1
p (Ω))

of

∂tu−∆u = f in R+ × Ω,
u = 0 on R+ × ∂Ω,

u(0) = 0 in Ω,
(A.4)

i.e. 〈∂tu(t), ϕ〉Ω + 〈∇u(t),∇ϕ〉Ω = 〈f(t), ϕ〉Ω, t > 0, ϕ ∈ Ĥ1
p′,0(Ω).

(b) For f ∈ Lp,ρ(R+, Ĥ
−1
p,0(Ω)) there exists a unique solution u ∈ Lp,ρ(R+,H

1
p (Ω))∩H1

p,ρ(R+, Ĥ
−1
p,0(Ω))

of

∂tu−∆u = f in R+ × Ω,
∂νu = 0 on R+ × ∂Ω,
u(0) = 0 in Ω,

(A.5)

i.e. 〈∂tu(t), ϕ〉Ω + 〈∇u(t),∇ϕ〉Ω = 〈f(t), ϕ〉Ω, t > 0, ϕ ∈ Ĥ1
p′(Ω).

(c) For f ∈ Lp,ρ(R+, Lp(Ω)3) there exists a unique solution u ∈ Lp,ρ(R+,H
1
p (Ω))∩H1

p,ρ(R+, Ĥ
−1
p,0(Ω))

of

∂tu−∆u = div f in R+ × Ω,
∂νu = f · ν on R+ × ∂Ω,
u(0) = 0 in Ω,

(A.6)

i.e. 〈∂tu(t), ϕ〉Ω + 〈∇u(t),∇ϕ〉Ω = 〈f(t), ϕ〉Ω, t > 0, ϕ ∈ Ĥ1
p′(Ω).

Proof. Again, it suffices to consider the case where Ω = R3
+. We start with the problem

∂tũ−∆ũ = f̃ in R+ × R3,
ũ(0) = 0 in R3,

(A.7)

where f̃ ∈ C∞c (R+, C
∞
c,0(Ω)). By the joint H∞-calculus of ∂t and ∆, it follows that ũ := (∂t −∆)−1f̃

satisfies ‖ũ‖Lp,ρ(R+,Lp(R3)) ≤ C‖f̃‖Lp,ρ(R+, bH−1
p (R3)) and

‖ũ‖Lp,ρ(R+, bH1
p(R3)) ≤ C‖(−∆)

1
2 (∂t −∆)−1f̃‖Lp,ρ(R+,Lp(R3))

= C‖(−∆)
1
2 (∂t −∆)−1(−∆)

1
2 (−∆)−

1
2 f̃‖Lp,ρ(R+,Lp(R3))

≤ C‖(−∆)−
1
2 f̃‖Lp,ρ(R+,Lp(R3)) ≤ C‖f̃‖Lp,ρ(R+, bH−1

p (R3)).

Now, integration by parts yields

〈∂tũ(t), ϕ〉R3 = 〈f̃(t), ϕ〉R3 − 〈∇ũ(t),∇ϕ〉R3 , ϕ ∈ Ĥ1
p′(R3), t > 0.

Hence, ∂tũ ∈ Lp,ρ(R+, Ĥ
−1
p (R3)). Therefore, extending f in the same way as in the previous proposition

to R3, the assertion of the proposition follows.
�

Proposition A.3. Let ρ > 0 and Ω = R3,R3
+, D

+ or D−. Then the following embeddings hold true.
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(a) Lp,ρ(R+,H
1
p,0(Ω)) ∩H1

p,ρ(R+, Ĥ
−1
p (Ω)) ↪→ H

1
2
p,ρ(R+, Lp(Ω)).

(b) Lp,ρ(R+,H
1
p (Ω)) ∩H1

p,ρ(R+, Ĥ
−1
p,0(Ω)) ↪→ H

1
2
p,ρ(R+, Lp(Ω)).

