Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Prof. Dr. Immanuel Halupczok

Algebra – Aufgaben im Klausur-Stil

Hier sind noch ein paar Aufgaben, die ich übrig hatte (zum üben). Manche sind etwas leichter, manche aufwändiger, aber alle hätten auch Klausur-Aufgaben werden können.

Aufgabe 1:

Ist die Abbildung $\mathbb{Q}^{\times} \to \mathbb{Q}^{\times}, a \mapsto -a$ ein Gruppenhomomorphismus?

Aufgabe 2:

Zeigen Sie: Ist G eine zyklische Gruppe und $a \in G$ ein Erzeuger davon, so ist G endlich genau dann, wenn $G = \{a^n \mid n \in \mathbb{N}\}$ ist.

Hinweis: Aus der Vorlesung sollten Sie sämtliche zyklischen Gruppen (bis auf Isomorphie) kennen. Prüfen Sie die Behauptung einfach für all diese zyklischen Gruppen.

Aufgabe 3:

Wir betrachten die multiplikative Gruppe $(\mathbb{R}^{\times}, \cdot)$ und davon die Teilmenge $A = \mathbb{N} \setminus \{0\}$ der echt-positiven natürlichen Zahlen. Bestimmen Sie die von A erzeugte Untergruppe $\langle A \rangle$.

Aufgabe 4:

Zeigen oder widerlegen Sie:

- (a) Ist G eine Gruppe, und sind $N_1, N_2 \triangleleft G$ Normalteiler, so ist auch der Schnitt $N_1 \cap N_2$ ein Normalteiler von G.
- (b) Ist G eine Gruppe, und sind $N_1, N_2 \triangleleft G$ Normalteiler, so ist auch die Vereinigung $N_1 \cup N_2$ ein Normalteiler von G.

Aufgabe 5:

Sei G eine Gruppe und seien N_1 und N_2 beides Normalteiler von G. Zeigen Sie, dass auch die erzeugte Untergruppe $\langle N_1 \cup N_2 \rangle$ ein Normalteiler von G ist.

Zur Erinnerung: $\langle N_1 \cup N_2 \rangle$ ist definiert als der Schnitt aller Untergruppen von G, die $N_1 \cup N_2$ enthalten.

Aufgabe 6:

Sei (G, \cdot) eine endliche Gruppe und seien N_1 und N_2 beides Normalteiler von G, so dass die Ordnungen $\#N_1$ und $\#N_2$ teilerfremd sind und so dass $\#G = \#N_1 \cdot \#N_2$ ist. Zeigen Sie:

- (a) $N_1 \cap N_2 = \{1\}.$
- (b) Die Vernküpfung der natürlichen Abbildungen $N_1 \to G \to G/N_2$ ist ein Gruppenisomorphismus. (Dass die Abbildung ein Homomorphismus ist, braucht nicht gezeigt zu werden, sondern nur, dass sie bijektiv ist.)
- (c) Jedes Element von G lässt sich in der Form a_1a_2 schreiben für $a_1 \in N_1$ und $a_2 \in N_2$.
- (d) Sind N_1 und N_2 abelsch, so ist auch G abelsch.

Aufgabe 7:

Sei
$$H := \{ \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \}.$$

- (a) Zeigen Sie: H ist eine Untergruppe der Gruppe $\mathrm{GL}_3(\mathbb{R})$ aller invertierbaren 3×3 -Matrizen.
- (b) Ist H auch ein Normalteiler von $GL_3(\mathbb{R})$?

Aufgabe 8:

Zeigen Sie: Es gibt nur einen einzigen Gruppenhomomorphismus von $(\mathbb{Q}, +)$ nach $(\mathbb{Z}, +)$, nämlich der, der alles auf 0 abbildet.

Hinweis: Nehmen Sie an, $f: \mathbb{Q} \to \mathbb{Z}$ ist ein Gruppenhomomorphismus und a ist das kleinste echt positive Element im Bild von f. Können Sie mit Hilfe eines Urbilds von a zu einem Widerspruch kommen?

Aufgabe 9:

Listen Sie alle abelschen Gruppen mit 120 Elementen bis auf Isomorphie auf.

Aufgabe 10:

Sind die Gruppen $\mathbb{Z}/40\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ und $\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/10\mathbb{Z}$ isomorph?

Aufgabe 11:

Sind die Gruppen $\mathbb{Z}/36\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ und $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/27\mathbb{Z}$ isomorph?

Aufgabe 12:

Sei (G,\cdot) eine Gruppe. Zeigen Sie: Wenn für alle $a\in G$ gilt: $a^2=1$, dann ist G abelsch.

Aufgabe 13:

- (a) Geben Sie eine abelsche Gruppe (G,\cdot) und Elemente $a,b\in G\setminus\{1\}$ an, so dass $a^2=b^2=1$ gilt aber $a\neq b$.
- (b) Geben Sie eine abelsche Gruppe (G,\cdot) und Elemente $a,b\in G\setminus\{1\}$ an, so dass $a^2=b^2\neq 1$ gilt aber $a\neq b$.
- (c) Zeigen Sie: (a) lässt sich nicht erfüllen, wenn man fordert, dass G zyklisch ist.

