Analysis I

Wintersemester 2025/2026

Mathematisches Institut Heinrich-Heine-Universität Düsseldorf Priv.-Doz. Dr. Matthias Köhne

Übungsblatt 5

Ausgabe: Fr., 14.11.2025, 14:00 Uhr Abgabe: Mo., 24.11.2025, 18:00 Uhr

Besprechung: Di., 25.11.2025 bzw. Mi., 26.11.2025

Aufgabe 5.1: (Vollständige Induktion)

Sei $n \in \mathbb{N}$. Zeigen Sie:

- (a) Es gilt $1 + 4 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1)$.
- (b) Es gilt $(1+1) \cdot (1+\frac{1}{2}) \cdot \dots \cdot (1+\frac{1}{n}) = n+1$.

B Aufgabe 5.2: (Fakultät, 2+2+4 Punkte)

Beweisen Sie die folgenden Gleichungen/Abschätzungen:

- (a) Für jedes $n \in \mathbb{N}$ gilt $n! = 1 \cdot 2 \cdot \ldots \cdot n$.
- (b) Für jedes $n \in \mathbb{N}$ gilt $n! \leq n^n$.
- (c) Für jedes $n \in \mathbb{N}$ gilt $n! \cdot n! > n^n$.

Hinweis: Teil (a) kann durch vollständige Induktion (bzgl. n) gezeigt werden. Teil (b) folgt aus Teil (a). Um Teil (c) zu zeigen, verwenden Sie Teil (a) und eine Umordnung der Faktoren: $n! \cdot n! = (1 \cdot n) \cdot (2 \cdot (n-1)) \cdot \ldots \cdot (n \cdot 1)$. Zeigen Sie, dass $k \cdot (n-k+1) \ge n$ für $k=1, 2, \ldots, n$ und $n \in \mathbb{N}$.

Aufgabe 5.3: (Abzählbarkeit)

Sei A eine Menge und seien $A_1,\,A_2,\,A_3,\,\ldots$ Mengen mit $\varnothing\neq A_k\subseteq A$ für alle $k\in\mathbb{N}$. Sei $n\in\mathbb{N}$. Zeigen Sie:

- (a) $\bigcap_{k=1}^{n} A_k$ ist abzählbar, falls A_k abzählbar ist für ein $k \in \{1, 2, ..., n\}$.
- (b) $\bigcup_{k=1}^{n} A_k$ ist abzählbar, falls A_k abzählbar ist für alle $k \in \{1, 2, ..., n\}$.
- (c) $\prod_{k=1}^{n} A_k$ ist abzählbar, falls A_k abzählbar ist für alle $k \in \{1, 2, ..., n\}$.

Zusatz: Was folgern Sie aus Teil (c) für die Menge Map($\{1, 2, ..., n\}, \mathbb{N}$)?

(B) Aufgabe 5.4: (Abzählbarkeit, 4 Punkte)

Für jedes $k \in \mathbb{N}$ sei $A_k := \{0, 1\}$. Konstruieren Sie eine bijektive Abbildung $f : \prod_{k=1}^{\infty} A_k \longrightarrow \mathcal{P}(\mathbb{N})$.

Zusatz: Warum folgt daraus, dass $\prod_{k=1}^{\infty} A_k$ überabzählbar ist?

Zusatz: Was folgern Sie daraus für die Menge $Map(\mathbb{N}, \{1, 2, ..., n\})$, wobei $n \in \mathbb{N}$?