Analysis I

Wintersemester 2025/2026

Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Priv.-Doz. Dr. Matthias Köhne

Übungsblatt 4

Ausgabe: Fr., 07.11.2025, 14:00 Uhr Abgabe: Mo., 17.11.2025, 18:00 Uhr

Besprechung: Di., 18.11.2025 bzw. Mi., 19.11.2025

Aufgabe 4.1: (Verkettungen)

Seien A, B und C nicht leere Mengen und $f: A \longrightarrow B$ sowie $g: B \longrightarrow C$ Abbildungen. Zeigen Sie:

- (a) Für alle $Z \subseteq C$ gilt $(g \circ f)^{-1}(Z) = f^{-1}(g^{-1}(Z))$.
- (b) Sind f und g invertierbar, dann ist auch $g \circ f$ invertierbar mit $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

(B) Aufgabe 4.2: (Abzählbarkeit, 2+4 Punkte)

Zeigen Sie:

- (a) Die Menge $\mathbb{N} \times \mathbb{N}$ ist abzählbar.
- (b) Sind A und B abzählbare Mengen, dann ist auch $A \times B$ abzählbar.

Hinweis: Für Teil (a) beachten Sie Aufgabe 2.4. Für Teil (b) orientieren Sie sich am Beweis von Proposition 1.1.49 (b). Sie können ohne Einschränkung annehmen, dass $A \neq \emptyset$ und $B \neq \emptyset$ ist, da sonst $A \times B = \emptyset$ gelten würde.

(B) Aufgabe 4.3: (Potenzmengen, 6 Punkte)

Sei A eine endliche Menge mit $n \in \mathbb{N}$ Elementen. Konstruieren Sie eine bijektive Abbildung

$$f: \operatorname{Map}(A, \{0, 1\}) \longrightarrow \mathcal{P}(A).$$

Folgern Sie, dass $\mathcal{P}(A)$ eine endliche Menge mit 2^n Elementen ist.

Hinweis: Beachten Sie Aufgabe 2.3.

Aufgabe 4.4: (Halbordnungen)

Sei A eine Menge. Zeigen Sie, dass durch die Relation \subseteq eine Halbordnung auf $\mathcal{P}(A)$ gegeben ist. Zeigen Sie weiter, dass es sich dabei *nicht* um eine totale Ordnung handelt, falls A mindestens zwei Elemente hat.

Aufgabe 4.5: (Vollständige Induktion)

Sei $n \in \mathbb{N}$. Zeigen Sie:

- (a) Es gilt $2+4+\ldots+2n=n(n+1)$.
- (b) Es gilt $1+3+\ldots+(2n-1)=n^2$.
- (c) Es gilt $1 + 8 + \ldots + n^3 = (1 + 2 + \ldots + n)^2$.

Hinweis: Für die Teile (a) und (b) können Sie verwenden, dass $1+2+\ldots+m=\frac{1}{2}m(m+1)$ für jedes $m\in\mathbb{N}$ gilt. Verwenden Sie diese Formel zusammen mit einer vollständigen Induktion nach n auch für Teil (c).