PROF. DR. W. SINGHOF

Übungen zu Analysis II

- 49. (8 Punkte) Wir definieren $f: \mathbb{R} \to \mathbb{R}$ durch $f(x) := x^3$. Finden Sie eine Zahl a > 0 mit folgenden Eigenschaften:
 - (i) Für $|x| \le a$ ist $|f(x)| \le a$.
 - (ii) Die Funktion f ist auf dem Intervall]-a,a[nicht kontrahierend.
 - (iii) Für jede Zahl b mit 0 < b < a ist f auf [-b, b] kontrahierend.
- 50. (8 Punkte) Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ von der Klasse C^1 , sei x_0 ein Fixpunkt von f und sei

$$||Df(x_0)|| < 1.$$

(Dabei gehen wir von einer der Normen $||.||_{\infty}, ||.||_{1}$ oder $||.||_{2}$ auf \mathbb{R}^{n} aus und definieren die Norm ||.|| auf $M_{n}(\mathbb{R})$ wie in § 9.) Zeigen Sie:

Es gibt eine Umgebung U von x_0 in \mathbb{R}^n mit $f(U) \subseteq U$, so dass f auf U kontrahierend ist.

- 51. (8 Punkte) Finden Sie eine reelle 2×2 -Matrix A, so dass die Abbildung $x \mapsto Ax$ von \mathbb{R}^2 in \mathbb{R}^2 kontrahierend bezüglich der Norm $||.||_{\infty}$, aber nicht kontrahierend bezüglich der Norm $||.||_1$ ist.
- 52. (9 Punkte) Für $\alpha \in \mathbb{R}_{>0}$ definieren wir $f_{\alpha}, g_{\alpha} : \mathbb{R} \to \mathbb{R}$ durch

$$f_{\alpha}(x) := \frac{1}{\alpha} \sin(\alpha x), \quad g_{\alpha}(x) = \frac{\alpha}{1 + x^2}.$$

Welche der folgenden Mengen sind gleichgradig stetig?

- (a) $\{f_{\alpha} | \alpha \in \mathbb{R}_{>0}\}$.
- (b) $\{g_{\alpha} | \alpha \in \mathbb{R}_{>0}\}$.
- (c) $\{q_{\alpha} | 0 < \alpha < 1\}$.
- 53. (7 Punkte) Wir definieren Funktionen $g, f_n : \mathbb{R} \to \mathbb{R}$ durch $g(x) := x^2, f_n(x) := x + \frac{1}{n}$ für $n \in \mathbb{N}$.

Zeigen Sie: Die Funktionenfolge $(g \circ f_n)$ konvergiert nicht gleichmäßig, obwohl die Folge (f_n) gleichmäßig konvergiert.

Abgabe: Freitag, den 5. Juli 2013, 10:20 Uhr