PROF. DR. W. SINGHOF

Übungen zu Analysis II

45. (10 Punkte) (Bei der folgenden Aufgabe ist es unzweckmäßig, die Lösungen der Diffenzialgleichung explizit zu bestimmen).

Sei L der reelle Vektorraum aller Lösungen $\varphi:\mathbb{R}\to\mathbb{R}$ der Differenzialgleichung

$$y''' + 9y'' + 10y' + y = 0.$$

(a) Entscheiden Sie für jede der folgenden Teilmengen U_i von L, ob U_i ein Untervektorraum ist, und bestimmen Sie in diesem Fall die Dimension von U_i :

$$U_1 := \{ \varphi \in L \mid \varphi(1) = 0 \}.$$

$$U_2 := \{ \varphi \in L \, | \, \varphi(0) = 1 \} \, .$$

$$U_3 := \{ \varphi \in L \mid \varphi'(-1) = 0 \}.$$

- (b) Zeigen Sie: Für alle $\varphi \in L$ ist $\lim_{x \to \infty} \varphi(x) = 0$.
- 46. (10 Punkte) Finden Sie die Lösung φ der Differenzialgleichung

$$y'' - y = xe^x$$

mit der Anfangsbedingung $\varphi(0) = 1, \varphi'(0) = -1$

- 47. (10 Punkte) Führen Sie den Beweis der als Satz 2 von §11 formulierten Variante des Fixpunktsatzes von Banach im Detail aus, d.h. zeigen Sie: Sei X ein vollständiger metrischer Raum, $x_0 \in X$, R > 0 und $B \colon = \{x \in X \mid d(x_0, x) < R\}$. Sei $G \colon B \to X$ eine Abbildung. Es gebe ein C < 1, so dass
 - $(1) \ d(G(x),G(y)) \le Cd(x,y) \ \forall x,y \in B.$
 - (2) $d(G(x_0), x_0) < R(1 C)$.

Dann gibt es genau ein $x \in B$ mit G(x) = x.

bitte wenden!

48. (10 Punkte) Wir definieren $f: \mathbb{R}^2 \to \mathbb{R}$ durch $f(x,y) := y^2$ und betrachten die Differenzialgleichung y' = f(x,y). Wir definieren induktiv Funktionen $\varphi_n : \mathbb{R} \to \mathbb{R}$ für $n \geq 0$ durch $\varphi_0(x) = 1 \, \forall \, x \in \mathbb{R}$ und

$$\varphi_n(x) = 1 + \int_0^x f(t, \varphi_{n-1}(t)) dt \text{ für } n \ge 1.$$

- (a) Berechnen Sie explizit die Funktionen $\varphi_1, \varphi_2, \varphi_3$.
- (b) Zeigen Sie: Für jedes n ist φ_n ein Polynom mit

$$\varphi_n(x) = 1 + x + \ldots + x^n + \text{Terme h\"oherer Ordnung}.$$

(c) Zeigen Sie: Ist $x \geq 1$, so divergiert die Folge $(\varphi_n(x))_n$.

Abgabe: Freitag, den 28. Juni 2013, 10:20 Uhr