Proof. We start with the case R3. By the joint H∞-calculus of ∂t and ∆, we obtain

‖∂
1
2
t ũ‖Lp,ρ(R+,Lp(R3)) = ‖∂

1
2
t (−∆)

1
2 (∂t −∆)−1(∂t −∆)(−∆)−

1
2 ũ‖Lp,ρ(R+,Lp(R3))

≤ C
(
‖∂t(−∆)−

1
2 ũ‖Lp,ρ(R+,Lp(R3)) + ‖(−∆)

1
2 ũ‖Lp,ρ(R+,Lp(R3))

)
≤ C‖ũ‖Lp,ρ(R+,H1

p(R3))∩H1
p,ρ(R+, bH−1

p (R3)).

Now, the proposition follows by extending u to R3 in the same way as before. �

Proposition A.4. Let Ω = R3
+, D+ or D−.

(a) For g ∈W 1− 1
p

p (∂Ω) there exists a unique solution u ∈ Ĥ1
p (Ω) of

−∆u = 0 in Ω,
u = g on ∂Ω.(A.8)

(b) Let ρ > 0. For g ∈W
1
2−

1
2p

p,ρ (R+, Lp(R2))∩Lp,ρ(R+,W
1− 1

p
p (R2)) satisfying the compatibility con-

dition g|t=0 = 0 if p > 3 there exists a unique solution u ∈ Lp,ρ(R+,H
1
p (Ω))∩H1

p,ρ(R+, Ĥ
−1
p (Ω))∩

H
1
2
p,ρ(R+, Lp(Ω)) of

∂tu−∆u = 0 in R+ × Ω,
u = g on R+ × ∂Ω,

u(0) = 0 in Ω.
(A.9)

Proof. Again, we consider the case R3
+ only. (a) The solution of (A.8) is given by u = e−

√
−∆R2 ·g.

Hence, it follows from interpolation theory for analytic semigroups that

‖u‖ bH1
p(R3

+) ≤ C‖
√
−∆R2u‖Lp(R3

+) ≤ C‖g‖
(D(
√
−∆R2 ),Lp(R2))1− 1

p
,p

≤ C‖g‖
W

1− 1
p

p (R2)
.

(b) The joint H∞-calculus of ∂t and ∆R2 yields that√
∂t −∆R2 : D(

√
∂t −∆R2) → Lp,ρ(R2

+,Lp(R2)),

D(
√
∂t −∆R2) :=0 H

1
2
p,ρ(R+, Lp(R2)) ∩ Lp,ρ(R+,H

1
p (R2))

generates an analytic semigroup on Lp,ρ(R+, Lp(R2)). Since the solution of (A.9) is given by u =

e−
√

∂t−∆R2 ·g, it follows in a similar way as above that

‖u‖
H

1
2

p,ρ(R+,Lp(R3
+))∩Lp,ρ(R+,H1

p(R3
+))

≤ C‖
√
∂t −∆R2u‖Lp(R3

+) ≤ C‖g‖
(D(
√

∂t−∆R2 ),Lp(R2)1− 1
p

,p

≤ C‖g‖
W

1
2−

1
2p

p,ρ (R+,Lp(R2))∩Lp,ρ(R+,W
1− 1

p
p (R2))

.

Now, integrating by parts equation (A.9), we obtain u ∈ H1
p,ρ(R+, Ĥ

−1
p (R3)).

�

Proposition A.5. For g ∈W 1− 1
p

p (Γ+), f1 ∈ 0
H−1

p (D) and f2 ∈ Lp(D)3 there exists a unique solution
u ∈ H1

p (D) of

−∆u = f1 + div f2 in D,
γu = g on Γ+.

γ∂yu = γνf2 on Γ−.
(A.10)

For a proof we refer to [Abe06].



