Übungsblatt 8

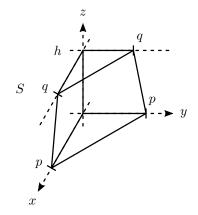
Analysis III, WiSe 2018/2019

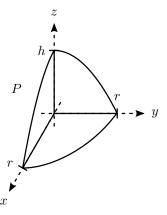
Prof. Dr. Jürgen Saal, Dr. Matthias Köhne

Ausgabe: Di., 04.12.2018, Abgabe: Di., 11.12.2018

B Aufgabe 1: (Das Prinzip von Cavalieri, 3+3 Punkte)

Seien h, p, q, r > 0. Bestimmen Sie jeweils nach dem Prinzip von Cavalieri das Volumen des Pyramidenstumpfs $S \subseteq \mathbb{P}^3$ bzw. des Viertelparaboloids $P \subseteq \mathbb{P}^3$, wobei $\mathbb{P} := (0, \infty)$,





$$S := \{ (x, y, z)^\mathsf{T} \in \mathbb{P}^3 : x + y < (1 - \frac{z}{h})p + \frac{z}{h}q, \ z < h \} \text{ und } P := \{ (x, y, z)^\mathsf{T} \in \mathbb{P}^3 : x^2 + y^2 < (1 - \frac{z}{h})r^2 \}.$$

HINWEISE: Für α , β , $\gamma > 0$ ist die Menge $D = \{ (x, y)^\mathsf{T} \in \mathbb{P}^2 : \alpha x + \beta y < \gamma \}$ ein rechtwinkliges Dreieck mit Kathetenlängen $\frac{\gamma}{\alpha}$ und $\frac{\gamma}{\beta}$ und Flächeninhalt $\lambda_2(D) = \frac{1}{2} \frac{\gamma^2}{\alpha \beta}$.

Für $\rho>0$ ist die Menge $V=\{\,(x,\,y)\in\mathbb{P}^2:\,x^2+y^2<\rho^2\,\}$ ein Viertelkreis mit Radius ρ und Flächeninhalt $\lambda_2(V)=\frac{1}{4}\pi\rho^2.$

B Aufgabe 2: (Faltungen, 6 Punkte)

Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ integrierbar. Seien $m \in \mathbb{N}$ und $g \in C^m(\mathbb{R})$ mit kompaktem Träger. Sei $u: \mathbb{R} \longrightarrow \mathbb{R}$ gegeben als

$$u(y) := \int_{\mathbb{D}} f(x)g(y-x) dx, \qquad y \in \mathbb{R}.$$

Zeigen Sie, dass $u \in C^m(\mathbb{R})$ ist und bestimmen Sie die Ableitungen von u bis zur Ordnung m.

HINWEIS: Der Träger einer Funktion $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ ist der Abschluss der Menge $\{x \in \mathbb{R} : \phi(x) \neq 0\}$.

B Aufgabe 3: (Der Satz von Fubini, 6 Punkte)

Betrachten Sie die Funktion $f:(0,1)\times(0,1)\longrightarrow\mathbb{R}$ mit $f(x,y)=(x+y)^{-3}(x-y)$ für 0< x,y<1. Zeigen Sie: Für $(x,y)\in\mathbb{R}^2$ sind die Funktionen $f(x,\cdot)$ und $f(\cdot,y)$ über \mathbb{R} integrierbar und es gilt

$$\int_{0}^{1} \int_{0}^{1} f(x, y) \, d\lambda_{1}(y) \, d\lambda_{1}(x) \neq \int_{0}^{1} \int_{0}^{1} f(x, y) \, d\lambda_{1}(x) \, d\lambda_{1}(y)$$

Warum ist dies kein Widerspruch zum Satz von Fubini?

Aufgabe 4: (Konvergenz von Integralen)

Zeigen Sie, dass

$$\lim_{n \to \infty} \int_{0}^{n} \left(1 + \frac{x}{n} \right)^n e^{-2x} dx = 1.$$

HINWEIS: Stellen Sie das Integral mit von n unabhängigen Integralgrenzen dar.