Aufgabe 14:

Sei $\sigma \in S_6$ gegeben durch $1 \mapsto 3, 2 \mapsto 5, 3 \mapsto 4, 4 \mapsto 1, 5 \mapsto 2, 6 \mapsto 6$.

- (a) Schreiben Sie σ als Produkt von Zykeln.
- (b) Wie viele Elemente hat $\langle \sigma \rangle$?
- (c) Für welche $k \in \mathbb{Z}$ ist σ konjugiert zu σ^k ?

Aufgabe 15:

Zeigen Sie: Ist G eine Gruppe und sind $a, b \in G$ Elemente, die zueinander konjugiert sind, so sind auch die davon erzeugten Untergruppen $\langle a \rangle$ und $\langle b \rangle$ zueinander konjugiert.

Aufgabe 16:

Sei X die Menge der Untergruppen von S_3 (inklusive {id} und S_3). Wir betrachten die Operation von S_3 auf X durch Konjugation: $S_3 \times X \to X, (\sigma, H) \mapsto \lambda_{\sigma}(H) := \{\sigma a \sigma^{-1} \mid a \in H\}.$

Bestimmen Sie alle Bahnen unter dieser Operation.

Aufgabe 17:

Sei G eine Gruppe, H eine Untergruppe und $X := G/H = \{bH \mid b \in G\}$ die Menge der Linksnebenklassen.

- (a) Zeigen Sie, dass durch $G \times X \to X$, $\lambda_a(bH) = abH$ eine Operation von G auf X definiert wird.
- (b) Ist diese Operation immer transitiv?
- (c) Zeigen Sie, dass für jedes $bH \in X$ der Stabilisator $\operatorname{Sta}_G(bH)$ eine zu H konjugierte Untergruppe von G ist. (Nur die Konjugiertheit soll gezeigt werden; dass $\operatorname{Sta}_G(bH)$ überhaupt eine Untergruppe von G ist, sollte aus der Vorlesung bekannt sein.)

Hinweis: Es kann helfen, zunächst $Sta_G(H)$ zu bestimmen.

Aufgabe 18:

Sei $H \subset S_5$ die Menge der Permutationen σ , die die Menge $\{4,5\}$ auf sich selbst abbilden.

- (a) Zeigen Sie: H ist eine Untergruppe von S_5 .
- (b) Ist H ein Normalteiler von S_5 ?

Aufgabe 19:

Sei
$$G = \{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \}.$$

- (a) Zeigen Sie, dass G eine Untergruppe von $GL_2(\mathbb{R})$ ist.
- (b) Bestimmen Sie die Bahn von $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ unter der natürlichen Operation von G auf \mathbb{R}^2 .

Aufgabe 20:

Geben Sie eine 6-elementige Untergruppe $H \subset S_5$ an, so dass kein Element von $\{1, \ldots, 5\}$ von ganz H festgehalten wird (d. h. für alle $x \in \{1, \ldots, 5\}$ gilt: $\operatorname{Sta}_H(x) \neq H$).

Aufgabe 21:

Zeigen Sie: Es gibt keine endliche Gruppe G mit mehr als 2 Elementen, so dass alle Elemente von $G \setminus \{1\}$ konjugiert sind.

Hinweis: Was lässt sich über Bahnlängen unter der Konjugationsoperation sagen?

Aufgabe 22:

Sei G eine Gruppe, sei X eine Menge und sei $G \times X \to X, (a, x) \mapsto \lambda_a(x)$ eine Gruppenoperation. Zeigen Sie, dass durch $G \times (X \times X) \to (X \times X), (a, (x, x')) \mapsto \mu_a(x, x') := (\lambda_a(x), \lambda_a(x'))$ eine Gruppenoperation von G auf $X \times X$ definiert wird.

Aufgabe 23:

Wir betrachten die Operation von S_4 auf der Menge $\{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$, die gegeben ist durch $\lambda_{\sigma}(x, y) := (\sigma(x), \sigma(y))$ für $x, y \in \{1, 2, 3, 4\}$. Bestimmen Sie alle Bahnen dieser Operation.

(Dass es sich hierbei wirklich um eine Gruppenoperation handelt, brauchen Sie nicht zu beweisen.)

Aufgabe 24:

Wir betrachten die Abbildung $S_4 \times \{1, 2, 3, 4\} \to \{1, 2, 3, 4\}, (\sigma, x) \mapsto \lambda_{\sigma}(x) := \sigma(\sigma(x))$. Zeigen Sie, dass dies keine Gruppenoperation ist.

Aufgabe 25:

Seien G und G' endliche einfache Gruppen. (Zur Erinnerung: Eine Gruppe G heißt einfach, wenn die einzigen Normalteiler $\{1\}$ und G sind.) Wir nehmen an, dass $\operatorname{Hom}(G,G')$ nicht nur aus der trivialen Abbildung (die alles auf 1 abbildet) besteht. Zeigen Sie, dass dann G isomorph zu einer Untergruppe von G' ist.