THE SPIN-COATING PROCESS 29

Proposition A.6. Let 1 < p < ∞, p 6= 3/2, 3, f ∈ Lp(J,0H−1
p (D)) and g ∈ G+(J,Γ+) satisfy the

compatibility condition g|t=0 = 0 if p > 3. Then there exists a unique solution w ∈ Fd(J,D,Γ+) of the
initial and boundary value problem

(A.11)

(∂t −∆)w = f in J ×D,

γw = g on J × Γ+,

γ∂yw = 0 on J × Γ−,

w|t=0 = 0 in D,

i.e. 〈∂tw(t), ϕ〉D + 〈∇w(t),∇ϕ〉D = −〈f,∇ϕ〉D, t > 0, ϕ ∈ 0
H1

p (D) and γw = g on Γ+.

Proof. Let ρ > 0, f ∈ C∞c (R+, C
∞
c,0(D)) and g ∈ G+(J,Γ+). Without loss of generality let δ = 1. We

define f̃ by

f̃(x, y) :=

 f(x, y), 0 < y < 1, x ∈ R2,
−f(x, 2− y), 1 < y < 2, x ∈ R2,

0, 2 < y, x ∈ R2.
.

Then, f̃ ∈ Lp,ρ(R+,H
−1
p,0(R3

+)) and by Proposition A.2 there exists a unique solution ũ ∈ Lp,ρ(R+,H
1
p (Ω))∩

H1
p,ρ(R+, Ĥ

−1
p,0(Ω)) of (A.5), where the right-hand side f is replaced by f̃ . Thus a solution u of (A.11)

is given by u = w + ũ, where w solves

(A.12)

∂tw −∆w = 0 in R+ ×D,

γw = g − γũ on R+ × Γ+,

γ∂yw = 0 on R+ × Γ−,

w|t=0 = 0 in R3
+.

In the following, we construct a solution w to (A.12) by semigroup theory. More precisely,

A :=
√
∂t −∆R2 ,

D(A) :=
0
H

1
2
p,ρ(R+, Lp(R2)) ∩ Lp,ρ(R+,H

1
p (R2)),

is the generator of an analytic semigroup (e−Ay)y≥0 on X := Lp,ρ(R+, Lp(R2)), see the proof of
Proposition A.3(b). Since the growth bound ω(e−Ay) of (e−Ay)y≥0 is strictly negative, we may de-
fine g̃ = (1 + e−2A)−1(g − γũ). Then, w defined by

w(t, x, y) :=
(
(e−Ay + e−A(2−y))g̃

)
(t, x)

is a solution to (A.12). Hence, it follows by interpolation that

w ∈ Lp,ρ(R+,H
1
p (D)) ∩H

1
2
p,ρ(R+, Lp(D)) = Lp,ρ(R+, D(A)) ∩H1

p,ρ(R+, Lp(D))

if and only if g̃ ∈ (X,D(A))1− 1
p ,p. Since (1 + e−2A)−1 is an isomorphism from (X,D(A))1− 1

p ,p onto
itself, we obtain

g̃ ∈ (X,D(A))1− 1
p ,p ⇐⇒ g ∈ (X,D(A))1− 1

p ,p = Lp(J,W 1−1/p
p (Γ+)) ∩W

1
2−

1
2p

p,ρ (J, Lp(Γ+)).

Integrating by parts yields w ∈ H1
p,ρ(R+, 0H

−1
p (D,Γ+)). Finally, the uniqueness of w follows from by a

duality argument. �

Appendix B. The reduced Stokes problem

In this section, we rewrite (4.2) as a reduced Stokes problem which is equivalent to (4.2). Applying
divergence to the first equation in (4.2) we obtain

(B.1) ∆p = div f1 − (∂t −∆)fd
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in the sense of distributions. Noting γν∂tu = ∂tγw = 0 on Γ−, we apply γν to the first equation in (4.2)
and obtain γ∂yp = γνf1 + γν∆u on Γ−. It is now advantageous to insert the term γ∂y(fd − div u) = 0
into the boundary condition on Γ−. On the upper boundary Γ+, we use the condition written in (4.2).
Then,

(B.2)
γp = 2γ∂yw − σ∆xh on Γ+,

γ∂yp = γνf1 + γν(∆u−∇div u) + γ∂yfd on Γ−.