Präsenzaufgaben

Analysis III, WiSe 2018/2019

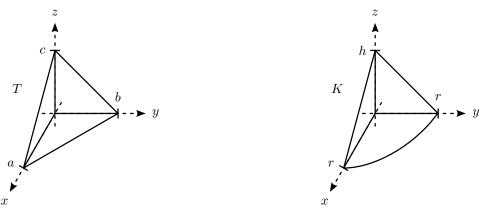
Prof. Dr. Jürgen Saal, Dr. Matthias Köhne

Bearbeitung: Mi./Do., 05./06.12.2018

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

Aufgabe 1: (Das Prinzip von Cavalieri)

Seien a, b, c, h, r > 0. Bestimmen Sie jeweils nach dem Prinzip von Cavalieri das Volumen des Tetraeders $T \subseteq \mathbb{P}^3$ bzw. des Viertelkegels $K \subseteq \mathbb{P}^3$, wobei $\mathbb{P} := (0, \infty)$,



$$T := \{ (x, y, z)^{\mathsf{T}} \in \mathbb{P}^3 : \frac{x}{a} + \frac{y}{b} + \frac{z}{c} < 1 \} \text{ und } K := \{ (x, y, z)^{\mathsf{T}} \in \mathbb{P}^3 : \sqrt{x^2 + y^2} < (1 - \frac{z}{b})r \}.$$

HINWEISE: Vgl. Hinweise zu Übungsaufgabe 1.

Aufgabe 2: (Parameterabhängige Integrale)

Seien μ ein endliches Maß auf $(\mathbb{R}, \mathcal{B}_1)$ und $f: \mathbb{R} \longrightarrow \mathbb{R}$ gegeben als

$$f(y) = \int_{\mathbb{R}} \sin(xy) d\mu(x), \qquad y \in \mathbb{R}.$$

- a) Zeigen Sie: Ist $|\cdot|$ μ -integrierbar, dann ist f differenzierbar; bestimmen Sie f'.
- b) Zeigen Sie: Ist $|\cdot|^2$ μ -integrierbar, dann ist f zweimal differenzierbar; bestimmen Sie f''.

Aufgabe 3: (Der Satz von Fubini)

Für $k \in \mathbb{N}_0$ seien $A_k := (k, k+1] \times (k, k+1]$ sowie $A_k^+ := (k, k+\frac{1}{2}] \times (k, k+\frac{1}{2}] \cup (k+\frac{1}{2}, k+1] \times (k+\frac{1}{2}, k+1]$ und $A_k^- := (k, k+\frac{1}{2}] \times (k+\frac{1}{2}, k+1] \cup (k+\frac{1}{2}, k+1] \times (k, k+\frac{1}{2}]$. Sei weiterhin $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ gegeben als

$$f(x, y) := \begin{cases} 1, & \text{falls } (x, y) \in A_k^+ \text{ für ein } k \in \mathbb{N}_0, \\ -1, & \text{falls } (x, y) \in A_k^- \text{ für ein } k \in \mathbb{N}_0, \\ 0, & \text{sonst.} \end{cases}$$
 $(x, y) \in \mathbb{R}^2.$

Zeigen Sie: Für $(x, y) \in \mathbb{R}^2$ sind die Funktionen $f(x, \cdot)$ und $f(\cdot, y)$ über \mathbb{R} integrierbar und es gilt

$$\int\limits_{\mathbb{D}}\int\limits_{\mathbb{D}}f(x,\,y)\,\mathrm{d}\lambda_1(y)\,\mathrm{d}\lambda_1(x)=\int\limits_{\mathbb{D}}\int\limits_{\mathbb{D}}f(x,\,y)\,\mathrm{d}\lambda_1(x)\,\mathrm{d}\lambda_1(y)=0.$$

Zeigen Sie weiter, dass f nicht über \mathbb{R}^2 integrierbar ist. Warum ist der Satz von Fubini nicht anwendbar?

Aufgabe 4: (Iterierte Integrale)

Vertauschen Sie bei den iterierten Integralen

$$\int_{0}^{1} \int_{2x}^{3x} f(x, y) \, dy \, dx, \qquad \int_{0}^{1} \int_{x^{3}}^{x^{2}} f(x, y) \, dy \, dx$$

jeweils die Integrationsreihenfolge.

HINWEIS: Die Aufgabe besteht darin, die Integrationsgrenzen richtig zu transformieren.