Aufgabe 26:

Zeigen Sie: Jede Gruppe mit 49 Elementen ist abelsch.

Hinweis: Verwenden Sie den Satz (aus der Vorlesung), dass jede nicht-triviale p-Gruppe (für p prim) ein nicht-triviales Zentrum besitzt.

Aufgabe 27:

- (a) Geben Sie eine 5-Sylow-Untergruppe von S_{15} an. (Sie brauchen nicht alle Elemente der Untergruppe aufzulisten; es reicht, wenn Sie Erzeuger davon angeben.)
- (b) Zeigen Sie, dass alle 5-Sylow-Untergruppen von S_{15} abelsch sind. Hinweis: Zeigen Sie es für Ihr Beispiel und benutzen Sie dann eine Aussage der Sylow-Sätze.

Aufgabe 28:

Zeigen Sie: Jede Gruppe der Ordnung 700 hat einen Normalteiler der Ordnung 25.

Zur Erinnerung: Laut Sylow-Sätzen gilt für die Anzahl s der p-Sylow-Gruppen einer Gruppe der Ordnung $m \cdot p^{\ell}$ (wobei $p \nmid m$): $s \equiv 1 \mod p$ und $s \mid m$.

Aufgabe 29:

Zeigen Sie: Alle Gruppen G der Ordnung 405 sind auflösbar.

Hinweis: Zeigen Sie, dass es einen Normalteiler N der Ordnung 81 gibt. Was können Sie über G/N sagen?

Zur Erinnerung: Laut Sylow-Sätzen gilt für die Anzahl s der p-Sylow-Gruppen einer Gruppe der Ordnung $m \cdot p^{\ell}$ (wobei $p \nmid m$): $s \equiv 1 \mod p$ und $s \mid m$. Und: p-Gruppen sind auflösbar (nach einem Satz aus der Vorlesung.)

Bemerkung: $405 = 5 \cdot 81$

Aufgabe 30:

Geben Sie alle Einheiten des Rings $\mathbb{Z}/12\mathbb{Z}$ an.

Aufgabe 31:

Sei $R = \text{Abb}(\mathbb{Q}, \mathbb{Q})$, als Ring aufgefasst mit komponentenweiser Addition und Multiplikation.

- (a) Zeigen Sie, dass R nicht nullteilerfrei ist.
- (b) Bestimmen Sie das von id $_{\mathbb{Q}}$ erzeugte Hauptideal in R.

Aufgabe 32:

Geben Sie einen Körper $K \subset \mathbb{C}$ an, so dass $[K(\sqrt[3]{5}):K]=2$ ist.

Aufgabe 33:

Zeigen Sie: Ist $a \in \mathbb{R}_{\geq 0}$ transzendent über \mathbb{Q} , so ist auch \sqrt{a} transzendent über \mathbb{Q} .

Aufgabe 34:

Zeigen Sie: Ist $a \in \mathbb{C}$ transzendent über \mathbb{Q} , so ist auch a^2 transzendent über \mathbb{Q} .

Aufgabe 35:

Zeigen Sie: Jede Körpererweiterung vom Grad 2 ist normal.

Aufgabe 36:

Sei $\zeta_5 := e^{2\pi i/5}$. Zeigen Sie:

- (a) Es gibt genau einen Körper $L \subset \mathbb{Q}(\zeta_5)$ mit $[L : \mathbb{Q}] = 2$.
- (b) Ist L der Körper aus (a), so zerfällt das Polynom $f := 1 + X + X^2 + X^3 + X^4$ in L[X] in zwei irreduzible Faktoren vom Grad 2.

Hinweis: Was ließe sich über $[\mathbb{Q}(\zeta_5):L]$ sagen, wenn f nicht in zwei irreduzible Faktoren vom Grad 2 zerfallen würde?

Aufgabe 37:

- (a) Ist \mathbb{C}/\mathbb{R} eine Galois-Erweiterung?
- (b) Geben Sie alle Elemente der Automorphismengruppe $\operatorname{Aut}(\mathbb{C}/\mathbb{R})$ an.
- (c) Hat \mathbb{R} eine algebraische Erweiterung vom Grad 4?

Aufgabe 38:

Sei L/K eine endliche Galois-Erweiterung und sei $a \in L$. Zeigen Sie, dass die Summe $b := \sum_{\sigma \in \operatorname{Aut}(L/K)} \sigma(a)$ in K liegt. Hinweis: Zeigen Sie, dass für alle $\tau \in \operatorname{Aut}(L/K)$ gilt: $\tau(b) = b$.

Aufgabe 39:

Sei L/K eine Galois-Erweiterung. Wir nehmen an, dass die Galois-Gruppe $\operatorname{Aut}(L/K)$ isomorph zu $\mathbb{Z}/6\mathbb{Z}$ ist.

Bestimmen Sie, wie viele echte Zwischenkörper F es gibt $(K \subsetneq F \subsetneq L)$ und geben Sie auch die Grade [F:K] für diese Zwischenkörper an.