To solve (B.1)–(B.2), we split p = p1 + p2 where p1 satisfies

(B.3)

∆p1 = div f1 − (∂t −∆)fd in D,

γp1 = 0 on Γ+,

γ∂yp1 = γνf1 + γ∂yfd on Γ−,

and p2 satisfies (4.4). Note that p1 and p2 are well-defined by Proposition A.5 and the fact that
div (∆u − ∇div u) = 0. Defining the solution operators T1(f1, fd) := p1 and T2(u, h) := p2 for the
boundary value problems (B.3) and (4.4), respectively, we may formulate the following proposition.

Proposition B.1. Let p ∈ (1,∞), p 6= 3/2, 3. Then the following statements are equivalent:
(1) For every f1 ∈ F1(J,D) and fd ∈ Fd(J,D,Γ+) satisfying fd|t=0 = 0 if p > 3/2 there exists a

unique solution (u, π, h) ∈ E1(J,D)× E2(J,D,Γ+)× E3(J,Γ+) of (4.2).
(2) For every f1 ∈ F1(J,D) and gr ∈ G+(J,Γ+) satisfying gr|t=0 = 0 if p > 3 there exists a unique

solution (u, h) ∈ E1(J,D)× E3(J,Γ+) of (4.3).

Proof. (2)=⇒(1). We set f1 := f and choose fd as the solution of the problem

(∂t −∆)fd = div f in J ×D,
γfd = gr on Γ+,

γ∂yfd = −γνf on Γ−,
fd|t=0 = 0 on D.

Here the unique solvability is guaranteed by Proposition A.6. Solving (4.2) with f̃1, f̃d, we see that p
satisfies ∆p = 0 with boundary conditions

γp = 2γ∂yw − σ∆xh on Γ+,
γ∂yp = γν(∆u−∇div u) on Γ−.

Thus, p = p2 = T2(u, h) by definition of T2 and Proposition A.5. Moreover, we have

∂tu−∆u+∇T2(u, h) = f1 = f̃1 in D,
γdiv u = γfd = gr on Γ+.

Therefore, (u, h) is a solution of (4.3).
(1)=⇒(2). Thanks to fd|t=0 = 0 we have gr|t=0 = 0 for p > 3. Therefore, there exists a solution

(u, h) of (4.3) with f := f1 − ∇T1(f1, fd) and gr = γfd on Γ+. Setting π := T1(f1, fd) + T2(u, h), we
see that (u, π, h) ∈ E(J,D) solves all equations of (4.2) except the second line by construction. To show
that also the second equality in (4.2) holds, we note that div u satisfies

(∂t −∆)div u = div f̃1 − div∇T2(u, h) = div f1 −∆T1(f1, fd)−∆T2(u, h) = (∂t −∆)fd

with boundary conditions

γdiv u = γfd on Γ+,
γ∂ydiv u = γν∇div u = γνf1 + γ∂yfd + γν∆u− γ∂yp = γ∂yfd on Γ+.

The unique solvability of this boundary value problem, see Proposition A.6, implies div u = fd.
�

The following proposition can be proved in a similar way as Proposition B.1.

Proposition B.2. The following statements are equivalent:
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(1) For every f1 ∈ F1(J,D+) and fd ∈ Fd(J,D+,Γ+) satisfying fd|t=0 = 0 if p > 3/2, there exists
a unique solution (u, π, h) ∈ E1(J,D+)× E2(J,D+,Γ+)× E3(J,D+) of (5.6).

(2) For every f+ ∈ F1(J,D+) and gr ∈ G+(J,Γ+) satisfying gr|t=0 = 0 if p > 3 there exists a
unique solution (u+, h) ∈ E1(J,D+)× E3(J,D+) of (4.7).

Moreover, the following statements are also equivalent:
(1) For every f1 ∈ F1(J,D−) and fd ∈ Fd(J,D−, ∅) there exists a unique solution (u, π) ∈ E1(J,D−)×

E2(J,D−, ∅) of (5.1).
(2) For every f− ∈ F1(J,D−) there exists a unique solution u− ∈ E1(J,D−) of (4.5).

Appendix C. Estimates for inhomogeneous symbols

For fixed ε ∈ (0, π
2 ) and θ ∈ (0, π) we will consider polynomial symbols P : Σε × Σθ → C of the form

(C.1) P (z, λ) =
∑

(α,β,γ)∈I

aαβγz
αλβω(z, λ)γ

(
(z, λ) ∈ Σε × Σθ

)
with aαβγ ∈ C \ {0}, ω(z, λ) :=

√
λ+ z2, and I ⊂ N3

0 being a finite set of exponents. To analyze this
symbol, we will follow the Newton polygon approach described in [GV92] and [DMV98].

For this, we define the Newton polygon N(P ) ⊂ [0,∞)2 as the convex hull of all points (α+γ, β+ γ
2 )

with (α, β, γ) ∈ I, their projections onto the coordinate axes, and the origin. Denote the vertices of
N(P ) by v0 := (0, 0), v1, . . . , vJ+1, numbered in clockwise direction. Then for vj = (pj , qj) the vector

1√
1+r2

j

(1, rj) with

rj := − pj+1 − pj

qj+1 − qj
(j = 1, . . . , J)

is an exterior normal to the edge [vjvj+1] connecting vj and vj+1.
For simplicity, we assume that N(P ) has no edge parallel to the coordinate axes but not lying on the

axis. More precisely, we assume
r1 > r2 > · · · > rJ > 0.

In this case N(P ) = conv(Ĩ) with

Ĩ := {(0, 0)} ∪ {(α+ γ, β + γ/2), (α, β, γ) ∈ I}.

The main idea of the Newton polygon approach is to deal with different inhomogeneities by assigning
a weight r > 0 to the co-variable λ with respect to z, i.e. to set |λ| ≈ |z|r. In a natural way, for r > 0
the r-degree dr(P ) is defined as

(C.2) dr(P ) := max{α+ rβ + γmax{1, r/2}, (α, β, γ) ∈ I}.

Note that in the same way for ω(z, λ) =
√
λ+ z2 the r-degree is given by

dr(ω) =

{
1, r ≤ 2,
r/2, r ≥ 2.

The r-principal part of P is given by

Pr(z, λ) := lim
ρ→∞

ρ−dr(P )P (ρz, ρrλ)
(
(z, λ) ∈ Σε × Σθ

)
.

Obviously the “leading exponents” for weight r are given by

Ir := {(α, β, γ) ∈ I, α+ rβ + γmax{1, r/2} = dr(P )},

and we get

(C.3) Pr(z, λ) =
∑

(α,β,γ)∈Ir

aαβγz
αλβωr(z, λ)γ
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with

ωr(z, λ) =


√
λ, r > 2,√
λ+ z2, r = 2,

z, r < 2.

Geometric observations show that

Ir =

{
{(α, β, γ) ∈ I, (α+ γ, β + γ

2 ) ∈ [vjvj+1]} if r = rj (j = 1, . . . , J),
{(α, β, γ) ∈ I, (α+ γ, β + γ

2 ) = vj} if rj−1 < r < rj (j = 1, . . . , J + 1).

Here we formally have set r0 := ∞ and rJ+1 := 0.
In the next result we show how symbols satisfying a non-degeneracy condition (see (C.4)) give rise

to isomorphic operators on their natural domain arising from the vertices of the Newton polygon. To
this end, let r, s ≥ 0 and

F,K ∈ {H,W}.
Then by Ks

p we either mean the space Hs
p or the space W s

p . For notational convenience we set

0Fs
p(Kr

p) := 0Fs
p(R+,Kr

p(Rn)).

In [DSS08, Theorem 3.2] the following result is proved.

Theorem C.1. Let 1 < p <∞, ρ, r, s ≥ 0, and let A,B be resolvent commuting operators such that for
each γ, σ ≥ 0,

(i) D(A) = 0Fσ
p,ρ(Kγ+1

p ) and D(B) = 0Fσ+1
p,ρ (Kγ

p),
(ii) A,B ∈ H∞(0Fσ

p,ρ(Kγ
p)) with φ∞A = 0 and φ∞B < π.

Furthermore, let P be a symbol as defined in (C.1) and let vj = (αj , βj), j = 0, . . . , J +1 be the vertices
of the Newton polygon corresponding to P . Suppose that P satisfies

(C.4) Pr(z, λ) 6= 0 (z ∈ Σε \ {0}, λ ∈ Σθ \ {0}, r > 0).

for some ε > 0 and θ > φ∞B . Then there exists a λ0 > 0 such that

P (A,B + λ0) : D(P (A,B + λ0)) → 0Fs
p,ρ(R+,Kr

p(Rn))

is invertible, where

D(P (A,B + λ0)) =
J+1⋂
j=1

0Fs+βj
p,ρ (Kr+αj

p ).

In our applications, the operator B will always be the time derivative. For this reason we recall the
following well-known fact.

Lemma C.2. Let 1 < p < ∞, r, ρ ≥ 0, F ∈ {H,W} and X be a UMD space. Let G be the operator
defined in the space 0Fr

p,ρ(R+, X) by

(C.5) Gu =
d

dt
u, u ∈ D(G) := 0Fr+1

p,ρ (R+, X).

Then G ∈ H∞(0Fr
p,ρ(R+, X)), i.e., G admits a bounded H∞-calculus on 0Fr

p,ρ(R+, X) with H∞-angle
φ∞G = π/2.

By employing the shift e−λ0t and Lemma 5.4 we immediately obtain the following result.

Corollary C.3. Let r, s, ρ ≥ 0 and 1 < p < ∞. Let G be the time derivative operator as defined in
(C.5) and A an operator such that for each γ, σ ≥ 0,

(i) D(A) = 0Fσ
p,ρ(R+,Kγ+1

p ),
(ii) A ∈ H∞(0Fσ

p,ρ(R+,Kγ
p)) with φ∞A = 0.
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Furthermore, let P be a symbol satisfying the assumptions of Theorem (C.1). Then, if λ0 is the constant
obtained in Theorem C.1, for ω ≥ λ0 the operator P (A,G) : D(P (A,G)) → 0Fs

p,ω+ρKr
p(J,Rn)) is

invertible, where

D(P (A,G)) :=
J+1⋂
j=1

0Fs+βj

p,ω+ρ(J,Kr+αj
p ).

Proof. Denote by Gρ the time derivative operator in the space 0Fs
p,ρ(J,Kr

p(Rn)). Then

(λ−Gω)Ψ−1
ω u = Ψ−1

ω (λ− ρ−Gρ)u (u ∈ D(Gρ)),

which implies that
(λ−Gω)−1 = Ψ−1

ω (λ− (Gρ + ω))−1Ψω.

By the Cauchy integral representation for the bounded holomorphic function λ 7→ P (A, λ)−1 this implies

P (A,Gω)−1 = Ψ−1
ω P (A,Gρ + ω)−1Ψω.

By the assumption ω ≥ λ0, the result then follows from Theorem C.1 with B = Gρ, Theorem C.2, and
from the fact that

Ψω ∈ Isom(Fr
p,ρ+ω(R+, X),Fr

p,ρ(R+, X)),

which is an obvious consequence of Lemma 5.4(ii). �
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